Introduction to Xilinx System Generator Part II. Evan Everett and Michael Wu ELEC Spring 2013
|
|
|
- Noreen Austin
- 10 years ago
- Views:
Transcription
1 Introduction to Xilinx System Generator Part II Evan Everett and Michael Wu ELEC Spring 2013
2 Outline Introduction to FPGAs and Xilinx System Generator System Generator basics Fixed point data representation Sample times Tips for building models
3 Fixed Point Binary Numbers MATLAB generally uses high precision values 64-bit floating point - huge dynamic range Impractical in hardware System Generator uses fixed point numbers instead Limited, but flexible, range & precision Pro: smaller hardware Con: requires attention to overflow & quantization
4 Fixed-Point Representation total bits fractional bits unsigned UFix8_ = total bits 8-5 = 3 integer bits 5 fractional bits
5 Fixed-Point Representation total bits fractional bits signed Fix8_ = total bits 8-4 = 4 integer bits 4 fractional bits
6 Range vs. Precision Unsigned UFix4_ Signed Fix4_
7 Range vs. Precision Unsigned UFix4_ Signed Fix4_
8 Range vs. Precision Unsigned UFix4_ Signed Fix4_
9 Fixed Point Arithmetic Addition & multiplication are provided Adders use general logic Multipliers use dedicated blocks Division expensive to implement and rarely used Multi-cycle operation Try to replace with shifts
10 Fixed Point Arithmetic More bits needed with each operation for full precision N bit M bit + max(n,m)+1 bit (integer growth) N bit M bit N+M bit (integer and fractional growth) May not always want to expand bitwidth, but must understand risk of overflow and/or quantization N bit N bit + N bit (overflow risk) N bit N bit N bit (integer overflow; fractional quantization)
11 Fixed Point Quantization Occurs when available fractional bits are insufficient Truncate (default): just drop bits past LSB; more efficient Round: choose nearest representable value Full Precision (UFix_11_8) Truncated (UFix_8_5) Rounded (UFix_8_5) (Δ= ) (Δ= )
12 Fixed Point Overflow Occurs when available integer bits are insufficient Required bits increase with every operation This can add up very fast Think of a long FIR filter Most blocks Error on Overflow option Great for debugging in simulation Sim stops with error when overflow occurs Overflow in hardware is very hard to isolate: simulate to check first
13 Fixed Point Overflow Overflow Options UFix_4_2 + UFix_4_ UFix_5_ Full Precision - No overflow Notice the bit growth
14 Fixed Point Overflow Overflow Options 2.50 UFix_4_ UFix_4_ UFix_4_ Wrap Happens by default in hardware if you don t give enough bits Not always bad; sometimes this is intentional Often the source of nonsensical results
15 Fixed Point Overflow Overflow Options 2.50 UFix_4_ UFix_4_ UFix_4_ Saturate Stops at max/min to prevent overflow Sign of answer will be correct More expensive in hardware (requires comparator & mux for every operation)
16 System Generator Clocking Both simulation and hardware are discrete time Model has a master system sample period Related to FPGA clock in System Generator token An x sec system period = 1 FPGA clock period System Generator
17 Multiple Clock Domains All clock domains are multiples of master System Period Every other clock period is derived from master FPGA clock period System sample period must be the smallest period in the model System Generator
18 System Generator Clocking Sample periods propagate with signals Some blocks can override the propagation Feedback loops often require explicit sample periods Most blocks are single rate (eq. logic & arithmetic) Many blocks are multi-rate: upsample & downsample, interpolate & decimate, serial-parallel conversion
19 Multiple Clock Domains Example Upsample, filter, and downsample a 25 MHz (40 ns) signal FPGA Clock period = 40 ns System Generator System period = 1 Sample period = MHz 50 MHz Error: sample rates not multiple of sample period
20 Multiple Clock Domains Example Upsample, filter, and downsample a 25 MHz (40 ns) signal System Generator FPGA Clock period = 20 ns System period = 1 Sample period = 2 25 MHz 50 MHz
21 Sample Times Example Upsample Blocks Downsample Blocks Use sample time colors!
22 Resource Estimation Any model of any size can be simulated Device resource limitations affect HW implementation Sysgen provides Resource Estimator block Adds up resource requirements before synthesis Good estimate - but not always right! Only post-place & route report is guaranteed Slice count usually matters most
23 System Generator Tips Show port data types and sample times Use variables instead of constants, initialize in a script Avoid explicit sample periods (except for feedback loops) Use keyboard shortcuts ctrl-click to wire blocks ctrl-drag to duplicate selected blocks ctrl-d to update/error check model Use subsystems and give them meaningful names Too much precision is okay at first, use Error on Overflow to optimize later Avoid saturation and rounding options
24 System Generator Example Gateway In: Gate way Out: UFix10_0 Accumulator: 10 bit output Add Wrap ROMs: Output: Fix16_15 Depth: 1024 Initial Values: cos(2π[0:1023]/1024) sin(2π[0:1023]/1024)
25 System Generator Example ROMs: Depth: 1024 Initial Values: cos(2π[0:1023]/1024) sin(2π[0:1023]/1024)
LMS is a simple but powerful algorithm and can be implemented to take advantage of the Lattice FPGA architecture.
February 2012 Introduction Reference Design RD1031 Adaptive algorithms have become a mainstay in DSP. They are used in wide ranging applications including wireless channel estimation, radar guidance systems,
Best Practises for LabVIEW FPGA Design Flow. uk.ni.com ireland.ni.com
Best Practises for LabVIEW FPGA Design Flow 1 Agenda Overall Application Design Flow Host, Real-Time and FPGA LabVIEW FPGA Architecture Development FPGA Design Flow Common FPGA Architectures Testing and
Implementation of Modified Booth Algorithm (Radix 4) and its Comparison with Booth Algorithm (Radix-2)
Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 3, Number 6 (2013), pp. 683-690 Research India Publications http://www.ripublication.com/aeee.htm Implementation of Modified Booth
Computer Science 281 Binary and Hexadecimal Review
Computer Science 281 Binary and Hexadecimal Review 1 The Binary Number System Computers store everything, both instructions and data, by using many, many transistors, each of which can be in one of two
Binary Division. Decimal Division. Hardware for Binary Division. Simple 16-bit Divider Circuit
Decimal Division Remember 4th grade long division? 43 // quotient 12 521 // divisor dividend -480 41-36 5 // remainder Shift divisor left (multiply by 10) until MSB lines up with dividend s Repeat until
The string of digits 101101 in the binary number system represents the quantity
Data Representation Section 3.1 Data Types Registers contain either data or control information Control information is a bit or group of bits used to specify the sequence of command signals needed for
This Unit: Floating Point Arithmetic. CIS 371 Computer Organization and Design. Readings. Floating Point (FP) Numbers
This Unit: Floating Point Arithmetic CIS 371 Computer Organization and Design Unit 7: Floating Point App App App System software Mem CPU I/O Formats Precision and range IEEE 754 standard Operations Addition
Floating point package user s guide By David Bishop ([email protected])
Floating point package user s guide By David Bishop ([email protected]) Floating-point numbers are the favorites of software people, and the least favorite of hardware people. The reason for this is because
Data Storage 3.1. Foundations of Computer Science Cengage Learning
3 Data Storage 3.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List five different data types used in a computer. Describe how
System Generator for DSP
System Generator for DSP User Guide Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development of designs to operate
Floating Point Fused Add-Subtract and Fused Dot-Product Units
Floating Point Fused Add-Subtract and Fused Dot-Product Units S. Kishor [1], S. P. Prakash [2] PG Scholar (VLSI DESIGN), Department of ECE Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu,
Divide: Paper & Pencil. Computer Architecture ALU Design : Division and Floating Point. Divide algorithm. DIVIDE HARDWARE Version 1
Divide: Paper & Pencil Computer Architecture ALU Design : Division and Floating Point 1001 Quotient Divisor 1000 1001010 Dividend 1000 10 101 1010 1000 10 (or Modulo result) See how big a number can be
Binary Numbering Systems
Binary Numbering Systems April 1997, ver. 1 Application Note 83 Introduction Binary numbering systems are used in virtually all digital systems, including digital signal processing (DSP), networking, and
Lecture 8: Binary Multiplication & Division
Lecture 8: Binary Multiplication & Division Today s topics: Addition/Subtraction Multiplication Division Reminder: get started early on assignment 3 1 2 s Complement Signed Numbers two = 0 ten 0001 two
Life Cycle of a Memory Request. Ring Example: 2 requests for lock 17
Life Cycle of a Memory Request (1) Use AQR or AQW to place address in AQ (2) If A[31]==0, check for hit in DCache Ring (3) Read Hit: place cache word in RQ; Write Hit: replace cache word with WQ RDDest/RDreturn
Chapter 13: Verification
Chapter 13: Verification Prof. Ming-Bo Lin Department of Electronic Engineering National Taiwan University of Science and Technology Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008-2010,
Measures of Error: for exact x and approximation x Absolute error e = x x. Relative error r = (x x )/x.
ERRORS and COMPUTER ARITHMETIC Types of Error in Numerical Calculations Initial Data Errors: from experiment, modeling, computer representation; problem dependent but need to know at beginning of calculation.
Oct: 50 8 = 6 (r = 2) 6 8 = 0 (r = 6) Writing the remainders in reverse order we get: (50) 10 = (62) 8
ECE Department Summer LECTURE #5: Number Systems EEL : Digital Logic and Computer Systems Based on lecture notes by Dr. Eric M. Schwartz Decimal Number System: -Our standard number system is base, also
CHAPTER 3 Boolean Algebra and Digital Logic
CHAPTER 3 Boolean Algebra and Digital Logic 3.1 Introduction 121 3.2 Boolean Algebra 122 3.2.1 Boolean Expressions 123 3.2.2 Boolean Identities 124 3.2.3 Simplification of Boolean Expressions 126 3.2.4
Lab 1: Full Adder 0.0
Lab 1: Full Adder 0.0 Introduction In this lab you will design a simple digital circuit called a full adder. You will then use logic gates to draw a schematic for the circuit. Finally, you will verify
DAC Digital To Analog Converter
DAC Digital To Analog Converter DAC Digital To Analog Converter Highlights XMC4000 provides two digital to analog converters. Each can output one analog value. Additional multiple analog waves can be generated
Product Development Flow Including Model- Based Design and System-Level Functional Verification
Product Development Flow Including Model- Based Design and System-Level Functional Verification 2006 The MathWorks, Inc. Ascension Vizinho-Coutry, [email protected] Agenda Introduction to Model-Based-Design
Digital Design. Assoc. Prof. Dr. Berna Örs Yalçın
Digital Design Assoc. Prof. Dr. Berna Örs Yalçın Istanbul Technical University Faculty of Electrical and Electronics Engineering Office Number: 2318 E-mail: [email protected] Grading 1st Midterm -
Converting Models from Floating Point to Fixed Point for Production Code Generation
MATLAB Digest Converting Models from Floating Point to Fixed Point for Production Code Generation By Bill Chou and Tom Erkkinen An essential step in embedded software development, floating- to fixed-point
This 3-digit ASCII string could also be calculated as n = (Data[2]-0x30) +10*((Data[1]-0x30)+10*(Data[0]-0x30));
Introduction to Embedded Microcomputer Systems Lecture 5.1 2.9. Conversions ASCII to binary n = 100*(Data[0]-0x30) + 10*(Data[1]-0x30) + (Data[2]-0x30); This 3-digit ASCII string could also be calculated
ECE 0142 Computer Organization. Lecture 3 Floating Point Representations
ECE 0142 Computer Organization Lecture 3 Floating Point Representations 1 Floating-point arithmetic We often incur floating-point programming. Floating point greatly simplifies working with large (e.g.,
High-Level Synthesis for FPGA Designs
High-Level Synthesis for FPGA Designs BRINGING BRINGING YOU YOU THE THE NEXT NEXT LEVEL LEVEL IN IN EMBEDDED EMBEDDED DEVELOPMENT DEVELOPMENT Frank de Bont Trainer consultant Cereslaan 10b 5384 VT Heesch
Binary Number System. 16. Binary Numbers. Base 10 digits: 0 1 2 3 4 5 6 7 8 9. Base 2 digits: 0 1
Binary Number System 1 Base 10 digits: 0 1 2 3 4 5 6 7 8 9 Base 2 digits: 0 1 Recall that in base 10, the digits of a number are just coefficients of powers of the base (10): 417 = 4 * 10 2 + 1 * 10 1
EE360: Digital Design I Course Syllabus
: Course Syllabus Dr. Mohammad H. Awedh Fall 2008 Course Description This course introduces students to the basic concepts of digital systems, including analysis and design. Both combinational and sequential
A single register, called the accumulator, stores the. operand before the operation, and stores the result. Add y # add y from memory to the acc
Other architectures Example. Accumulator-based machines A single register, called the accumulator, stores the operand before the operation, and stores the result after the operation. Load x # into acc
Asynchronous counters, except for the first block, work independently from a system clock.
Counters Some digital circuits are designed for the purpose of counting and this is when counters become useful. Counters are made with flip-flops, they can be asynchronous or synchronous and they can
Binary Adders: Half Adders and Full Adders
Binary Adders: Half Adders and Full Adders In this set of slides, we present the two basic types of adders: 1. Half adders, and 2. Full adders. Each type of adder functions to add two binary bits. In order
Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP
Department of Electrical and Computer Engineering Ben-Gurion University of the Negev LAB 1 - Introduction to USRP - 1-1 Introduction In this lab you will use software reconfigurable RF hardware from National
VHDL Test Bench Tutorial
University of Pennsylvania Department of Electrical and Systems Engineering ESE171 - Digital Design Laboratory VHDL Test Bench Tutorial Purpose The goal of this tutorial is to demonstrate how to automate
A DA Serial Multiplier Technique based on 32- Tap FIR Filter for Audio Application
A DA Serial Multiplier Technique ased on 32- Tap FIR Filter for Audio Application K Balraj 1, Ashish Raman 2, Dinesh Chand Gupta 3 Department of ECE Department of ECE Department of ECE Dr. B.R. Amedkar
Hardware Implementations of RSA Using Fast Montgomery Multiplications. ECE 645 Prof. Gaj Mike Koontz and Ryon Sumner
Hardware Implementations of RSA Using Fast Montgomery Multiplications ECE 645 Prof. Gaj Mike Koontz and Ryon Sumner Overview Introduction Functional Specifications Implemented Design and Optimizations
A High-Performance 8-Tap FIR Filter Using Logarithmic Number System
A High-Performance 8-Tap FIR Filter Using Logarithmic Number System Yan Sun and Min Sik Kim School of Electrical Engineering and Computer Science Washington State University Pullman, Washington 99164-2752,
White Paper FPGA Performance Benchmarking Methodology
White Paper Introduction This paper presents a rigorous methodology for benchmarking the capabilities of an FPGA family. The goal of benchmarking is to compare the results for one FPGA family versus another
Simulink Modeling Guidelines for High-Integrity Systems
Simulink Modeling Guidelines for High-Integrity Systems R2015a How to Contact MathWorks Latest news: www.mathworks.com Sales and services: www.mathworks.com/sales_and_services User community: www.mathworks.com/matlabcentral
Modeling Sequential Elements with Verilog. Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: [email protected]. Sequential Circuit
Modeling Sequential Elements with Verilog Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: [email protected] 4-1 Sequential Circuit Outputs are functions of inputs and present states of storage elements
Video-Conferencing System
Video-Conferencing System Evan Broder and C. Christoher Post Introductory Digital Systems Laboratory November 2, 2007 Abstract The goal of this project is to create a video/audio conferencing system. Video
Architekturen und Einsatz von FPGAs mit integrierten Prozessor Kernen. Hans-Joachim Gelke Institute of Embedded Systems Professur für Mikroelektronik
Architekturen und Einsatz von FPGAs mit integrierten Prozessor Kernen Hans-Joachim Gelke Institute of Embedded Systems Professur für Mikroelektronik Contents Überblick: Aufbau moderner FPGA Einblick: Eigenschaften
DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION
DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION Introduction The outputs from sensors and communications receivers are analogue signals that have continuously varying amplitudes. In many systems
EE361: Digital Computer Organization Course Syllabus
EE361: Digital Computer Organization Course Syllabus Dr. Mohammad H. Awedh Spring 2014 Course Objectives Simply, a computer is a set of components (Processor, Memory and Storage, Input/Output Devices)
Data Storage. Chapter 3. Objectives. 3-1 Data Types. Data Inside the Computer. After studying this chapter, students should be able to:
Chapter 3 Data Storage Objectives After studying this chapter, students should be able to: List five different data types used in a computer. Describe how integers are stored in a computer. Describe how
DDS. 16-bit Direct Digital Synthesizer / Periodic waveform generator Rev. 1.4. Key Design Features. Block Diagram. Generic Parameters.
Key Design Features Block Diagram Synthesizable, technology independent VHDL IP Core 16-bit signed output samples 32-bit phase accumulator (tuning word) 32-bit phase shift feature Phase resolution of 2π/2
Clock and Data Recovery Unit based on Deserialized Oversampled Data
XAPP1240 (v2.0) September 24, 2015 Application Note: Xilinx 7 series devices and UltraScale devices Clock and Data Recovery Unit based on Deserialized Oversampled Data Authors: Paolo Novellini, Antonello
Step : Create Dependency Graph for Data Path Step b: 8-way Addition? So, the data operations are: 8 multiplications one 8-way addition Balanced binary
RTL Design RTL Overview Gate-level design is now rare! design automation is necessary to manage the complexity of modern circuits only library designers use gates automated RTL synthesis is now almost
Binary Representation. Number Systems. Base 10, Base 2, Base 16. Positional Notation. Conversion of Any Base to Decimal.
Binary Representation The basis of all digital data is binary representation. Binary - means two 1, 0 True, False Hot, Cold On, Off We must be able to handle more than just values for real world problems
LSN 2 Number Systems. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology
LSN 2 Number Systems Department of Engineering Technology LSN 2 Decimal Number System Decimal number system has 10 digits (0-9) Base 10 weighting system... 10 5 10 4 10 3 10 2 10 1 10 0. 10-1 10-2 10-3
Design and FPGA Implementation of a Novel Square Root Evaluator based on Vedic Mathematics
International Journal of Information & Computation Technology. ISSN 0974-2239 Volume 4, Number 15 (2014), pp. 1531-1537 International Research Publications House http://www. irphouse.com Design and FPGA
Infinite Impulse Response Filter Structures in Xilinx FPGAs
White Paper: Spartan -3A DSP, Virtex -5/Virtex-4 FPGAs, LogiCOE IP WP330 (v1.2) August 10, 2009 Infinite Impulse esponse Filter Structures in Xilinx FPGAs By: Michael Francis A large percentage of filters
ALFFT FAST FOURIER Transform Core Application Notes
ALFFT FAST FOURIER Transform Core Application Notes 6-20-2012 Table of Contents General Information... 3 Features... 3 Key features... 3 Design features... 3 Interface... 6 Symbol... 6 Signal description...
INTRODUCTION TO DIGITAL SYSTEMS. IMPLEMENTATION: MODULES (ICs) AND NETWORKS IMPLEMENTATION OF ALGORITHMS IN HARDWARE
INTRODUCTION TO DIGITAL SYSTEMS 1 DESCRIPTION AND DESIGN OF DIGITAL SYSTEMS FORMAL BASIS: SWITCHING ALGEBRA IMPLEMENTATION: MODULES (ICs) AND NETWORKS IMPLEMENTATION OF ALGORITHMS IN HARDWARE COURSE EMPHASIS:
LogiCORE IP AXI Performance Monitor v2.00.a
LogiCORE IP AXI Performance Monitor v2.00.a Product Guide Table of Contents IP Facts Chapter 1: Overview Target Technology................................................................. 9 Applications......................................................................
Vivado Design Suite Tutorial
Vivado Design Suite Tutorial High-Level Synthesis UG871 (v2012.2) August 20, 2012 Notice of Disclaimer The information disclosed to you hereunder (the Materials ) is provided solely for the selection and
Understanding Logic Design
Understanding Logic Design ppendix of your Textbook does not have the needed background information. This document supplements it. When you write add DD R0, R1, R2, you imagine something like this: R1
FPGA Synthesis Example: Counter
FPGA Synthesis Example: Counter Peter Marwedel Informatik XII, U. Dortmund Gliederung Einführung SystemC Vorlesungen und Programmierung FPGAs - Vorlesungen - VHDL-basierte Konfiguration von FPGAs mit dem
Embedded System Hardware - Processing (Part II)
12 Embedded System Hardware - Processing (Part II) Jian-Jia Chen (Slides are based on Peter Marwedel) Informatik 12 TU Dortmund Germany Springer, 2010 2014 年 11 月 11 日 These slides use Microsoft clip arts.
CS 61C: Great Ideas in Computer Architecture Finite State Machines. Machine Interpreta4on
CS 61C: Great Ideas in Computer Architecture Finite State Machines Instructors: Krste Asanovic & Vladimir Stojanovic hbp://inst.eecs.berkeley.edu/~cs61c/sp15 1 Levels of RepresentaKon/ InterpretaKon High
VHDL GUIDELINES FOR SYNTHESIS
VHDL GUIDELINES FOR SYNTHESIS Claudio Talarico For internal use only 1/19 BASICS VHDL VHDL (Very high speed integrated circuit Hardware Description Language) is a hardware description language that allows
Hunting Asynchronous CDC Violations in the Wild
Hunting Asynchronous Violations in the Wild Chris Kwok Principal Engineer May 4, 2015 is the #2 Verification Problem Why is a Big Problem: 10 or More Clock Domains are Common Even FPGA Users Are Suffering
Analog Representations of Sound
Analog Representations of Sound Magnified phonograph grooves, viewed from above: The shape of the grooves encodes the continuously varying audio signal. Analog to Digital Recording Chain ADC Microphone
FPGA Clocking. Clock related issues: distribution generation (frequency synthesis) multiplexing run time programming domain crossing
FPGA Clocking Clock related issues: distribution generation (frequency synthesis) Deskew multiplexing run time programming domain crossing Clock related constraints 100 Clock Distribution Device split
Digital Hardware Design Decisions and Trade-offs for Software Radio Systems
Digital Hardware Design Decisions and Trade-offs for Software Radio Systems John Patrick Farrell This thesis is submitted to the Faculty of Virginia Polytechnic Institute and State University in partial
Below is a diagram explaining the data packet and the timing related to the mouse clock while receiving a byte from the PS-2 mouse:
PS-2 Mouse: The Protocol: For out mini project we designed a serial port transmitter receiver, which uses the Baud rate protocol. The PS-2 port is similar to the serial port (performs the function of transmitting
All Programmable Logic. Hans-Joachim Gelke Institute of Embedded Systems. Zürcher Fachhochschule
All Programmable Logic Hans-Joachim Gelke Institute of Embedded Systems Institute of Embedded Systems 31 Assistants 10 Professors 7 Technical Employees 2 Secretaries www.ines.zhaw.ch Research: Education:
2010/9/19. Binary number system. Binary numbers. Outline. Binary to decimal
2/9/9 Binary number system Computer (electronic) systems prefer binary numbers Binary number: represent a number in base-2 Binary numbers 2 3 + 7 + 5 Some terminology Bit: a binary digit ( or ) Hexadecimal
RAPID PROTOTYPING OF DIGITAL SYSTEMS Second Edition
RAPID PROTOTYPING OF DIGITAL SYSTEMS Second Edition A Tutorial Approach James O. Hamblen Georgia Institute of Technology Michael D. Furman Georgia Institute of Technology KLUWER ACADEMIC PUBLISHERS Boston
A Verilog HDL Test Bench Primer Application Note
A Verilog HDL Test Bench Primer Application Note Table of Contents Introduction...1 Overview...1 The Device Under Test (D.U.T.)...1 The Test Bench...1 Instantiations...2 Figure 1- DUT Instantiation...2
Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) Institute of Technology. Electronics & Communication Engineering. B.
Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) Institute of Technology Electronics & Communication Engineering B.Tech III Semester 1. Electronic Devices Laboratory 2. Digital Logic Circuit Laboratory 3.
Software Defined Radio
Software Defined Radio GNU Radio and the USRP Overview What is Software Defined Radio? Advantages of Software Defined Radio Traditional versus SDR Receivers SDR and the USRP Using GNU Radio Introduction
Quality of Service versus Fairness. Inelastic Applications. QoS Analogy: Surface Mail. How to Provide QoS?
18-345: Introduction to Telecommunication Networks Lectures 20: Quality of Service Peter Steenkiste Spring 2015 www.cs.cmu.edu/~prs/nets-ece Overview What is QoS? Queuing discipline and scheduling Traffic
Useful Number Systems
Useful Number Systems Decimal Base = 10 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Binary Base = 2 Digit Set = {0, 1} Octal Base = 8 = 2 3 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7} Hexadecimal Base = 16 = 2
KS3 Computing Group 1 Programme of Study 2015 2016 2 hours per week
1 07/09/15 2 14/09/15 3 21/09/15 4 28/09/15 Communication and Networks esafety Obtains content from the World Wide Web using a web browser. Understands the importance of communicating safely and respectfully
STUDY ON HARDWARE REALIZATION OF GPS SIGNAL FAST ACQUISITION
STUDY ON HARDWARE REALIZATION OF GPS SIGNAL FAST ACQUISITION Huang Lei Kou Yanhong Zhang Qishan School of Electronics and Information Engineering, Beihang University, Beijing, P. R. China, 100083 ABSTRACT
An Efficient Architecture for Image Compression and Lightweight Encryption using Parameterized DWT
An Efficient Architecture for Image Compression and Lightweight Encryption using Parameterized DWT Babu M., Mukuntharaj C., Saranya S. Abstract Discrete Wavelet Transform (DWT) based architecture serves
CPEN 214 - Digital Logic Design Binary Systems
CPEN 4 - Digital Logic Design Binary Systems C. Gerousis Digital Design 3 rd Ed., Mano Prentice Hall Digital vs. Analog An analog system has continuous range of values A mercury thermometer Vinyl records
Digitale Signalverarbeitung mit FPGA (DSF) Soft Core Prozessor NIOS II Stand Mai 2007. Jens Onno Krah
(DSF) Soft Core Prozessor NIOS II Stand Mai 2007 Jens Onno Krah Cologne University of Applied Sciences www.fh-koeln.de [email protected] NIOS II 1 1 What is Nios II? Altera s Second Generation
High Speed and Efficient 4-Tap FIR Filter Design Using Modified ETA and Multipliers
High Speed and Efficient 4-Tap FIR Filter Design Using Modified ETA and Multipliers Mehta Shantanu Sheetal #1, Vigneswaran T. #2 # School of Electronics Engineering, VIT University Chennai, Tamil Nadu,
Gates, Plexers, Decoders, Registers, Addition and Comparison
Introduction to Digital Logic Autumn 2008 Gates, Plexers, Decoders, Registers, Addition and Comparison [email protected] ...open up a command shell and type logisim and press enter to start Logisim.
RN-coding of Numbers: New Insights and Some Applications
RN-coding of Numbers: New Insights and Some Applications Peter Kornerup Dept. of Mathematics and Computer Science SDU, Odense, Denmark & Jean-Michel Muller LIP/Arénaire (CRNS-ENS Lyon-INRIA-UCBL) Lyon,
Digital to Analog and Analog to Digital Conversion
Real world (lab) is Computer (binary) is digital Digital to Analog and Analog to Digital Conversion V t V t D/A or DAC and A/D or ADC D/A Conversion Computer DAC A/D Conversion Computer DAC Digital to
Digital Systems. Role of the Digital Engineer
Digital Systems Role of the Digital Engineer Digital Design Engineers attempt to clearly define the problem(s) Possibly, break the problem into many smaller problems Engineers then develop a strategy for
Understanding CIC Compensation Filters
Understanding CIC Compensation Filters April 2007, ver. 1.0 Application Note 455 Introduction f The cascaded integrator-comb (CIC) filter is a class of hardware-efficient linear phase finite impulse response
Fixed-Point Arithmetic: An Introduction
Fixed-Point Arithmetic: An Introduction 1 (15) Fixed-Point Arithmetic: An Introduction Randy Yates January 2, 2013 s i g n a l p r o c e s s i n g s y s t e m s s http://www.digitalsignallabs.com Typeset
Multipliers. Introduction
Multipliers Introduction Multipliers play an important role in today s digital signal processing and various other applications. With advances in technology, many researchers have tried and are trying
Lecture 11: Number Systems
Lecture 11: Number Systems Numeric Data Fixed point Integers (12, 345, 20567 etc) Real fractions (23.45, 23., 0.145 etc.) Floating point such as 23. 45 e 12 Basically an exponent representation Any number
Computer Science 217
Computer Science 217 Midterm Exam Fall 2009 October 29, 2009 Name: ID: Instructions: Neatly print your name and ID number in the spaces provided above. Pick the best answer for each multiple choice question.
Float to Fix conversion
www.thalesgroup.com Float to Fix conversion Fabrice Lemonnier Research & Technology 2 / Thales Research & Technology : Research center of Thales Objective: to propose technological breakthrough for the
Open Flow Controller and Switch Datasheet
Open Flow Controller and Switch Datasheet California State University Chico Alan Braithwaite Spring 2013 Block Diagram Figure 1. High Level Block Diagram The project will consist of a network development
7a. System-on-chip design and prototyping platforms
7a. System-on-chip design and prototyping platforms Labros Bisdounis, Ph.D. Department of Computer and Communication Engineering 1 What is System-on-Chip (SoC)? System-on-chip is an integrated circuit
Digital System Design Prof. D Roychoudhry Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur
Digital System Design Prof. D Roychoudhry Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture - 04 Digital Logic II May, I before starting the today s lecture
Lecture N -1- PHYS 3330. Microcontrollers
Lecture N -1- PHYS 3330 Microcontrollers If you need more than a handful of logic gates to accomplish the task at hand, you likely should use a microcontroller instead of discrete logic gates 1. Microcontrollers
Non-Data Aided Carrier Offset Compensation for SDR Implementation
Non-Data Aided Carrier Offset Compensation for SDR Implementation Anders Riis Jensen 1, Niels Terp Kjeldgaard Jørgensen 1 Kim Laugesen 1, Yannick Le Moullec 1,2 1 Department of Electronic Systems, 2 Center
Quartus II Software Design Series : Foundation. Digitale Signalverarbeitung mit FPGA. Digitale Signalverarbeitung mit FPGA (DSF) Quartus II 1
(DSF) Quartus II Stand: Mai 2007 Jens Onno Krah Cologne University of Applied Sciences www.fh-koeln.de [email protected] Quartus II 1 Quartus II Software Design Series : Foundation 2007 Altera
SIM-PL: Software for teaching computer hardware at secondary schools in the Netherlands
SIM-PL: Software for teaching computer hardware at secondary schools in the Netherlands Ben Bruidegom, [email protected] AMSTEL Instituut Universiteit van Amsterdam Kruislaan 404 NL-1098 SM Amsterdam
