Measures of Error: for exact x and approximation x Absolute error e = x x. Relative error r = (x x )/x.
|
|
|
- Lesley Jefferson
- 9 years ago
- Views:
Transcription
1 ERRORS and COMPUTER ARITHMETIC Types of Error in Numerical Calculations Initial Data Errors: from experiment, modeling, computer representation; problem dependent but need to know at beginning of calculation. Truncation Error: from stopping algorithm with infinite number of steps; algorithm dependent, but need to be aware of for algorithm design. Roundoff error: from finite representation of numbers in computer during arithmetic computations; need to be aware of for algorithm design and interpretation of results. Measures of Error: for exact x and approximation x Absolute error e = x x. Relative error r = (x x )/x. 1
2 ERRORS and COMPUTER NUMBERS Computer Numbers, Roundoff Error Floating Point Number Representation: any real number y can be put in floating point form y = ±.d 1 d 2... d k... b ±n for base b, with 0 < d 1 < b, 0 d i < b, i > 1. E.g. (.1) 10 = +(.1100) Conversion from decimal to binary? Integer part: repeatedly divide by 2, saving remainder digits d i. Fraction: repeatedly multiply by 2, saving remainder digits d i. E.g. (4.1) 10 = +( ) E.g. (3.1) 10 = +( ) Computer numbers: computers use y fl(y) = ±.d 1d 2... d k b ±e 1e 2...e m where b, k, m are machine dependent, 0 e i < b. Digits d 1... d k are mantissa, e 1e 2... e m exponent. Note: real computer arithmetic uses only a finite subset of (, ). 2
3 COMPUTER NUMBERS CONTINUED IEEE Standard for b = 2 number representation: single precision (SP) with ±, (k, m) = (23, 8); double precision (DP) with ±, (k, m) = (52, 11); long double with ±, (k, m) = (64, 15). Normalized IEEE form: fl(y) = ±1.b 1 b 2... b k 2 p. E.g. for DP, 1 2 = , with 52 zeros; next DP number is (51 zeros) ( ) 2 = Special representations for ±0, ± and NAN (e.g. 0 0 ), using special values for p (= or 1024 for DP). Overflow occurs if p > largest +e 1 e 2... e m ; with DP p 1023, note Underflow occurs if p < smallest e 1 e 2... e m ; with DP p 1022, note , but p = 1023 allows subnormal numbers
4 COMPUTER NUMBERS CONTINUED Machine Epsilon: macheps or unit roundoff or ɛ mach is the smallest number ɛ mach for which fl(1 + ɛ mach ) > 1. IEEE SP has ɛ mach = ; IEEE DP has ɛ mach = (MATLAB). Matlab Checks: format short g, disp([1+2^(-52) 1+2^(-53)]) 1 1 disp([1+2^(-52)-1 1+2^(-53)-1]) e-16 0 disp(sprintf( %20.17f,[1+2^(-52) 1+2^(-53)])) disp(sprintf( %20.17f,[1+2^(-52)-1 1+2^(-53)-1]))
5 COMPUTER NUMBERS CONTINUED Rounding: if y does not have exact f l(y) representation, we need a method for choosing last digit(s). E.g. SP fl(.1) = ? 2 4. chopping discards all b i, i > k, so that SP fl(.1) = ; DP fl(.1) = , DP fl(4.1) = , DP fl(3.1) = rounding (to nearest) adds 1 to b k if b k+1 = 1; so SP fl(.1) = DP fl(.1) = , DP fl(4.1) = , DP fl(3.1) = Special case: if b k+1 b k+2 b k+3... = , then add 1 to b k if and only if b k = 1. Relative rounding error: rounding to nearest (IEEE, MATLAB)) ensures fl(y) y y 1 2 ɛ mach. 5
6 COMPUTER NUMBERS CONTINUED Computer Arithmetic : assume denotes computer implementation of +,, / or. Model for sequence of operations: for x y, computer a) takes stored values fl(x) and fl(y), b) accurately computes fl(x) fl(y), c) then rounds the result to get fl(fl(x) fl(y)). E.g. Rounded DP for : fl(4.1) = fl(3.1) = = ( ) 2 2 = = = Matlab Checks: format long g, disp( ) 1 disp(sprintf( %20.16g, )) disp( ( )-1 ) e-16 disp( 4.1-(3.1+1) ) 0 Computer addition is only approximately associative. IEEE requires fl(x y) (x y) x y ɛ mach, for IEEE standard computer hardware. 6
7 LOSS of SIGNIFICANT DIGITS Significant Digits : x approximates x to t significant digits if t is the largest nonegative integer with x x x < 5 10 t. Subtractive Cancellation : when significant digits are lost during the subtraction of two = numbers. Examples in decimal: with 3 digits: = 0; Algebraic rearrangment: if is often possible to use algebraically equivalent formulas to avoid LSD calculations. Examples: a) x 2 + bx + c = 0, has x = ( b ± b 2 4c)/2, with LSD for small c/b. 7
8 LSD EXAMPLES b) 1/(1 + x) 1/(1 x) for small x. c) (1 sec(x))/tan 2 (x) for small x. disp([x (1-sec(x))/tan(x)^2 -cos(x)/(1+cos(x))]) Matlab Check: for x = 10.^[-2:-2:-8] end e e d) (e x 1)/x for small x (Taylor series sometimes helps). 8
9 NUMERICAL SOFTWARE Numerical algorithms in texbook and written for class will be short algorithms, designed to illustrate primary algorithm features and problems. Software Libraries: numerical methods described and analyzed in textbook and class have been placed in software libraries. Software libraries contain carefully documented software for algorithms carefully implemented as language dependent functions and procedures: e.g. CACM, NAG, IMSL, STATLIB, WWW, for standard computer languages, and environments: e.g. MATLAB, MAPLE, MATHEMATICA, R, GAUSS for interactive work; e.g. FORTRAN, C, C++, JAVA, PYTHON for high performance computation. 9
CS321. Introduction to Numerical Methods
CS3 Introduction to Numerical Methods Lecture Number Representations and Errors Professor Jun Zhang Department of Computer Science University of Kentucky Lexington, KY 40506-0633 August 7, 05 Number in
Binary Number System. 16. Binary Numbers. Base 10 digits: 0 1 2 3 4 5 6 7 8 9. Base 2 digits: 0 1
Binary Number System 1 Base 10 digits: 0 1 2 3 4 5 6 7 8 9 Base 2 digits: 0 1 Recall that in base 10, the digits of a number are just coefficients of powers of the base (10): 417 = 4 * 10 2 + 1 * 10 1
Numerical Matrix Analysis
Numerical Matrix Analysis Lecture Notes #10 Conditioning and / Peter Blomgren, [email protected] Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research
ECE 0142 Computer Organization. Lecture 3 Floating Point Representations
ECE 0142 Computer Organization Lecture 3 Floating Point Representations 1 Floating-point arithmetic We often incur floating-point programming. Floating point greatly simplifies working with large (e.g.,
2010/9/19. Binary number system. Binary numbers. Outline. Binary to decimal
2/9/9 Binary number system Computer (electronic) systems prefer binary numbers Binary number: represent a number in base-2 Binary numbers 2 3 + 7 + 5 Some terminology Bit: a binary digit ( or ) Hexadecimal
CHAPTER 5 Round-off errors
CHAPTER 5 Round-off errors In the two previous chapters we have seen how numbers can be represented in the binary numeral system and how this is the basis for representing numbers in computers. Since any
Binary Division. Decimal Division. Hardware for Binary Division. Simple 16-bit Divider Circuit
Decimal Division Remember 4th grade long division? 43 // quotient 12 521 // divisor dividend -480 41-36 5 // remainder Shift divisor left (multiply by 10) until MSB lines up with dividend s Repeat until
Computer Science 281 Binary and Hexadecimal Review
Computer Science 281 Binary and Hexadecimal Review 1 The Binary Number System Computers store everything, both instructions and data, by using many, many transistors, each of which can be in one of two
This Unit: Floating Point Arithmetic. CIS 371 Computer Organization and Design. Readings. Floating Point (FP) Numbers
This Unit: Floating Point Arithmetic CIS 371 Computer Organization and Design Unit 7: Floating Point App App App System software Mem CPU I/O Formats Precision and range IEEE 754 standard Operations Addition
CSI 333 Lecture 1 Number Systems
CSI 333 Lecture 1 Number Systems 1 1 / 23 Basics of Number Systems Ref: Appendix C of Deitel & Deitel. Weighted Positional Notation: 192 = 2 10 0 + 9 10 1 + 1 10 2 General: Digit sequence : d n 1 d n 2...
Divide: Paper & Pencil. Computer Architecture ALU Design : Division and Floating Point. Divide algorithm. DIVIDE HARDWARE Version 1
Divide: Paper & Pencil Computer Architecture ALU Design : Division and Floating Point 1001 Quotient Divisor 1000 1001010 Dividend 1000 10 101 1010 1000 10 (or Modulo result) See how big a number can be
COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012
Binary numbers The reason humans represent numbers using decimal (the ten digits from 0,1,... 9) is that we have ten fingers. There is no other reason than that. There is nothing special otherwise about
LSN 2 Number Systems. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology
LSN 2 Number Systems Department of Engineering Technology LSN 2 Decimal Number System Decimal number system has 10 digits (0-9) Base 10 weighting system... 10 5 10 4 10 3 10 2 10 1 10 0. 10-1 10-2 10-3
Math 348: Numerical Methods with application in finance and economics. Boualem Khouider University of Victoria
Math 348: Numerical Methods with application in finance and economics Boualem Khouider University of Victoria Lecture notes: Updated January 2012 Contents 1 Basics of numerical analysis 9 1.1 Notion of
Correctly Rounded Floating-point Binary-to-Decimal and Decimal-to-Binary Conversion Routines in Standard ML. By Prashanth Tilleti
Correctly Rounded Floating-point Binary-to-Decimal and Decimal-to-Binary Conversion Routines in Standard ML By Prashanth Tilleti Advisor Dr. Matthew Fluet Department of Computer Science B. Thomas Golisano
Principles of Scientific Computing. David Bindel and Jonathan Goodman
Principles of Scientific Computing David Bindel and Jonathan Goodman last revised February 2009, last printed March 6, 2009 2 Preface i ii PREFACE This book grew out of a one semester first course in Scientific
Numerical Analysis I
Numerical Analysis I M.R. O Donohoe References: S.D. Conte & C. de Boor, Elementary Numerical Analysis: An Algorithmic Approach, Third edition, 1981. McGraw-Hill. L.F. Shampine, R.C. Allen, Jr & S. Pruess,
The string of digits 101101 in the binary number system represents the quantity
Data Representation Section 3.1 Data Types Registers contain either data or control information Control information is a bit or group of bits used to specify the sequence of command signals needed for
DNA Data and Program Representation. Alexandre David 1.2.05 [email protected]
DNA Data and Program Representation Alexandre David 1.2.05 [email protected] Introduction Very important to understand how data is represented. operations limits precision Digital logic built on 2-valued
This document has been written by Michaël Baudin from the Scilab Consortium. December 2010 The Scilab Consortium Digiteo. All rights reserved.
SCILAB IS NOT NAIVE This document has been written by Michaël Baudin from the Scilab Consortium. December 2010 The Scilab Consortium Digiteo. All rights reserved. December 2010 Abstract Most of the time,
Number Representation
Number Representation CS10001: Programming & Data Structures Pallab Dasgupta Professor, Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur Topics to be Discussed How are numeric data
To convert an arbitrary power of 2 into its English equivalent, remember the rules of exponential arithmetic:
Binary Numbers In computer science we deal almost exclusively with binary numbers. it will be very helpful to memorize some binary constants and their decimal and English equivalents. By English equivalents
Lecture 11: Number Systems
Lecture 11: Number Systems Numeric Data Fixed point Integers (12, 345, 20567 etc) Real fractions (23.45, 23., 0.145 etc.) Floating point such as 23. 45 e 12 Basically an exponent representation Any number
1.3 Algebraic Expressions
1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,
Useful Number Systems
Useful Number Systems Decimal Base = 10 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Binary Base = 2 Digit Set = {0, 1} Octal Base = 8 = 2 3 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7} Hexadecimal Base = 16 = 2
What Every Computer Scientist Should Know About Floating-Point Arithmetic
What Every Computer Scientist Should Know About Floating-Point Arithmetic D Note This document is an edited reprint of the paper What Every Computer Scientist Should Know About Floating-Point Arithmetic,
Review of Scientific Notation and Significant Figures
II-1 Scientific Notation Review of Scientific Notation and Significant Figures Frequently numbers that occur in physics and other sciences are either very large or very small. For example, the speed of
Lecture 8: Binary Multiplication & Division
Lecture 8: Binary Multiplication & Division Today s topics: Addition/Subtraction Multiplication Division Reminder: get started early on assignment 3 1 2 s Complement Signed Numbers two = 0 ten 0001 two
Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.
Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}
Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test
Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important
Levent EREN [email protected] A-306 Office Phone:488-9882 INTRODUCTION TO DIGITAL LOGIC
Levent EREN [email protected] A-306 Office Phone:488-9882 1 Number Systems Representation Positive radix, positional number systems A number with radix r is represented by a string of digits: A n
Oct: 50 8 = 6 (r = 2) 6 8 = 0 (r = 6) Writing the remainders in reverse order we get: (50) 10 = (62) 8
ECE Department Summer LECTURE #5: Number Systems EEL : Digital Logic and Computer Systems Based on lecture notes by Dr. Eric M. Schwartz Decimal Number System: -Our standard number system is base, also
Solution of Linear Systems
Chapter 3 Solution of Linear Systems In this chapter we study algorithms for possibly the most commonly occurring problem in scientific computing, the solution of linear systems of equations. We start
Zuse's Z3 Square Root Algorithm Talk given at Fall meeting of the Ohio Section of the MAA October 1999 - College of Wooster
Zuse's Z3 Square Root Algorithm Talk given at Fall meeting of the Ohio Section of the MAA October 1999 - College of Wooster Abstract Brian J. Shelburne Dept of Math and Comp Sci Wittenberg University In
Addition Methods. Methods Jottings Expanded Compact Examples 8 + 7 = 15
Addition Methods Methods Jottings Expanded Compact Examples 8 + 7 = 15 48 + 36 = 84 or: Write the numbers in columns. Adding the tens first: 47 + 76 110 13 123 Adding the units first: 47 + 76 13 110 123
CSCI 1301: Introduction to Computing and Programming Summer 2015 Project 1: Credit Card Pay Off
CSCI 1301: Introduction to Computing and Programming Summer 2015 Project 1: Credit Card Pay Off Introduction This project will allow you to apply your knowledge of variables, assignments, expressions,
Figure 1. A typical Laboratory Thermometer graduated in C.
SIGNIFICANT FIGURES, EXPONENTS, AND SCIENTIFIC NOTATION 2004, 1990 by David A. Katz. All rights reserved. Permission for classroom use as long as the original copyright is included. 1. SIGNIFICANT FIGURES
NUMBER SYSTEMS. William Stallings
NUMBER SYSTEMS William Stallings The Decimal System... The Binary System...3 Converting between Binary and Decimal...3 Integers...4 Fractions...5 Hexadecimal Notation...6 This document available at WilliamStallings.com/StudentSupport.html
Chapter 7D The Java Virtual Machine
This sub chapter discusses another architecture, that of the JVM (Java Virtual Machine). In general, a VM (Virtual Machine) is a hypothetical machine (implemented in either hardware or software) that directly
This 3-digit ASCII string could also be calculated as n = (Data[2]-0x30) +10*((Data[1]-0x30)+10*(Data[0]-0x30));
Introduction to Embedded Microcomputer Systems Lecture 5.1 2.9. Conversions ASCII to binary n = 100*(Data[0]-0x30) + 10*(Data[1]-0x30) + (Data[2]-0x30); This 3-digit ASCII string could also be calculated
Precision & Performance: Floating Point and IEEE 754 Compliance for NVIDIA GPUs
Precision & Performance: Floating Point and IEEE 754 Compliance for NVIDIA GPUs Nathan Whitehead Alex Fit-Florea ABSTRACT A number of issues related to floating point accuracy and compliance are a frequent
Systems I: Computer Organization and Architecture
Systems I: Computer Organization and Architecture Lecture 2: Number Systems and Arithmetic Number Systems - Base The number system that we use is base : 734 = + 7 + 3 + 4 = x + 7x + 3x + 4x = x 3 + 7x
Data Storage. Chapter 3. Objectives. 3-1 Data Types. Data Inside the Computer. After studying this chapter, students should be able to:
Chapter 3 Data Storage Objectives After studying this chapter, students should be able to: List five different data types used in a computer. Describe how integers are stored in a computer. Describe how
Python for Scientific Computing. http://bender.astro.sunysb.edu/classes/python-science
http://bender.astro.sunysb.edu/classes/python-science Course Goals Simply: to learn how to use python to do Numerical analysis Data analysis Plotting and visualizations Symbol mathematics Write applications...
Numeral Systems. The number twenty-five can be represented in many ways: Decimal system (base 10): 25 Roman numerals:
Numeral Systems Which number is larger? 25 8 We need to distinguish between numbers and the symbols that represent them, called numerals. The number 25 is larger than 8, but the numeral 8 above is larger
How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left.
The verbal answers to all of the following questions should be memorized before completion of pre-algebra. Answers that are not memorized will hinder your ability to succeed in algebra 1. Number Basics
FAST INVERSE SQUARE ROOT
FAST INVERSE SQUARE ROOT CHRIS LOMONT Abstract. Computing reciprocal square roots is necessary in many applications, such as vector normalization in video games. Often, some loss of precision is acceptable
Contrôle dynamique de méthodes d approximation
Contrôle dynamique de méthodes d approximation Fabienne Jézéquel Laboratoire d Informatique de Paris 6 ARINEWS, ENS Lyon, 7-8 mars 2005 F. Jézéquel Dynamical control of approximation methods 7-8 Mar. 2005
Data Storage 3.1. Foundations of Computer Science Cengage Learning
3 Data Storage 3.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List five different data types used in a computer. Describe how
MTH 437/537 Introduction to Numerical Analysis I Fall 2015
MTH 437/537 Introduction to Numerical Analysis I Fall 2015 Times, places Class: 437/537 MWF 10:00am 10:50pm Math 150 Lab: 437A Tu 8:00 8:50am Math 250 Instructor John Ringland. Office: Math Bldg 206. Phone:
EVALUATING ACADEMIC READINESS FOR APPRENTICESHIP TRAINING Revised For ACCESS TO APPRENTICESHIP
EVALUATING ACADEMIC READINESS FOR APPRENTICESHIP TRAINING For ACCESS TO APPRENTICESHIP MATHEMATICS SKILL OPERATIONS WITH INTEGERS AN ACADEMIC SKILLS MANUAL for The Precision Machining And Tooling Trades
Answer Key for California State Standards: Algebra I
Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.
ADDITION. Children should extend the carrying method to numbers with at least four digits.
Y5 AND Y6 ADDITION Children should extend the carrying method to numbers with at least four digits. 587 3587 + 475 + 675 1062 4262 1 1 1 1 1 Using similar methods, children will: add several numbers with
A NEW REPRESENTATION OF THE RATIONAL NUMBERS FOR FAST EASY ARITHMETIC. E. C. R. HEHNER and R. N. S. HORSPOOL
A NEW REPRESENTATION OF THE RATIONAL NUMBERS FOR FAST EASY ARITHMETIC E. C. R. HEHNER and R. N. S. HORSPOOL Abstract. A novel system for representing the rational numbers based on Hensel's p-adic arithmetic
Vocabulary Words and Definitions for Algebra
Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms
Chapter 1. Binary, octal and hexadecimal numbers
Chapter 1. Binary, octal and hexadecimal numbers This material is covered in the books: Nelson Magor Cooke et al, Basic mathematics for electronics (7th edition), Glencoe, Lake Forest, Ill., 1992. [Hamilton
Number Systems and Radix Conversion
Number Systems and Radix Conversion Sanjay Rajopadhye, Colorado State University 1 Introduction These notes for CS 270 describe polynomial number systems. The material is not in the textbook, but will
Linear Equations and Inequalities
Linear Equations and Inequalities Section 1.1 Prof. Wodarz Math 109 - Fall 2008 Contents 1 Linear Equations 2 1.1 Standard Form of a Linear Equation................ 2 1.2 Solving Linear Equations......................
Attention: This material is copyright 1995-1997 Chris Hecker. All rights reserved.
Attention: This material is copyright 1995-1997 Chris Hecker. All rights reserved. You have permission to read this article for your own education. You do not have permission to put it on your website
Some Functions Computable with a Fused-mac
Some Functions Computable with a Fused-mac Sylvie Boldo and Jean-Michel Muller Laboratoire LIP (CNRS/ENS Lyon/Inria/Univ. lyon ), Projet Arénaire, 46 allée d Italie, 69364 Lyon Cedex 07, FRANCE [email protected],
Floating point package user s guide By David Bishop ([email protected])
Floating point package user s guide By David Bishop ([email protected]) Floating-point numbers are the favorites of software people, and the least favorite of hardware people. The reason for this is because
Outline. hardware components programming environments. installing Python executing Python code. decimal and binary notations running Sage
Outline 1 Computer Architecture hardware components programming environments 2 Getting Started with Python installing Python executing Python code 3 Number Systems decimal and binary notations running
Chapter 5. Binary, octal and hexadecimal numbers
Chapter 5. Binary, octal and hexadecimal numbers A place to look for some of this material is the Wikipedia page http://en.wikipedia.org/wiki/binary_numeral_system#counting_in_binary Another place that
MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab
MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab MATH 0110 is established to accommodate students desiring non-course based remediation in developmental mathematics. This structure will
Continued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson
JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials
26 Integers: Multiplication, Division, and Order
26 Integers: Multiplication, Division, and Order Integer multiplication and division are extensions of whole number multiplication and division. In multiplying and dividing integers, the one new issue
8 Square matrices continued: Determinants
8 Square matrices continued: Determinants 8. Introduction Determinants give us important information about square matrices, and, as we ll soon see, are essential for the computation of eigenvalues. You
Binary Representation. Number Systems. Base 10, Base 2, Base 16. Positional Notation. Conversion of Any Base to Decimal.
Binary Representation The basis of all digital data is binary representation. Binary - means two 1, 0 True, False Hot, Cold On, Off We must be able to handle more than just values for real world problems
1. Give the 16 bit signed (twos complement) representation of the following decimal numbers, and convert to hexadecimal:
Exercises 1 - number representations Questions 1. Give the 16 bit signed (twos complement) representation of the following decimal numbers, and convert to hexadecimal: (a) 3012 (b) - 435 2. For each of
A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions
A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions Marcel B. Finan Arkansas Tech University c All Rights Reserved First Draft February 8, 2006 1 Contents 25
Lecture 2. Binary and Hexadecimal Numbers
Lecture 2 Binary and Hexadecimal Numbers Purpose: Review binary and hexadecimal number representations Convert directly from one base to another base Review addition and subtraction in binary representations
Numerical Analysis. Gordon K. Smyth in. Encyclopedia of Biostatistics (ISBN 0471 975761) Edited by. Peter Armitage and Theodore Colton
Numerical Analysis Gordon K. Smyth in Encyclopedia of Biostatistics (ISBN 0471 975761) Edited by Peter Armitage and Theodore Colton John Wiley & Sons, Ltd, Chichester, 1998 Numerical Analysis Numerical
RN-Codings: New Insights and Some Applications
RN-Codings: New Insights and Some Applications Abstract During any composite computation there is a constant need for rounding intermediate results before they can participate in further processing. Recently
Introduction to Xilinx System Generator Part II. Evan Everett and Michael Wu ELEC 433 - Spring 2013
Introduction to Xilinx System Generator Part II Evan Everett and Michael Wu ELEC 433 - Spring 2013 Outline Introduction to FPGAs and Xilinx System Generator System Generator basics Fixed point data representation
MEP Y9 Practice Book A
1 Base Arithmetic 1.1 Binary Numbers We normally work with numbers in base 10. In this section we consider numbers in base 2, often called binary numbers. In base 10 we use the digits 0, 1, 2, 3, 4, 5,
FRACTIONS COMMON MISTAKES
FRACTIONS COMMON MISTAKES 0/0/009 Fractions Changing Fractions to Decimals How to Change Fractions to Decimals To change fractions to decimals, you need to divide the numerator (top number) by the denominator
YOU CAN COUNT ON NUMBER LINES
Key Idea 2 Number and Numeration: Students use number sense and numeration to develop an understanding of multiple uses of numbers in the real world, the use of numbers to communicate mathematically, and
RN-coding of Numbers: New Insights and Some Applications
RN-coding of Numbers: New Insights and Some Applications Peter Kornerup Dept. of Mathematics and Computer Science SDU, Odense, Denmark & Jean-Michel Muller LIP/Arénaire (CRNS-ENS Lyon-INRIA-UCBL) Lyon,
5.3 SOLVING TRIGONOMETRIC EQUATIONS. Copyright Cengage Learning. All rights reserved.
5.3 SOLVING TRIGONOMETRIC EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use standard algebraic techniques to solve trigonometric equations. Solve trigonometric equations
Mathematics. Mathematical Practices
Mathematical Practices 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others. 4. Model with
Q-Format number representation. Lecture 5 Fixed Point vs Floating Point. How to store Q30 number to 16-bit memory? Q-format notation.
Lecture 5 Fixed Point vs Floating Point Objectives: Understand fixed point representations Understand scaling, overflow and rounding in fixed point Understand Q-format Understand TM32C67xx floating point
Lectures 5-6: Taylor Series
Math 1d Instructor: Padraic Bartlett Lectures 5-: Taylor Series Weeks 5- Caltech 213 1 Taylor Polynomials and Series As we saw in week 4, power series are remarkably nice objects to work with. In particular,
Solution for Homework 2
Solution for Homework 2 Problem 1 a. What is the minimum number of bits that are required to uniquely represent the characters of English alphabet? (Consider upper case characters alone) The number of
Free Pre-Algebra Lesson 55! page 1
Free Pre-Algebra Lesson 55! page 1 Lesson 55 Perimeter Problems with Related Variables Take your skill at word problems to a new level in this section. All the problems are the same type, so that you can
Binary Numbering Systems
Binary Numbering Systems April 1997, ver. 1 Application Note 83 Introduction Binary numbering systems are used in virtually all digital systems, including digital signal processing (DSP), networking, and
0.8 Rational Expressions and Equations
96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions - that is, algebraic fractions - and equations which contain them. The reader is encouraged to
Math 115 Spring 2011 Written Homework 5 Solutions
. Evaluate each series. a) 4 7 0... 55 Math 5 Spring 0 Written Homework 5 Solutions Solution: We note that the associated sequence, 4, 7, 0,..., 55 appears to be an arithmetic sequence. If the sequence
THE NUMBER OF REPRESENTATIONS OF n OF THE FORM n = x 2 2 y, x > 0, y 0
THE NUMBER OF REPRESENTATIONS OF n OF THE FORM n = x 2 2 y, x > 0, y 0 RICHARD J. MATHAR Abstract. We count solutions to the Ramanujan-Nagell equation 2 y +n = x 2 for fixed positive n. The computational
A new binary floating-point division algorithm and its software implementation on the ST231 processor
19th IEEE Symposium on Computer Arithmetic (ARITH 19) Portland, Oregon, USA, June 8-10, 2009 A new binary floating-point division algorithm and its software implementation on the ST231 processor Claude-Pierre
Precalculus Orientation and FAQ
Precalculus Orientation and FAQ MATH 1011 (Precalculus) is a four hour 3 credit course that prepares a student for Calculus. Topics covered include linear, quadratic, polynomial, rational, exponential,
Simple C++ Programs. Engineering Problem Solving with C++, Etter/Ingber. Dev-C++ Dev-C++ Windows Friendly Exit. The C++ Programming Language
Simple C++ Programs Engineering Problem Solving with C++, Etter/Ingber Chapter 2 Simple C++ Programs Program Structure Constants and Variables C++ Operators Standard Input and Output Basic Functions from
a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.
Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given
Monday January 19th 2015 Title: "Transmathematics - a survey of recent results on division by zero" Facilitator: TheNumberNullity / James Anderson, UK
Monday January 19th 2015 Title: "Transmathematics - a survey of recent results on division by zero" Facilitator: TheNumberNullity / James Anderson, UK It has been my pleasure to give two presentations
THE BINARY NUMBER SYSTEM
THE BINARY NUMBER SYSTEM Dr. Robert P. Webber, Longwood University Our civilization uses the base 10 or decimal place value system. Each digit in a number represents a power of 10. For example, 365.42
CS 103X: Discrete Structures Homework Assignment 3 Solutions
CS 103X: Discrete Structures Homework Assignment 3 s Exercise 1 (20 points). On well-ordering and induction: (a) Prove the induction principle from the well-ordering principle. (b) Prove the well-ordering
Operation Count; Numerical Linear Algebra
10 Operation Count; Numerical Linear Algebra 10.1 Introduction Many computations are limited simply by the sheer number of required additions, multiplications, or function evaluations. If floating-point
Sequence of Mathematics Courses
Sequence of ematics Courses Where do I begin? Associates Degree and Non-transferable Courses (For math course below pre-algebra, see the Learning Skills section of the catalog) MATH M09 PRE-ALGEBRA 3 UNITS
