Conversion Between Analog and Digital Signals
|
|
|
- Andrea Cummings
- 9 years ago
- Views:
Transcription
1 ELET 3156 DL - Laboratory #6 Conversion Between Analog and Digital Signals There is no pre-lab work required for this experiment. However, be sure to read through the assignment completely prior to starting the practicum. Task: To become familiar with the conversion between analog and digital electronic signals and the properties and definitions associated with those conversions. PART ONE. Analog to Digital Conversion There are many applications of the process related to the conversion of varying analog voltages to correlated binary values. This process is often referred to as digitization and is accomplished by sampling an analog voltage at repeated intervals and then storing, in binary form, a number that identifies the analog value of each sample. The resulting table of binary numbers can be stored, transmitted without electronic interference, and converted back to analog form if need be. There are many different methods to convert analog signals to digital values. Some electronic circuits that deserve attention include the dual-slope integrator used in digital meters, flash converters used for high-speed applications, and the successive approximation type converter used for many digital instrumentation applications. We will be using an ADC bit Analog to Digital Converter IC in this experiment. This circuit is a state machine that utilizes a clock to drive an internal counting circuit (successive approximation) and an internal digital-to-analog converter to perform the conversion process. Figure 6.1 illustrates the circuit we will use to perform the conversion. The analog input to this circuit is generated at Pin 6 (V+) by using a voltage divider created by the 100K potentiometer placed between V ref (5V) and ground. The RC pair made up of the 10K resistor and the 150pF capacitor create a digital oscillator that is used to provide clock pulses to the converter chip. The digital output can be connected directly to the trainer LED displays. The conversion is started with a transition on Pin 3, WR. Figure 6.1: Analog to Digital Conversion Circuitry. Step 1: Construct the circuit of Figure 6.1. Apply power, and adjust the potentiometer until the voltage at Pin 6 is equal to 0V. Then, by SLOWLY increasing the voltage at Pin 6, indicate on Table 6.1 the lowest voltage at which the digital output first switches to the indicated binary value. Page - 1
2 TABLE 6.1 Analog to Digital Conversion Data Analog Binary Value Analog Binary Value 0.00 Volts On the graph below (Figure 6.2) plot the analog voltage versus the binary value. Digital Value Analog (Millivolts) FIGURE 6.2 Transfer Function Segment of 8-Bit Analog to Digital Conversion. Since this circuit uses an 8-bit conversion, it will divide the voltage between V+ and V- into 256 discrete steps. This full-scale voltage of 5V when divided by 256, produces steps of about 20mv each. Based upon your data, how much of an input voltage swing actually produces a one-bit change on the output?. If this value (voltage resolution per bit) varies from the expected value of 20mV, explain: Based upon the voltage resolution per bit that you obtained, you should be able to predict the expected output binary value for any analog input by dividing the analog input by the resolution per bit. Based upon this calculation, fill in the columns in Table 6.2 that are labeled Expected. Page - 2
3 TABLE 6.2 Analog to Digital Conversion Data Analog Expected Obtained Vo Analog 0.50 Volts 3.00 Volts 1.00 Volts 3.50 Volts 1.50 Volts 4.00 Volts 2.00 Volts 4.50 Volts 2.50 Volts 5.00 Volts Expected Obtained Vo Step 2: Adjust the potentiometer to the indicated analog voltages in Table 6.2 and record in the table the binary output that was actually obtained. Ignore the column labeled Vo Describe any variations in the expected results: The resolution obtained for a single bit is also expressed as a percentage of the full-scale voltage that is determined by a single bit. That is, 1 % Res x100 N 2 = where N is the number of binary bits in the conversion. Based upon this equation, what is the percentage of full-scale resolution obtained with this 8-bit analog to digital converter? ans. Instructor s Signature: Date: Operative: Inoperative: PART TWO. Digital to Analog Conversion In order to convert an 8-bit digital value to its respective analog value, we will use a DAC0808 chip. This device utilizes an R-2R ladder network to drive a current summing junction resulting in an appropriate analog value. We will use the circuit of Part One to provide the digital signals for our D/A conversion. Step 3: Construct the circuit of Figure 6.3. FIGURE 6.3. Addition of Digital to Analog Conversion Circuit Page - 3
4 Note that the DAC0808 D/A converter generates a varying analog current at its output, Io, on Pin-4. The fullscale value of this current is determined by the current input at Vref+, on Pin 14, (2.00 ma.) Consequently, this current must be converted back to a voltage to obtain Vo. To do this, an LM741 operational amplifier is configured as a current to voltage converter using the same size current loop (5.1K resistor.) Step 4: For each entry in Table 6.2, measure and record the output voltage (V o ) from the Op-Amp (Pin 6). Explain any variation between the input analog value and the output analog value. Instructor s Signature: Date: Operative: Inoperative: PART THREE. Ambient Temperature Measurement. Figure 6.4 illustrates the replacement of the 100K potentiometer with an LM34 temperature sensor and an operational amplifier as the voltage source for the A/D converter. Note that nothing else has changed from Figure 6.3. The LM34 temperature sensor generates a voltage output equal to 10mV per degree Fahrenheit with an error of less than.1 degrees. Consequently, at room temperature of 72 F, the sensor will generate 200.0mV. In order to measure a voltage that is within the full-scale input of the A/D converter, an LM741 operational amplifier is configured as a non-inverting amplifier with a gain of 2, resulting in a representation of 2.00V for a temperature of 72 F. Note that the pin-out shown for the LM34 is the bottom view. Note also that the inputs to the LM741 are configured for non-inverting amplification. FIGURE 6.4. Temperature Sensing Circuit. Step 5: Construct the circuit of Figure 6.4, removing the potentiometer of Figure 6.3, and replacing it with the LM34 temperature sensor and the LM741 operational amplifier circuit. Record in the first line of Table 6.3 the (1) voltage at Pin 2 of the LM34, (2) the corresponding ambient temperature it represents, (3) the voltage at Pin 6 of the ADC0804 verifying the gain of the input amplifier, (4) the digital value at the inputs of the DAC0808, and (5) the voltage at Pin 6 of the LM741 at the output of the circuit. You may have to wait a little while for the temperature to stabilize. Page - 4
5 TABLE 6.3 Temperature Acquisition Data (1) LM33 (2) Ambient Temperature, F (3) A/D Input (4) Digital Equivalent (5), Vo Step 6: Heat the temperature sensor by grasping it with your fingers. As the temperature indicates higher values, add respective lines of data to Table 6.3. Record here your comments concerning the circuit operation and reasons for unexpected results. (Why is the temperature seemingly higher than it should be?, etc.) Instructor s Signature: Date: Operative: Inoperative: NOTES: Parts List: 1. Logic Trainer 2. DC Power Supply 3. ADC0804 A-to-D Converter 4. DAC0808 D-to-A Converter 5. LM741 Op-Amp kΩ Potentiometer 7. 20KΩ Resistor 8. 10KΩ Resistor KΩ Resistor KΩ Resistor pF Capacitor µF Capacitor 13. LM34 Page - 5
Digital to Analog and Analog to Digital Conversion
Real world (lab) is Computer (binary) is digital Digital to Analog and Analog to Digital Conversion V t V t D/A or DAC and A/D or ADC D/A Conversion Computer DAC A/D Conversion Computer DAC Digital to
DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION
DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION Introduction The outputs from sensors and communications receivers are analogue signals that have continuously varying amplitudes. In many systems
Chapter 6: From Digital-to-Analog and Back Again
Chapter 6: From Digital-to-Analog and Back Again Overview Often the information you want to capture in an experiment originates in the laboratory as an analog voltage or a current. Sometimes you want to
Digital to Analog Converter. Raghu Tumati
Digital to Analog Converter Raghu Tumati May 11, 2006 Contents 1) Introduction............................... 3 2) DAC types................................... 4 3) DAC Presented.............................
Operational Amplifier - IC 741
Operational Amplifier - IC 741 Tabish December 2005 Aim: To study the working of an 741 operational amplifier by conducting the following experiments: (a) Input bias current measurement (b) Input offset
MAS.836 HOW TO BIAS AN OP-AMP
MAS.836 HOW TO BIAS AN OP-AMP Op-Amp Circuits: Bias, in an electronic circuit, describes the steady state operating characteristics with no signal being applied. In an op-amp circuit, the operating characteristic
Analog Signal Conditioning
Analog Signal Conditioning Analog and Digital Electronics Electronics Digital Electronics Analog Electronics 2 Analog Electronics Analog Electronics Operational Amplifiers Transistors TRIAC 741 LF351 TL084
Welcome to this presentation on Driving LEDs Resistors and Linear Drivers, part of OSRAM Opto Semiconductors LED Fundamentals series.
Welcome to this presentation on Driving LEDs Resistors and Linear Drivers, part of OSRAM Opto Semiconductors LED Fundamentals series. In this presentation we will look at: - Simple resistor based current
Chapter 12. Data Converters. à Read Section 19 of the Data Sheet for PIC18F46K20. Updated: 4/19/15
Chapter 12 Data Converters à Read Section 19 of the Data Sheet for PIC18F46K20 Updated: 4/19/15 Data Converters: Basic Concepts Analog signals are continuous, with infinite values in a given range. Digital
Microcontroller to Sensor Interfacing Techniques
to Sensor Interfacing Techniques Document Revision: 1.01 Date: 3rd February, 2006 16301 Blue Ridge Road, Missouri City, Texas 77489 Telephone: 1-713-283-9970 Fax: 1-281-416-2806 E-mail: [email protected]
Building the AMP Amplifier
Building the AMP Amplifier Introduction For about 80 years it has been possible to amplify voltage differences and to increase the associated power, first with vacuum tubes using electrons from a hot filament;
Interfacing Analog to Digital Data Converters
Converters In most of the cases, the PIO 8255 is used for interfacing the analog to digital converters with microprocessor. We have already studied 8255 interfacing with 8086 as an I/O port, in previous
Digital To Analog Converter with Sine Wave Output
Digital To Analog Converter with Sine Wave Output Overview In this Lab we will build a resistive ladder network and use the BASIC Stamp to generate the digital data for the D/A conversions. PBASIC will
Microcontroller-based experiments for a control systems course in electrical engineering technology
Microcontroller-based experiments for a control systems course in electrical engineering technology Albert Lozano-Nieto Penn State University, Wilkes-Barre Campus, Lehman, PA, USA E-mail: [email protected]
Lab 7: Operational Amplifiers Part I
Lab 7: Operational Amplifiers Part I Objectives The objective of this lab is to study operational amplifier (op amp) and its applications. We will be simulating and building some basic op amp circuits,
Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1
Electronics Operational Amplifier Internal design of an operational amplifier LD Physics Leaflets Discrete assembly of an operational amplifier as a transistor circuit P4.2.1.1 Objects of the experiment
Content Map For Career & Technology
Content Strand: Applied Academics CT-ET1-1 analysis of electronic A. Fractions and decimals B. Powers of 10 and engineering notation C. Formula based problem solutions D. Powers and roots E. Linear equations
OPERATIONAL AMPLIFIER
MODULE3 OPERATIONAL AMPLIFIER Contents 1. INTRODUCTION... 3 2. Operational Amplifier Block Diagram... 3 3. Operational Amplifier Characteristics... 3 4. Operational Amplifier Package... 4 4.1 Op Amp Pins
LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.
LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus
ADC0808/ADC0809 8-Bit µp Compatible A/D Converters with 8-Channel Multiplexer
ADC0808/ADC0809 8-Bit µp Compatible A/D Converters with 8-Channel Multiplexer General Description The ADC0808, ADC0809 data acquisition component is a monolithic CMOS device with an 8-bit analog-to-digital
Frequency Response of Filters
School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To
LEVERAGING FPGA AND CPLD DIGITAL LOGIC TO IMPLEMENT ANALOG TO DIGITAL CONVERTERS
LEVERAGING FPGA AND CPLD DIGITAL LOGIC TO IMPLEMENT ANALOG TO DIGITAL CONVERTERS March 2010 Lattice Semiconductor 5555 Northeast Moore Ct. Hillsboro, Oregon 97124 USA Telephone: (503) 268-8000 www.latticesemi.com
Basic Op Amp Circuits
Basic Op Amp ircuits Manuel Toledo INEL 5205 Instrumentation August 3, 2008 Introduction The operational amplifier (op amp or OA for short) is perhaps the most important building block for the design of
NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter
NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter Description: The NTE2053 is a CMOS 8 bit successive approximation Analog to Digital converter in a 20 Lead DIP type package which uses a differential
SAMPLE CHAPTERS UNESCO EOLSS DIGITAL INSTRUMENTS. García J. and García D.F. University of Oviedo, Spain
DIGITAL INSTRUMENTS García J. and García D.F. University of Oviedo, Spain Keywords: analog-to-digital conversion, digital-to-analog conversion, data-acquisition systems, signal acquisition, signal conditioning,
NTE923 & NTE923D Integrated Circuit Precision Voltage Regulator
NTE923 & NTE923D Integrated Circuit Precision Voltage Regulator Description: The NTE923 and NTE923D are voltage regulators designed primarily for series regulator applications. By themselves, these devices
www.jameco.com 1-800-831-4242
Distributed by: www.jameco.com 1-800-831-4242 The content and copyrights of the attached material are the property of its owner. LF411 Low Offset, Low Drift JFET Input Operational Amplifier General Description
Cornerstone Electronics Technology and Robotics I Week 15 Voltage Comparators Tutorial
Cornerstone Electronics Technology and Robotics I Week 15 Voltage Comparators Tutorial Administration: o Prayer Robot Building for Beginners, Chapter 15, Voltage Comparators: o Review of Sandwich s Circuit:
1. Learn about the 555 timer integrated circuit and applications 2. Apply the 555 timer to build an infrared (IR) transmitter and receiver
Electronics Exercise 2: The 555 Timer and its Applications Mechatronics Instructional Laboratory Woodruff School of Mechanical Engineering Georgia Institute of Technology Lab Director: I. Charles Ume,
School of Engineering Department of Electrical and Computer Engineering
1 School of Engineering Department of Electrical and Computer Engineering 332:223 Principles of Electrical Engineering I Laboratory Experiment #4 Title: Operational Amplifiers 1 Introduction Objectives
Transistor Amplifiers
Physics 3330 Experiment #7 Fall 1999 Transistor Amplifiers Purpose The aim of this experiment is to develop a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must accept input
HT9170 DTMF Receiver. Features. General Description. Selection Table
DTMF Receiver Features Operating voltage: 2.5V~5.5V Minimal external components No external filter is required Low standby current (on power down mode) General Description The HT9170 series are Dual Tone
Theory of Operation. Figure 1 illustrates a fan motor circuit used in an automobile application. The TPIC2101. 27.4 kω AREF.
In many applications, a key design goal is to minimize variations in power delivered to a load as the supply voltage varies. This application brief describes a simple DC brush motor control circuit using
Constant Voltage and Constant Current Controller for Adaptors and Battery Chargers
TECHNICAL DATA Constant Voltage and Constant Current Controller for Adaptors and Battery Chargers IK3051 Description IK3051 is a highly integrated solution for SMPS applications requiring constant voltage
11: AUDIO AMPLIFIER I. INTRODUCTION
11: AUDIO AMPLIFIER I. INTRODUCTION The properties of an amplifying circuit using an op-amp depend primarily on the characteristics of the feedback network rather than on those of the op-amp itself. A
INSTRUMENTATION AND CONTROL TUTORIAL 3 SIGNAL PROCESSORS AND RECEIVERS
INSTRUMENTATION AND CONTROL TUTORIAL 3 SIGNAL PROCESSORS AND RECEIVERS This tutorial provides an overview of signal processing and conditioning for use in instrumentation and automatic control systems.
BJT Characteristics and Amplifiers
BJT Characteristics and Amplifiers Matthew Beckler [email protected] EE2002 Lab Section 003 April 2, 2006 Abstract As a basic component in amplifier design, the properties of the Bipolar Junction Transistor
Features. Note Switches shown in digital high state
DAC1020 DAC1021 DAC1022 10-Bit Binary Multiplying D A Converter DAC1220 DAC1222 12-Bit Binary Multiplying D A Converter General Description The DAC1020 and the DAC1220 are respectively 10 and 12-bit binary
PC BASED PID TEMPERATURE CONTROLLER
PC BASED PID TEMPERATURE CONTROLLER R. Nisha * and K.N. Madhusoodanan Dept. of Instrumentation, Cochin University of Science and Technology, Cochin 22, India ABSTRACT: A simple and versatile PC based Programmable
Pressure Transducer to ADC Application
Application Report SLOA05 October 2000 Pressure Transducer to ADC Application John Bishop ABSTRACT Advanced Analog Products/OpAmp Applications A range of bridgetype transducers can measure numerous process
OPERATIONAL AMPLIFIERS
INTRODUCTION OPERATIONAL AMPLIFIERS The student will be introduced to the application and analysis of operational amplifiers in this laboratory experiment. The student will apply circuit analysis techniques
LM118/LM218/LM318 Operational Amplifiers
LM118/LM218/LM318 Operational Amplifiers General Description The LM118 series are precision high speed operational amplifiers designed for applications requiring wide bandwidth and high slew rate. They
Programmable Single-/Dual-/Triple- Tone Gong SAE 800
Programmable Single-/Dual-/Triple- Tone Gong Preliminary Data SAE 800 Bipolar IC Features Supply voltage range 2.8 V to 18 V Few external components (no electrolytic capacitor) 1 tone, 2 tones, 3 tones
A Digital Timer Implementation using 7 Segment Displays
A Digital Timer Implementation using 7 Segment Displays Group Members: Tiffany Sham u2548168 Michael Couchman u4111670 Simon Oseineks u2566139 Caitlyn Young u4233209 Subject: ENGN3227 - Analogue Electronics
Pulse Width Modulation (PWM) LED Dimmer Circuit. Using a 555 Timer Chip
Pulse Width Modulation (PWM) LED Dimmer Circuit Using a 555 Timer Chip Goals of Experiment Demonstrate the operation of a simple PWM circuit that can be used to adjust the intensity of a green LED by varying
Laboratory 4: Feedback and Compensation
Laboratory 4: Feedback and Compensation To be performed during Week 9 (Oct. 20-24) and Week 10 (Oct. 27-31) Due Week 11 (Nov. 3-7) 1 Pre-Lab This Pre-Lab should be completed before attending your regular
The 2N3393 Bipolar Junction Transistor
The 2N3393 Bipolar Junction Transistor Common-Emitter Amplifier Aaron Prust Abstract The bipolar junction transistor (BJT) is a non-linear electronic device which can be used for amplification and switching.
FEATURES DESCRIPTIO APPLICATIO S. LTC1451 LTC1452/LTC1453 12-Bit Rail-to-Rail Micropower DACs in SO-8 TYPICAL APPLICATIO
12-Bit Rail-to-Rail Micropower DACs in SO-8 FEATRES 12-Bit Resolution Buffered True Rail-to-Rail Voltage Output 3V Operation (LTC1453), I CC : 250µA Typ 5V Operation (), I CC : 400µA Typ 3V to 5V Operation
Analog signals are those which are naturally occurring. Any analog signal can be converted to a digital signal.
3.3 Analog to Digital Conversion (ADC) Analog signals are those which are naturally occurring. Any analog signal can be converted to a digital signal. 1 3.3 Analog to Digital Conversion (ADC) WCB/McGraw-Hill
Bipolar Transistor Amplifiers
Physics 3330 Experiment #7 Fall 2005 Bipolar Transistor Amplifiers Purpose The aim of this experiment is to construct a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must
Design Project: Power inverter
Design Project: Power inverter This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
Lab Experiment 1: The LPC 2148 Education Board
Lab Experiment 1: The LPC 2148 Education Board 1 Introduction The aim of this course ECE 425L is to help you understand and utilize the functionalities of ARM7TDMI LPC2148 microcontroller. To do that,
Multipurpose Analog PID Controller
Multipurpose Analog PID Controller Todd P. Meyrath Atom Optics Laboratory Center for Nonlinear Dynamics University of Texas at Austin c 00 March 4, 00 revised December 0, 00 See disclaimer This analog
High Speed, Low Power Monolithic Op Amp AD847
a FEATURES Superior Performance High Unity Gain BW: MHz Low Supply Current:.3 ma High Slew Rate: 3 V/ s Excellent Video Specifications.% Differential Gain (NTSC and PAL).9 Differential Phase (NTSC and
ARRL Morse Code Oscillator, How It Works By: Mark Spencer, WA8SME
The national association for AMATEUR RADIO ARRL Morse Code Oscillator, How It Works By: Mark Spencer, WA8SME This supplement is intended for use with the ARRL Morse Code Oscillator kit, sold separately.
The Operational Amplfier Lab Guide
EECS 100 Lab Guide Bharathwaj Muthuswamy The Operational Amplfier Lab Guide 1. Introduction COMPONENTS REQUIRED FOR THIS LAB : 1. LM741 op-amp integrated circuit (IC) 2. 1k resistors 3. 10k resistor 4.
AP331A XX G - 7. Lead Free G : Green. Packaging (Note 2)
Features General Description Wide supply Voltage range: 2.0V to 36V Single or dual supplies: ±1.0V to ±18V Very low supply current drain (0.4mA) independent of supply voltage Low input biasing current:
Supply voltage Supervisor TL77xx Series. Author: Eilhard Haseloff
Supply voltage Supervisor TL77xx Series Author: Eilhard Haseloff Literature Number: SLVAE04 March 1997 i IMPORTANT NOTICE Texas Instruments (TI) reserves the right to make changes to its products or to
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 956 24-BIT DIFFERENTIAL ADC WITH I2C LTC2485 DESCRIPTION
LTC2485 DESCRIPTION Demonstration circuit 956 features the LTC2485, a 24-Bit high performance Σ analog-to-digital converter (ADC). The LTC2485 features 2ppm linearity, 0.5µV offset, and 600nV RMS noise.
SIMPLE HEART RATE MONITOR FOR ANALOG ENTHUSIASTS
SIMPLE HEART RATE MONITOR FOR ANALOG ENTHUSIASTS Jelimo B Maswan, Abigail C Rice 6.101: Final Project Report Date: 5/15/2014 1 Project Motivation Heart Rate Monitors are quickly becoming ubiquitous in
Model AD558J AD558K AD558S 1 AD558T 1 Min Typ Max Min Typ Max Min Typ Max Min Typ Max Units
SPECIFICATIONS (@ T A = +25 C, V CC = +5 V to + V unless otherwise noted) Model J K S 1 T 1 Min Typ Max Min Typ Max Min Typ Max Min Typ Max Units RESOLUTION Bits RELATIVE ACCURACY 2 0 C to +70 C ±1/2 ±1/4
Reading: HH Sections 4.11 4.13, 4.19 4.20 (pgs. 189-212, 222 224)
6 OP AMPS II 6 Op Amps II In the previous lab, you explored several applications of op amps. In this exercise, you will look at some of their limitations. You will also examine the op amp integrator and
Using NTC Temperature Sensors Integrated into Power Modules
Using NTC Temperature Sensors Integrated into Power Modules Pierre-Laurent Doumergue R&D Engineer Advanced Power Technology Europe Chemin de Magret 33700 Mérignac, France Introduction Most APTE (Advanced
ADC-20/ADC-24 Terminal Board. User Guide DO117-5
ADC-20/ADC-24 Terminal Board User Guide DO117-5 Issues: 1) 8.11.05 Created by JB. 2) 13.12.05 p10: added 0V connection to thermocouple schematic. 3) 22.3.06 p11: removed C1. 4) 20.8.07 New logo. 5) 29.9.08
Microcomputers. Analog-to-Digital and Digital-to-Analog Conversion
Microcomputers Analog-to-Digital and Digital-to-Analog Conversion 1 Digital Signal Processing Analog-to-Digital Converter (ADC) converts an input analog value to an output digital representation. This
1. Oscilloscope is basically a graph-displaying device-it draws a graph of an electrical signal.
CHAPTER 3: OSCILLOSCOPE AND SIGNAL GENERATOR 3.1 Introduction to oscilloscope 1. Oscilloscope is basically a graph-displaying device-it draws a graph of an electrical signal. 2. The graph show signal change
LAB 12: ACTIVE FILTERS
A. INTRODUCTION LAB 12: ACTIVE FILTERS After last week s encounter with op- amps we will use them to build active filters. B. ABOUT FILTERS An electric filter is a frequency-selecting circuit designed
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science. 6.002 Electronic Circuits Spring 2007
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.002 Electronic Circuits Spring 2007 Lab 4: Audio Playback System Introduction In this lab, you will construct,
LM139/LM239/LM339/LM2901/LM3302 Low Power Low Offset Voltage Quad Comparators
Low Power Low Offset Voltage Quad Comparators General Description The LM139 series consists of four independent precision voltage comparators with an offset voltage specification as low as 2 mv max for
AUTOMATIC NIGHT LAMP WITH MORNING ALARM USING MICROPROCESSOR
AUTOMATIC NIGHT LAMP WITH MORNING ALARM USING MICROPROCESSOR INTRODUCTION This Project "Automatic Night Lamp with Morning Alarm" was developed using Microprocessor. It is the Heart of the system. The sensors
Operational Amplifiers
Module 6 Amplifiers Operational Amplifiers The Ideal Amplifier What you ll learn in Module 6. Section 6.0. Introduction to Operational Amplifiers. Understand Concept of the Ideal Amplifier and the Need
Analog-to-Digital conversion
Analog-to-Digital conversion This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
LC2 MOS Quad 8-Bit D/A Converter AD7226
a FEATURES Four 8-Bit DACs with Output Amplifiers Skinny 20-Pin DIP, SOIC and 20-Terminal Surface Mount Packages Microprocessor Compatible TTL/CMOS Compatible No User Trims Extended Temperature Range Operation
SINGLE-SUPPLY OPERATION OF OPERATIONAL AMPLIFIERS
SINGLE-SUPPLY OPERATION OF OPERATIONAL AMPLIFIERS One of the most common applications questions on operational amplifiers concerns operation from a single supply voltage. Can the model OPAxyz be operated
1 Coffee cooling : Part B : automated data acquisition
1 COFFEE COOLING : PART B : AUTOMATED DATA ACQUISITION 1 October 23, 2015 1 Coffee cooling : Part B : automated data acquisition Experiment designed by Peter Crew, Navot Arad and Dr Alston J. Misquitta
A Collection of Differential to Single-Ended Signal Conditioning Circuits for Use with the LTC2400, a 24-Bit No Latency Σ ADC in an SO-8
Application Note August 999 A Collection of Differential to Single-Ended Signal Conditioning Circuits for Use with the LTC00, a -Bit No Latency Σ ADC in an SO- By Kevin R. Hoskins and Derek V. Redmayne
Op Amp Circuit Collection
Op Amp Circuit Collection Note: National Semiconductor recommends replacing 2N2920 and 2N3728 matched pairs with LM394 in all application circuits. Section 1 Basic Circuits Inverting Amplifier Difference
Application Note 142 August 2013. New Linear Regulators Solve Old Problems AN142-1
August 2013 New Linear Regulators Solve Old Problems Bob Dobkin, Vice President, Engineering and CTO, Linear Technology Corp. Regulators regulate but are capable of doing much more. The architecture of
PLL frequency synthesizer
ANALOG & TELECOMMUNICATION ELECTRONICS LABORATORY EXERCISE 4 Lab 4: PLL frequency synthesizer 1.1 Goal The goals of this lab exercise are: - Verify the behavior of a and of a complete PLL - Find capture
AP-1 Application Note on Remote Control of UltraVolt HVPS
Basics Of UltraVolt HVPS Output Voltage Control Application Note on Remote Control of UltraVolt HVPS By varying the voltage at the Remote Adjust Input terminal (pin 6) between 0 and +5V, the UV highvoltage
ICS379. Quad PLL with VCXO Quick Turn Clock. Description. Features. Block Diagram
Quad PLL with VCXO Quick Turn Clock Description The ICS379 QTClock TM generates up to 9 high quality, high frequency clock outputs including a reference from a low frequency pullable crystal. It is designed
Analog to Digital Conversion of Sound with the MSP430F2013
Analog to Digital Conversion of Sound with the MSP430F2013 Christopher Johnson 4/2/2010 Abstract Several modern-day applications require that analog signals be converted to digital signals in order to
Measuring Resistance Using Digital I/O
Measuring Resistance Using Digital I/O Using a Microcontroller for Measuring Resistance Without using an ADC. Copyright 2011 John Main http://www.best-microcontroller-projects.com Page 1 of 10 Table of
Features. Applications
LM555 Timer General Description The LM555 is a highly stable device for generating accurate time delays or oscillation. Additional terminals are provided for triggering or resetting if desired. In the
ε: Voltage output of Signal Generator (also called the Source voltage or Applied
Experiment #10: LR & RC Circuits Frequency Response EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage Sensor graph paper (optional) (3) Patch Cords Decade resistor, capacitor, and
LABORATORY 2 THE DIFFERENTIAL AMPLIFIER
LABORATORY 2 THE DIFFERENTIAL AMPLIFIER OBJECTIVES 1. To understand how to amplify weak (small) signals in the presence of noise. 1. To understand how a differential amplifier rejects noise and common
PowerAmp Design. PowerAmp Design PAD135 COMPACT HIGH VOLATGE OP AMP
PowerAmp Design COMPACT HIGH VOLTAGE OP AMP Rev G KEY FEATURES LOW COST SMALL SIZE 40mm SQUARE HIGH VOLTAGE 200 VOLTS HIGH OUTPUT CURRENT 10A PEAK 40 WATT DISSIPATION CAPABILITY 200V/µS SLEW RATE APPLICATIONS
Lock - in Amplifier and Applications
Lock - in Amplifier and Applications What is a Lock in Amplifier? In a nut shell, what a lock-in amplifier does is measure the amplitude V o of a sinusoidal voltage, V in (t) = V o cos(ω o t) where ω o
DATA SHEET. TDA1543 Dual 16-bit DAC (economy version) (I 2 S input format) INTEGRATED CIRCUITS
INTEGRATED CIRCUITS DATA SHEET File under Integrated Circuits, IC01 February 1991 FEATURES Low distortion 16-bit dynamic range 4 oversampling possible Single 5 V power supply No external components required
Ultrasound Distance Measurement
Final Project Report E3390 Electronic Circuits Design Lab Ultrasound Distance Measurement Yiting Feng Izel Niyage Asif Quyyum Submitted in partial fulfillment of the requirements for the Bachelor of Science
A PIC16F628 controlled FLL (Frequency Locked Loop) VFO for HF
Abstract A PI6F628 controlled FLL (Frequency Locked Loop) VFO for HF It is described a device which joins in a single microprocessor a digital programmable frequency meter and a control logic capable to
Section 3. Sensor to ADC Design Example
Section 3 Sensor to ADC Design Example 3-1 This section describes the design of a sensor to ADC system. The sensor measures temperature, and the measurement is interfaced into an ADC selected by the systems
If an occupancy of room is zero, i.e. room is empty then light source will be switched off automatically
EE389 Electronic Design Lab Project Report, EE Dept, IIT Bombay, Nov 2009 Fully-automated control of lighting and security system of a Room Group No: D2 Bharat Bhushan (06d04026) Sravan
LSI/CSI LS7362 BRUSHLESS DC MOTOR COMMUTATOR/CONTROLLER DESCRIPTION:
LSI/CSI LS UL LSI Computer Systems, Inc. 1 Walt Whitman oad, Melville, NY 11 (1) 1-000 FAX (1) 1-00 A00 BUSHLESS DC MOTO COMMUTATO/CONTOLLE FEATUES: Speed Control by Pulse Width Modulating (PWM) only the
Analog-to-Digital Converters
Analog-to-Digital Converters In this presentation we will look at the Analog-to-Digital Converter Peripherals with Microchip s midrange PICmicro Microcontrollers series. 1 Analog-to-Digital Converters
LM138 LM338 5-Amp Adjustable Regulators
LM138 LM338 5-Amp Adjustable Regulators General Description The LM138 series of adjustable 3-terminal positive voltage regulators is capable of supplying in excess of 5A over a 1 2V to 32V output range
Constant Current Control for DC-DC Converters
Constant Current Control for DC-DC Converters Introduction... Theory of Operation... Power Limitations... Voltage Loop Stability...2 Current Loop Compensation...3 Current Control Example...5 Battery Charger
Using a Thermistor to Measure Temperature. Thermistors are resistors that vary their resistance according to temperature.
Using a Thermistor to Measure Temperature Overview of a Thermistor Thermistors are resistors that vary their resistance according to temperature. The change in resistance is roughly proportional to the
