Software Defined Radio
|
|
|
- Janis Anderson
- 10 years ago
- Views:
Transcription
1 Software Defined Radio GNU Radio and the USRP Overview What is Software Defined Radio? Advantages of Software Defined Radio Traditional versus SDR Receivers SDR and the USRP Using GNU Radio Introduction What is Software Defined Radio (SDR)? Getting code as close to the antenna as possible Replacing hardware with software for modulation/demodulation Advantages: Makes communications systems reconfigurable (adapting to new standards) Flexible (universal software device - not special purpose) Filters/Other Hardware Cognitive Radio 3 1
2 Traditional Receiver 10 KHz RF Amplifier f c x f LO -f c f LO +f c f LO Local Oscillator 10 KHz 10 KHz IF Amplifier 455 f LO =1435 KHz 10 KHz Traditional vs. SDR Receiver Receiver Front End Traditional / Hardware Receiver RF Amplifier x Local Oscillator IF Amplifier Current SDR Receiver Receiver Front End Software Future SDR Receiver? Software 5 SDR Receiver Using the USRP Daughterboard Motherboard Receiver Front End USB Controller PC similar to traditional front end with f IF = 0 Decimation, MUX, + Interface to PC GNU Radio software USRP: Universal Software Radio Peripheral 6
3 Quadrature Signal Representation The received signal, S(t), may be represented as follows: S(t) = I(t)cos(! f c t) + Q(t)sin(! f c t) f c = carrier frequency I(t) = in-phase component Q(t) = quadrature component Contain amplitude and phase information of baseband signal GNU Radio software uses I and Q components to demodulate signals USRP front end translates the signal to zero frequency and extracts I and Q Extracting I(t) from S S(t) = I(t)cos(! f c t) + Q(t)sin(! f c t) Multiplying both sides by cos(πf c t): S(t)cos(! f c t) = I(t)cos (! f c t) + Q(t)sin(! f c t)cos(! f c t) [ ] + Q(t) [ sin(4! f c t) + sin(0) ] = I(t) 1 + cos(4! f ct) = 1 I(t) + 1 I(t)cos(4! f c t) Q(t)sin(4! f c t) Applying this signal to a low pass filter, the output will be: 1 I(t) 8 Extracting Q(t) from S S(t) = I(t)cos(! f c t) + Q(t)sin(! f c t) Multiplying both sides by sin(πf c t): S(t)sin(! f c t) = I(t)cos(! f c t)sin(! f c t) + Q(t)sin (! f c t) [ ] + Q(t) [ 1" cos(4! f c t) ] = I(t) sin(4! f ct) " sin(0) = 1 I(t)sin(4! f c t) + 1 Q(t) " 1 Q(t)cos(4! f c t) Applying this signal to a low pass filter, the output will be: 1 Q(t) 9 3
4 USRP Receiver Front End x LPF I RF Amplifier 90 f c LO x LPF Q 10 Analog to Digital Converter () 1 bit A/D Converter ( 1 levels) volt peak-peak maximum input 64 Msamp/second t Sampling Interval: Quantization Levels: 1!t = = µS 6 64 " 10!v = = 0.488mV 1 11 Decimation Original sampling rate is 64Msamp/sec Converts a portion of spectrum 3 MHz wide Generally we are interested is a narrower portion of the spectrum requiring a lower sampling rate USB cannot handle that high data rate Occurs in the of the USRP f 3MHz LPF 50KHz f Downsample divide by 18 50KHz f s = 64Msamp/sec f s = 64Msamp/sec f s = 500Ksamp/sec f 64M 500K =
5 SDR Receiver with USRP Motherboard Daughterboard I (Decimator, MUX, etc.) USB Controller PC Q GNU Radio Software 13 USRP Motherboard/Daughterboard 14 GNU Radio Software Community-based project started in 1998 GNU Radio application consists of sources (inputs), sinks (outputs) and transform blocks Transform blocks: math, filtering, modulation/demodulation, coding, etc. Sources: USRP, audio input, file input, signal generator, Sinks: USRP, audio output, file output, FFT, oscilloscope, Blocks written in C++ Python scripts used to connect blocks and form application 15 5
6 Design of a Receiver USRP GNU Radio Application USRP: Set frequency of local oscillator (receive frequency), gain of amplifier, decimation factor GNU Radio application: use Python to specify and connect blocks that perform demodulation and decoding 16 Example: MHz NB Receiver Problem: Receive an audio signal (up to 4 KHz) transmitted at 446 MHz using narrowband (NB) with a transmission bandwidth USRP GNU Radio Application f 4KHz 17 Design Procedure 1. Plan the block diagram of system components. Determine block parameters 3. Determine decimation rates 4. Write Python script to specify the blocks and connect them together 18 6
7 NB Receiver: Block Diagram/Parameters ? -8 8? USRP PC Daughterboard f c = 446 MHz 64 Msamp/sec??? -?? 19 Determining the Decimation Factors D 1 3 D D 3 Total Decimation factor = 8000 = D 1 D D 3 64Msamp/sec 8Ksamp/sec 0 Decimation Factor, D 1 D 1 3 D D 3 Total Decimation factor = 8000 = D 1 D D 3 Maximize the decimation in Maximum decimation factor in = 56 Select D 1 = 50 (factor of 8000) Output sample rate = 64Ms/s / 50 = 56Ks/s 1 7
8 Specification 64Ms/s Ks/s D 18 D 3 H (db) Maximum frequency = 56Ks/s / 3Ks/s D = 8 Reduce sample rate to 3 Ks/s 64Ms/s Ks/s D Ks/s Maximum frequency = 4 KHz Reduce sample rate to 8 Ks/s 3Ks/s / 8Ks/s D 3 = 4 block extracts audio signal from waveform by operating on I and Q 3 Complete Application Design 64Ms/s Ks/s 4 8Ks/s Ks/s Total decimation ratio = 50*8*4 = 8000 Problem: The audio card requires an input sample rate 44.1 Ks/s Solution: Use a Resampler to increase the output sample rate 4 8
9 Final Application Design 64Ms/s 56Ks/s 3Ks/s 3Ks/s Resampler mult by 3 div by 48Ks/s Card requires a sample rate 44.1 Ks/sec. Use 48 Ks/sec. Modify to have a decimation factor of 1 (no change) Increase the sample rate to 48 Ks/sec with Resampler (x 3/) 5 Implementing the Design Create a Python script to specify and connect the various GNU radio blocks Blocks are already written in C++ USRP parameters are set within Python script # indicates that the line is a comment Refer to nbfm.py script 6 Setting the USRP Parameters The following code sets the USRP Parameters: 7 9
10 Design The following code specifies the channel filter and computes the coefficients H (db) Creation The following code creates the channel filter using the coefficients computed: 9 The following code creates the demodulator. The demodulator block also includes a low pass filter
11 Resampler The following code creates the resampler. The resampler decimates and/or interpolates the data to adjust the sample rate. 31 Connecting the Blocks The following code connects the blocks: Or, a single connect statement: 3 Final Thoughts Demonstration Storing/creating data Transmitters Installing GNU radio Questions Where do we go from here? 33 11
Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP
Department of Electrical and Computer Engineering Ben-Gurion University of the Negev LAB 1 - Introduction to USRP - 1-1 Introduction In this lab you will use software reconfigurable RF hardware from National
Implementation of Digital Signal Processing: Some Background on GFSK Modulation
Implementation of Digital Signal Processing: Some Background on GFSK Modulation Sabih H. Gerez University of Twente, Department of Electrical Engineering [email protected] Version 4 (February 7, 2013)
Spectrum analyzer with USRP, GNU Radio and MATLAB
Spectrum analyzer with USRP, GNU Radio and MATLAB António José Costa, João Lima, Lúcia Antunes, Nuno Borges de Carvalho {antoniocosta, jflima, a30423, nbcarvalho}@ua.pt January 23, 2009 Abstract In this
Introduction to Receivers
Introduction to Receivers Purpose: translate RF signals to baseband Shift frequency Amplify Filter Demodulate Why is this a challenge? Interference (selectivity, images and distortion) Large dynamic range
The front end of the receiver performs the frequency translation, channel selection and amplification of the signal.
Many receivers must be capable of handling a very wide range of signal powers at the input while still producing the correct output. This must be done in the presence of noise and interference which occasionally
GnuRadio CONTACT INFORMATION: phone: +1.301.527.1629 fax: +1.301.527.1690 email: [email protected] web: www.hsc.com
GnuRadio CONTACT INFORMATION: phone: +1.301.527.1629 fax: +1.301.527.1690 email: [email protected] web: www.hsc.com PROPRIETARY NOTICE All rights reserved. This publication and its contents are proprietary
Field-Test Setup for DRM+, DRM30, FM and AM.
A Professional but yet Low-Cost Software-Defined Radio (SDR) Field-Test Setup for DRM+, DRM30, FM and AM. Tagung des Deutschen DRM Forums Turgi, 08. June 2010 Lehrstuhl für Integrierte Systeme Outline
Application Note Receiving HF Signals with a USRP Device Ettus Research
Application Note Receiving HF Signals with a USRP Device Ettus Research Introduction The electromagnetic (EM) spectrum between 3 and 30 MHz is commonly referred to as the HF band. Due to the propagation
RF Measurements Using a Modular Digitizer
RF Measurements Using a Modular Digitizer Modern modular digitizers, like the Spectrum M4i series PCIe digitizers, offer greater bandwidth and higher resolution at any given bandwidth than ever before.
Communication Systems
AM/FM Receiver Communication Systems We have studied the basic blocks o any communication system Modulator Demodulator Modulation Schemes: Linear Modulation (DSB, AM, SSB, VSB) Angle Modulation (FM, PM)
MODULATION Systems (part 1)
Technologies and Services on Digital Broadcasting (8) MODULATION Systems (part ) "Technologies and Services of Digital Broadcasting" (in Japanese, ISBN4-339-62-2) is published by CORONA publishing co.,
RF Communication System. EE 172 Systems Group Presentation
RF Communication System EE 172 Systems Group Presentation RF System Outline Transmitter Components Receiver Components Noise Figure Link Budget Test Equipment System Success Design Remedy Transmitter Components
Non-Data Aided Carrier Offset Compensation for SDR Implementation
Non-Data Aided Carrier Offset Compensation for SDR Implementation Anders Riis Jensen 1, Niels Terp Kjeldgaard Jørgensen 1 Kim Laugesen 1, Yannick Le Moullec 1,2 1 Department of Electronic Systems, 2 Center
Application Note Design Process for Smart, Distributed RF Sensors Ettus Research
Application Note Design Process for Smart, Distributed RF Sensors Ettus Research Introduction The Ettus Research USRP (Universal Software Radio Peripheral) is a flexible, low-cost software defined radio
GNU Radio. An introduction. Jesper M. Kristensen Department of Electronic Systems [email protected]. Programmerbare digitale enheder Tuesday 6/3 2007
GNU Radio An introduction Jesper M. Kristensen Department of Electronic Systems [email protected] Programmerbare digitale enheder Tuesday 6/3 2007 Programmerbare digitale enheder GNU Radio 1 / 36 Outline Introduction
From baseband to bitstream and back again: What security researchers really want to do with SDR. Andy Davis, Research Director NCC Group
From baseband to bitstream and back again: What security researchers really want to do with SDR Andy Davis, Research Director NCC Group Agenda Signals basics Modulation schemes Information sources Receiving
Modification Details.
Front end receiver modification for DRM: AKD Target Communications receiver. Model HF3. Summary. The receiver was modified and capable of receiving DRM, but performance was limited by the phase noise from
Jeff Thomas Tom Holmes Terri Hightower. Learn RF Spectrum Analysis Basics
Jeff Thomas Tom Holmes Terri Hightower Learn RF Spectrum Analysis Basics Agenda Overview: Spectrum analysis and its measurements Theory of Operation: Spectrum analyzer hardware Frequency Specifications
Appendix D Digital Modulation and GMSK
D1 Appendix D Digital Modulation and GMSK A brief introduction to digital modulation schemes is given, showing the logical development of GMSK from simpler schemes. GMSK is of interest since it is used
'Possibilities and Limitations in Software Defined Radio Design.
'Possibilities and Limitations in Software Defined Radio Design. or Die Eierlegende Wollmilchsau Peter E. Chadwick Chairman, ETSI ERM_TG30, co-ordinated by ETSI ERM_RM Software Defined Radio or the answer
How To Understand The Theory Of Time Division Duplexing
Multiple Access Techniques Dr. Francis LAU Dr. Francis CM Lau, Associate Professor, EIE, PolyU Content Introduction Frequency Division Multiple Access Time Division Multiple Access Code Division Multiple
Vector Signal Analyzer FSQ-K70
Product brochure Version 02.00 Vector Signal Analyzer FSQ-K70 July 2004 Universal demodulation, analysis and documentation of digital radio signals For all major mobile radio communication standards: GSM
Chap#5 (Data communication)
Chap#5 (Data communication) Q#1: Define analog transmission. Normally, analog transmission refers to the transmission of analog signals using a band-pass channel. Baseband digital or analog signals are
Tx/Rx A high-performance FM receiver for audio and digital applicatons
Tx/Rx A high-performance FM receiver for audio and digital applicatons This receiver design offers high sensitivity and low distortion for today s demanding high-signal environments. By Wayne C. Ryder
Special Topics in Security and Privacy of Medical Information. Reminders. Medical device security. Sujata Garera
Special Topics in Security and Privacy of Medical Information Sujata Garera Reminders Assignment due today Project part 1 due on next Tuesday Assignment 2 will be online today evening 2nd Discussion session
Sampling Theorem Notes. Recall: That a time sampled signal is like taking a snap shot or picture of signal periodically.
Sampling Theorem We will show that a band limited signal can be reconstructed exactly from its discrete time samples. Recall: That a time sampled signal is like taking a snap shot or picture of signal
GSM/EDGE Output RF Spectrum on the V93000 Joe Kelly and Max Seminario, Verigy
GSM/EDGE Output RF Spectrum on the V93000 Joe Kelly and Max Seminario, Verigy Introduction A key transmitter measurement for GSM and EDGE is the Output RF Spectrum, or ORFS. The basis of this measurement
Digital Modulation. David Tipper. Department of Information Science and Telecommunications University of Pittsburgh. Typical Communication System
Digital Modulation David Tipper Associate Professor Department of Information Science and Telecommunications University of Pittsburgh http://www.tele.pitt.edu/tipper.html Typical Communication System Source
Lezione 6 Communications Blockset
Corso di Tecniche CAD per le Telecomunicazioni A.A. 2007-2008 Lezione 6 Communications Blockset Ing. Marco GALEAZZI 1 What Is Communications Blockset? Communications Blockset extends Simulink with a comprehensive
Experiment # (4) AM Demodulator
Islamic University of Gaza Faculty of Engineering Electrical Department Experiment # (4) AM Demodulator Communications Engineering I (Lab.) Prepared by: Eng. Omar A. Qarmout Eng. Mohammed K. Abu Foul Experiment
DAC Digital To Analog Converter
DAC Digital To Analog Converter DAC Digital To Analog Converter Highlights XMC4000 provides two digital to analog converters. Each can output one analog value. Additional multiple analog waves can be generated
Wireless Transmission of JPEG file using GNU Radio and USRP
1 Wireless Transmission of JPEG file using GNU Radio and USRP Sachin Hirve, Saikrishna Gumudavally, Department of Electrical and Computer Engineering, Cleveland State University Abstract Wireless applications
Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT)
Page 1 Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) ECC RECOMMENDATION (06)01 Bandwidth measurements using FFT techniques
Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics:
Voice Transmission --Basic Concepts-- Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics: Amplitude Frequency Phase Voice Digitization in the POTS Traditional
Agilent E3830 Series Wide-bandwidth Signal Analyzer Custom Systems 100 MHz Bandwidth Microwave Vector Signal Analysis
Agilent E3830 Series Wide-bandwidth Signal Analyzer Custom Systems 100 MHz Bandwidth Microwave Vector Signal Analysis The measurement challenge 2 Many advanced microwave applications involve complex wideband
REMOTE KEYLESS ENTRY SYSTEM RECEIVER DESIGN
INTRODUCTION: REMOTE KEYLESS ENTRY SYSTEM RECEIVER DESIGN Remote keyless entry (RKE) has captivated automobile buyers, as evidenced by the popularity of RKE on new automobiles and as an aftermarket item.
EECC694 - Shaaban. Transmission Channel
The Physical Layer: Data Transmission Basics Encode data as energy at the data (information) source and transmit the encoded energy using transmitter hardware: Possible Energy Forms: Electrical, light,
PCM Encoding and Decoding:
PCM Encoding and Decoding: Aim: Introduction to PCM encoding and decoding. Introduction: PCM Encoding: The input to the PCM ENCODER module is an analog message. This must be constrained to a defined bandwidth
AM/FM/ϕM Measurement Demodulator FS-K7
Data sheet Version 02.00 AM/FM/ϕM Measurement Demodulator FS-K7 July 2005 for the Analyzers FSQ/FSU/FSP and the Test Receivers ESCI/ESPI AM/FM/ϕM demodulator for measuring analog modulation parameters
RF Network Analyzer Basics
RF Network Analyzer Basics A tutorial, information and overview about the basics of the RF Network Analyzer. What is a Network Analyzer and how to use them, to include the Scalar Network Analyzer (SNA),
Tri-Band RF Transceivers for Dynamic Spectrum Access. By Nishant Kumar and Yu-Dong Yao
Tri-Band RF Transceivers for Dynamic Spectrum Access By Nishant Kumar and Yu-Dong Yao Presentation outline Introduction to WISELAB Active work at WISELAB Tri-band test bed Elements of the test bed Experimentation
RFSPACE CLOUD-IQ #CONNECTED SOFTWARE DEFINED RADIO
CLOUD-IQ #CONNECTED SOFTWARE DEFINED RADIO 1 - SPECIFICATIONS Cloud-IQ INTRODUCTION The Cloud-IQ is a high performance, direct sampling software radio with an ethernet interface. It offers outstanding
SDR Architecture. Introduction. Figure 1.1 SDR Forum High Level Functional Model. Contributed by Lee Pucker, Spectrum Signal Processing
SDR Architecture Contributed by Lee Pucker, Spectrum Signal Processing Introduction Software defined radio (SDR) is an enabling technology, applicable across a wide range of areas within the wireless industry,
INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA
COMM.ENG INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA 9/6/2014 LECTURES 1 Objectives To give a background on Communication system components and channels (media) A distinction between analogue
The Phase Modulator In NBFM Voice Communication Systems
The Phase Modulator In NBFM Voice Communication Systems Virgil Leenerts 8 March 5 The phase modulator has been a point of discussion as to why it is used and not a frequency modulator in what are called
What s The Difference Between Bit Rate And Baud Rate?
What s The Difference Between Bit Rate And Baud Rate? Apr. 27, 2012 Lou Frenzel Electronic Design Serial-data speed is usually stated in terms of bit rate. However, another oftquoted measure of speed is
Agilent PN 89400-13 Extending Vector Signal Analysis to 26.5 GHz with 20 MHz Information Bandwidth
Agilent PN 89400-13 Extending Vector Signal Analysis to 26.5 GHz with 20 MHz Information Bandwidth Product Note The Agilent Technologies 89400 series vector signal analyzers provide unmatched signal analysis
A WEB BASED TRAINING MODULE FOR TEACHING DIGITAL COMMUNICATIONS
A WEB BASED TRAINING MODULE FOR TEACHING DIGITAL COMMUNICATIONS Ali Kara 1, Cihangir Erdem 1, Mehmet Efe Ozbek 1, Nergiz Cagiltay 2, Elif Aydin 1 (1) Department of Electrical and Electronics Engineering,
Introduction to IQ-demodulation of RF-data
Introduction to IQ-demodulation of RF-data by Johan Kirkhorn, IFBT, NTNU September 15, 1999 Table of Contents 1 INTRODUCTION...3 1.1 Abstract...3 1.2 Definitions/Abbreviations/Nomenclature...3 1.3 Referenced
TUTORIAL FOR CHAPTER 8
TUTORIAL FOR CHAPTER 8 PROBLEM 1) The informaiton in four analog signals is to be multiplexed and transmitted over a telephone channel that has a 400 to 3100 Hz bandpass. Each of the analog baseband signals
Implementing Digital Wireless Systems. And an FCC update
Implementing Digital Wireless Systems And an FCC update Spectrum Repacking Here We Go Again: The FCC is reallocating 600 MHz Frequencies for Wireless Mics 30-45 MHz (8-m HF) 174-250 MHz (VHF) 450-960 MHz
ELEMENTS OF CABLE TELEVISION
1 ELEMENTS OF CABLE TELEVISION Introduction Cable television, from its inception, developed in western countries into two separate systems called Master Antenna Television (MATV) and Community Cable Television
The Effective Number of Bits (ENOB) of my R&S Digital Oscilloscope Technical Paper
The Effective Number of Bits (ENOB) of my R&S Digital Oscilloscope Technical Paper Products: R&S RTO1012 R&S RTO1014 R&S RTO1022 R&S RTO1024 This technical paper provides an introduction to the signal
Demonstration of a Software Defined Radio Platform for dynamic spectrum allocation.
Demonstration of a Software Defined Radio Platform for dynamic spectrum allocation. Livia Ruiz Centre for Telecommunications Value-Chain Research Institute of Microelectronic and Wireless Systems, NUI
Michael Feilen 03.07.2014. Symposium zur DAB/DRM+-Sende-Infrastruktur KL
Michael Feilen 03.07.2014 Michael Feilen 03.07.2014 Outline Introduction to Wavesink Architecture Performance DAB vs. DRM (incoherent vs. coherent) DRM+ in VHF III What is Wavesink? Software-defined VHF
Digital Transmission of Analog Data: PCM and Delta Modulation
Digital Transmission of Analog Data: PCM and Delta Modulation Required reading: Garcia 3.3.2 and 3.3.3 CSE 323, Fall 200 Instructor: N. Vlajic Digital Transmission of Analog Data 2 Digitization process
by Anurag Pulincherry A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science
A Continuous Time Frequency Translating Delta Sigma Modulator by Anurag Pulincherry A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of
Understanding the Effect of Uncorrelated Phase Noise on Multi-channel RF Vector Signal Generators and Analysers
Understanding the Effect of Uncorrelated Phase Noise on Multi-channel RF Vector Signal Generators and Analysers David A. Hall, Product Marketing Manager Andy Hinde, RF Systems Engineer Introduction With
Application Note Synchronization and MIMO Capability with USRP Devices Ettus Research
Application Note Synchronization and MIMO Capability with USRP Devices Ettus Research Introduction Some applications require synchronization across multiple USRP (Universal Software Radio Peripheral) devices.
Features. Applications. Transmitter. Receiver. General Description MINIATURE MODULE. QM MODULATION OPTIMAL RANGE 1000m
Features MINIATURE MODULE QM MODULATION OPTIMAL RANGE 1000m 433.05 434.79 ISM BAND 34 CHANNELS AVAILABLE SINGLE SUPPLY VOLTAGE Applications IN VEHICLE TELEMETRY SYSTEMS WIRELESS NETWORKING DOMESTIC AND
Lab 5 Getting started with analog-digital conversion
Lab 5 Getting started with analog-digital conversion Achievements in this experiment Practical knowledge of coding of an analog signal into a train of digital codewords in binary format using pulse code
FUNDAMENTALS OF MODERN SPECTRAL ANALYSIS. Matthew T. Hunter, Ph.D.
FUNDAMENTALS OF MODERN SPECTRAL ANALYSIS Matthew T. Hunter, Ph.D. AGENDA Introduction Spectrum Analyzer Architecture Dynamic Range Instantaneous Bandwidth The Importance of Image Rejection and Anti-Aliasing
Propagation Channel Emulator ECP_V3
Navigation simulators Propagation Channel Emulator ECP_V3 1 Product Description The ECP (Propagation Channel Emulator V3) synthesizes the principal phenomena of propagation occurring on RF signal links
Lecture 1: Communication Circuits
EECS 142 Lecture 1: Communication Circuits Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California, Berkeley EECS 142 Lecture
Using R&S FSW for Efficient Measurements on Multi- Standard Radio Base Stations Application Note
Using R&S FSW for Efficient Measurements on Multi- Standard Radio Base Stations Application Note Products: R&S FSW This application note introduces the Multi- Standard Radio Analyzer function of the R&S
Spectrum Sensing Through Implementation of USRP2
Master Thesis Electrical Engineering Thesis no: MEE-27675 November 2010 Spectrum Sensing Through Implementation of USRP2 Adnan Aftab Muhammad Nabeel Mufti School of Computing Blekinge Institute of Technology
HD Radio FM Transmission System Specifications Rev. F August 24, 2011
HD Radio FM Transmission System Specifications Rev. F August 24, 2011 SY_SSS_1026s TRADEMARKS HD Radio and the HD, HD Radio, and Arc logos are proprietary trademarks of ibiquity Digital Corporation. ibiquity,
Engineering Sciences 151. Electromagnetic Communication Laboratory Assignment 3 Fall Term 1998-99
Engineering Sciences 151 Electromagnetic Communication Laboratory Assignment 3 Fall Term 1998-99 WAVE PROPAGATION II: HIGH FREQUENCY SLOTTED LINE AND REFLECTOMETER MEASUREMENTS OBJECTIVES: To build greater
CDMA TECHNOLOGY. Brief Working of CDMA
CDMA TECHNOLOGY History of CDMA The Cellular Challenge The world's first cellular networks were introduced in the early 1980s, using analog radio transmission technologies such as AMPS (Advanced Mobile
Clock Recovery in Serial-Data Systems Ransom Stephens, Ph.D.
Clock Recovery in Serial-Data Systems Ransom Stephens, Ph.D. Abstract: The definition of a bit period, or unit interval, is much more complicated than it looks. If it were just the reciprocal of the data
QAM Demodulation. Performance Conclusion. o o o o o. (Nyquist shaping, Clock & Carrier Recovery, AGC, Adaptive Equaliser) o o. Wireless Communications
0 QAM Demodulation o o o o o Application area What is QAM? What are QAM Demodulation Functions? General block diagram of QAM demodulator Explanation of the main function (Nyquist shaping, Clock & Carrier
AM Receiver. Prelab. baseband
AM Receiver Prelab In this experiment you will use what you learned in your previous lab sessions to make an AM receiver circuit. You will construct an envelope detector AM receiver. P1) Introduction One
THE IMPLEMENTATION OF A DTV RF ANALYSIS AND REGENERATION SYSTEM
THE IMPLEMENTATION OF A DTV RF ANALYSIS AND REGENERATION SYSTEM Tae-Hoon Kwon, Ha-Kyun Mok, Young-Woo Suh, and Young-Min Kim KBS(Korean Broadcasting System), Seoul, Korea ABSTRACT In this paper, we developed
DUFF DUFF. Software Defined Radio Direction Finding. Balint Seeber, Applications Engineer [email protected] @spenchdotnet
DUFF DUFF Software Defined Radio Direction Finding Balint Seeber, Applications Engineer [email protected] @spenchdotnet Notes and links in PDF comments on each slide DF Usage Radio navigation Predecessor
A Software Defined Radio Testbed Implementation
A Software Defined Radio Testbed Implementation S. Weiss 1, A. Shligersky 1, S. Abendroth 1, J. Reeve 1, L. Moreau 1, T.E. Dodgson 2 and D. Babb 2 1 School of Electronics & Computer Science, University
Simple SDR Receiver. Looking for some hardware to learn about SDR? This project may be just what you need to explore this hot topic!
Michael Hightower, KF6SJ 13620 White Rock Station Rd, Poway, CA 92064; [email protected] Simple SDR Receiver Looking for some hardware to learn about SDR? This project may be just what you need to explore
MATRIX TECHNICAL NOTES
200 WOOD AVENUE, MIDDLESEX, NJ 08846 PHONE (732) 469-9510 FAX (732) 469-0418 MATRIX TECHNICAL NOTES MTN-107 TEST SETUP FOR THE MEASUREMENT OF X-MOD, CTB, AND CSO USING A MEAN SQUARE CIRCUIT AS A DETECTOR
APPLICATION NOTE GaGe CompuScope 14200-based Lightning Monitoring System
APPLICATION NOTE GaGe CompuScope 14200-based Lightning Monitoring System Challenge A customer needed to upgrade an older data acquisition unit for a real-time lightning monitoring system. Unlike many lightning
Software Defined Radio on Digital Communications: a New Teaching Tool
Software Defined Radio on Digital Communications: a New Teaching Tool André L. G. Reis*, André F. B. Selva*, Karlo G. Lenzi, Sílvio E. Barbin and Luís G. P. Meloni* *FEEC School of Electrical and Computer
TCOM 370 NOTES 99-6 VOICE DIGITIZATION AND VOICE/DATA INTEGRATION
TCOM 370 NOTES 99-6 VOICE DIGITIZATION AND VOICE/DATA INTEGRATION (Please read appropriate parts of Section 2.5.2 in book) 1. VOICE DIGITIZATION IN THE PSTN The frequencies contained in telephone-quality
Spectrum Analyzers vs. Monitoring Receivers. Paul Denisowski, Application Engineer Rohde & Schwarz
Spectrum Analyzers vs. Monitoring Receivers Paul Denisowski, Application Engineer Rohde & Schwarz Spectrum Management Requirements What signals are present at which frequencies? Additional responsibilities
Design of Bidirectional Coupling Circuit for Broadband Power-Line Communications
Journal of Electromagnetic Analysis and Applications, 2012, 4, 162-166 http://dx.doi.org/10.4236/jemaa.2012.44021 Published Online April 2012 (http://www.scirp.org/journal/jemaa) Design of Bidirectional
OSSIE: An Open Source Software Defined Radio Platform for Education and Research
OSSIE: An Open Source Software Defined Radio Platform for Education and Research J. Snyder 1, B. McNair 2, S. Edwards 1, and C. Dietrich 2 1 Department of Computer Science, Virginia Tech, Blacksburg, VA
Modulation and Demodulation
MIT 6.02 DRAFT Lecture Notes Last update: April 11, 2012 Comments, questions or bug reports? Please contact {hari, verghese} at mit.edu CHAPTER 14 Modulation and Demodulation This chapter describes the
Achieving New Levels of Channel Density in Downstream Cable Transmitter Systems: RF DACs Deliver Smaller Size and Lower Power Consumption
Achieving New Levels of Channel Density in Downstream Cable Transmitter Systems: RF DACs Deliver Smaller Size and Lower Power Consumption Introduction By: Analog Devices, Inc. (ADI) Daniel E. Fague, Applications
Evaluating GSM A5/1 security on hopping channels
Evaluating GSM A5/1 security on hopping channels Bogdan Diaconescu v1.0 This paper is a practical approach on evaluating A5/1 stream cipher on a GSM hopping network air interface called Um. The end goal
MSB MODULATION DOUBLES CABLE TV CAPACITY Harold R. Walker and Bohdan Stryzak Pegasus Data Systems ( 5/12/06) [email protected]
MSB MODULATION DOUBLES CABLE TV CAPACITY Harold R. Walker and Bohdan Stryzak Pegasus Data Systems ( 5/12/06) [email protected] Abstract: Ultra Narrow Band Modulation ( Minimum Sideband Modulation ) makes
Maximizing Receiver Dynamic Range for Spectrum Monitoring
Home Maximizing Receiver Dynamic Range for Spectrum Monitoring Brian Avenell, National Instruments Corp., Austin, TX October 15, 2012 As consumers continue to demand more data wirelessly through mobile
Amplitude Modulation Fundamentals
3 chapter Amplitude Modulation Fundamentals In the modulation process, the baseband voice, video, or digital signal modifies another, higher-frequency signal called the carrier, which is usually a sine
Signal Processing in So.ware and Electric Field Sensing
Signal Processing in So.ware and Electric Field Sensing CSE 466: So.ware for Embedded Systems Winter 2009 B. Mayton University of Washington CSE & Intel Research SeaMle CSE
Presentation Outline. The NavSAS group; Examples of Software-Radio Technology in GNSS;
Telemobility 2008 Progetto Galileo ed altri GNSS Development of GPS-Galileo Galileo Software Radio Receivers Marco Pini - NavSAS group Presentation Outline The NavSAS group; Basic on Software-Radio Technology;
Ettus Research Products and Roadmap 2011
Ettus Research Products and Roadmap 2011 Matt Ettus Ettus Research September, 2011 Outline 1 2 3 4 Outline 1 2 3 4 Ettus Research founded in 2004 Acquired by National Instruments in Feb
868 MHz Traffic Detective: A Software-Based Tool for Radio Traffic Monitoring
868 MHz Traffic Detective: A Software-Based Tool for Radio Traffic Monitoring Jens Saalmüller, Matthias Kuba, Andreas Oeder Networked Systems and Applications Department, Fraunhofer Institute for Integrated
Example/ an analog signal f ( t) ) is sample by f s = 5000 Hz draw the sampling signal spectrum. Calculate min. sampling frequency.
1 2 3 4 Example/ an analog signal f ( t) = 1+ cos(4000πt ) is sample by f s = 5000 Hz draw the sampling signal spectrum. Calculate min. sampling frequency. Sol/ H(f) -7KHz -5KHz -3KHz -2KHz 0 2KHz 3KHz
Timing Errors and Jitter
Timing Errors and Jitter Background Mike Story In a sampled (digital) system, samples have to be accurate in level and time. The digital system uses the two bits of information the signal was this big
Jeff Thomas Tom Holmes Terri Hightower. Learn RF Spectrum Analysis Basics
Jeff Thomas Tom Holmes Terri Hightower Learn RF Spectrum Analysis Basics Learning Objectives Name the major measurement strengths of a swept-tuned spectrum analyzer Explain the importance of frequency
T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p
Data Transmission Concepts and terminology Transmission terminology Transmission from transmitter to receiver goes over some transmission medium using electromagnetic waves Guided media. Waves are guided
HAM FOR HACKERS TAKE BACK THE AIRWAVES. JonM DEFCON 16
HAM FOR HACKERS TAKE BACK THE AIRWAVES JonM DEFCON 16 JonM Licensed Amateur Extra the highest class of license in the US Operating since 2000 Radio is just one of my hobbies software security consulting
