Computer Engineering Technology
|
|
|
- Lynn Owens
- 9 years ago
- Views:
Transcription
1 Computer Engineering Technology Dr. Adam Filios, Chair Electrical & Computer Engineering Technology Dept School of Engineering Technology Bachelor of Science Degree The Bachelor of Science degree program in Computer Engineering Technology is designed to address the ever increasing need for graduates possessing skills in both computer programming and computer hardware (digital electronics), and in the underlying principles of Networking. The program establishes a sound foundation in Applied Mathematics and Physics including the necessary principles of electrical engineering technology, computer technology, elective choices in the arts, sciences and the humanities. Transfer admission is easily available to students from related degree programs. Graduates of this program, engineering technologists, will be well prepared to fill the wide range of engineering technology positions which rely upon an understanding of hardware and software applications of digital, microprocessor, microcontroller, and computer based systems. This program is accredited by the ETAC/ABET, Computer Engineering Technology (BS) Program Outcomes: Graduates will be technically competent and will have the necessary skills to enter careers in areas such as the design, development, implementation and project management of computer hardware and software systems and networks using modern procedures and methodologies available in the field of Computer Engineering Technology. Graduates will be good communicators and will function effectively in teams. Graduates will develop and be able to maintain the necessary knowledge as well as an appropriate level of competency in current scientific methodologies so as to be able to formulate and solve technical problems and further develop and maintain their professional skills throughout their careers. Graduates will have an appreciation and understanding of the necessity for personal integrity, professional ethics and cultural awareness. Student Learning Outcomes: Upon completion of the program students will be able to: A. Demonstrate mastery of knowledge, techniques, skills and modern tools of their discipline B. Apply current knowledge and adapt to emerging applications of mathematics, science, engineering and technology C. Conduct, analyze and interpret experiments and apply experimental results to improve processes
2 D. Apply creativity in the design of systems, components or processes appropriate to program educational objectives E. Function effectively on teams F. Identify, analyze and solve technical problems G. Communicate effectively H. Recognize of the need for, and an ability to engage in lifelong learning I. Understand professional, ethical and social responsibilities J. Demonstrate knowledge of contemporary professional, societal and global issues K. Understand the importance of and exhibit commitment to quality, timeliness, and continuous improvement Fall Subject to Revision Liberal Arts and Sciences (61 credits) EGL 101 Composition I: College Writing (GE) 3 EGL 102 Composition II: Writing About Literature 3 EGL 310 Technical Writing 3 MTH 129 Precalculus with Applications (GE) 4 MTH 130 Calculus I with Applications (GE) 4 MTH 236 Calculus II with Applications (GE) 3 MTH 245 Linear Algebra 3 MTH 322 Advanced Mathematical Analysis 3 PHY 135 College Physics I (GE) 4 PHY 136 College Physics II 4 ECO 321 Engineering Economics (GE) 3 The Arts (GE) 3 Foreign Language (GE) 3 Humanities (GE) 3 American/Other World/Western Civilization History (GE) 3 Liberal Arts and Sciences Electives 12 Technical Courses (65 credits) BCS 120 Foundations of Computer Programming I 3 BCS 215 UNIX Operating Systems 3
3 BCS 230 Foundations of Computer Programming II 3 BCS 370 Data Structures 3 EET 105 Introduction to Digital Electronics 2 EET 110 Computer Applications 2 EET 111 Electric Circuits I 4 EET 113 Electric Circuits II 4 EET 118 Semiconductor Devices and Circuits 4 EET 223 Digital Electronics 4 EET 224 Amplifiers 4 EET 251 Microprocessors 3 EET 316 Digital Design 4 EET 418 Microprocessor Interfacing & Control 4 EET 440 Data Communications and Networking 4 EET 441 Advanced Networking 4 EET 450 Design Concepts 2 EET 452W Design Project 2 Technical Electives* 6 Total Credits: 126 *Technical Electives must be selected from EET 311, EET 317, EET 327, EET 426, EET 428 or other courses in areas of student interest with Departmental approval. Degree Type: BS Total Required Credits: 126 Course Descriptions EGL 101 Composition I: College Writing (GE) This is the first part of a required sequence in college essay writing. Students learn to view writing as a process that involves generating ideas, formulating and developing a thesis, structuring paragraphs and essays, as well as revising and editing drafts. The focus is on the development of critical and analytical thinking. Students also learn the correct and ethical use of print and electronic sources. At least one research paper is required. A grade of C or higher is a graduation requirement. Note: Students passing a departmental diagnostic exam given on the first day of class will remain in EGL 101; all others will be placed in EGL 097. Prerequisite is any of the following: successful completion of EGL 097; an SAT essay score (taken prior to March 1, 2016) of 7 or higher; an SAT essay score (taken after March 1, 2016) of 5 or higher; on-campus placement testing. Credits: 3 EGL 102 Composition II: Writing About Literature This is the second part of the required introductory English composition sequence. This course builds on writing skills developed in EGL 101, specifically the ability to write analytical and persuasive essays and to use research materials
4 correctly and effectively. Students read selections from different literary genres (poetry, drama, and narrative fiction). Selections from the literature provide the basis for analytical and critical essays that explore the ways writers use works of the imagination to explore human experience. Grade of C or higher is a graduation requirement. Prerequisite(s): EGL 101 Credits: 3 EGL 310 Technical Writing A detailed study of the fundamentals of writing technical reports and other technical communications. Topics emphasized include the elements of a technical report, the interpretation of statistics and data, and the composition of letters, memos, and informal reports containing technical information. Assignments and student exercises are drawn from the student's technical area. Prerequisite(s): EGL 102 with a grade of C or higher Credits: 3 MTH 129 Precalculus with Applications (GE) This is a precalculus course with applications from various disciplines including technology, science, and business. Topics include families of functions, mechanics of functions, exponential and logarithmic functions, trigonometric functions and complex numbers. The emphasis is on applications and problem solving. A graphing calculator is required. Note: Students completing this course may not receive credit for MTH 117. Prerequisite(s): MP3 or MTH 116 Credits: 4 MTH 130 Calculus I with Applications (GE) This is a calculus course for those not majoring in Mathematics, Engineering Science or Computer Science. Topics include the derivative, differentiation of algebraic, trigonometric, exponential and logarithmic functions, applications of the derivative and the definite integral. Applications are taken from technology, science, and business. Problem solving is stressed. A graphing calculator is required. Note: Students completing this course will not receive credit for MTH 150. Prerequisite(s): MP4 or MTH 117 or 129 Credits: 4 MTH 236 Calculus II with Applications (GE) A continuation of Calculus I with Applications. Topics include techniques of integration, applications of the definite integral, multivariable calculus, and an introduction to Differential Equations. Applications are taken from technology, science and business. Problem solving is emphasized. A graphing calculator is required. Prerequisite(s): MTH 130 or MTH 150 Credits: 3 MTH 245 Linear Algebra A study of the basic properties of vectors and vector spaces; linear transformations and matrices; matrix representations of transformations; characteristic values and characteristic vectors of linear transformations; similarity of matrices, selected applications. Prerequisite(s): MTH 151 or MTH 236 Credits: 3 MTH 322 Advanced Mathematical Analysis Topics include: infinite series, first and second order differential equations and applications, homogeneous and forced response, Laplace transforms, Taylor series, matrices, Gauss-Elimination method. Prerequisite(s): MTH 236 Credits: 3 PHY 135 College Physics I (GE) An integrated theory/laboratory general college physics course without calculus. Topics will include fundamental concepts of units, vectors, equilibrium, velocity and acceleration in linear and rotational motion, force, energy, momentum, fluids at rest and in motion, and oscillatory motion. Laboratory problems, experiments and report writing associated with the topics studied in the theory are performed. Prerequisite(s): MTH 129 Corequisite(s): PHY 135L Credits: 4 PHY 136 College Physics II A continuation of PHY 135. Topics will include heat, electricity, magnetism, light and optics. Prerequisite(s): PHY 135 Corequisite(s): PHY 136L Credits: 4
5 ECO 321 Engineering Economics (GE) This course will provide students with a basic understanding of the economic aspects of engineering in terms of the evaluation of engineering proposals with respect to their worth and cost. Topics include: introduction to Engineering Economics; interest and interest formulas; equivalence and equivalence calculations; evaluation of replacement alternatives and operational activities; basic fundamentals of cost accounting. Prerequisite(s): Admission to a Tech Program or approval of this Department chair. Credits: 3 BCS 120 Foundations of Computer Programming I This course introduces the C++ Programming Language as a means of developing structured programs. Students will be taught to develop algorithms using top-down stepwise refinement. Students will be introduced to the concept of Object Oriented programming through the use of pre- defined classes. In addition, students will get a thorough exposure to C++ syntax and debugging techniques. Credits: 3 BCS 215 UNIX Operating Systems This course develops the fundamental knowledge of computer operating systems using UNIX. Topics include basic understanding of the UNIX system, utilizing the file system, programming language and security system. BCS 120 may be taken as a Prerequisite or Corequisite. Prerequisite(s): BCS 120 Corequisite(s): BCS 120 Credits: 3 BCS 230 Foundations of Computer Programming II This course expands the knowledge and skills of Foundations of Computer Programming I. Among the topics covered are: arrays, pointers, strings, classes, data abstraction, inheritance, composition and overloading. Prerequisite(s): BCS 120 or DPR 120 with a grade of C or higher Credits: 3 BCS 370 Data Structures This course will present sequential and linked representations of various built-in and abstract data structures including arrays, records, stacks, queues and trees. Algorithms will be developed relating to various sorting and searching techniques, merging and recursion. A high-level structured programming language, such as C, using both static and dynamic storage concepts, will be used in exploring and developing these algorithms. Prerequisite(s): BCS 230 with a grade of C or higher. Credits: 3 EET 105 Introduction to Digital Electronics An introduction to the fundamental concepts of Digital Electronics. Topics covered: Number systems, Boolean Algebra, Logic Gates, Combinational Circuits, Karnaugh Map Minimization Techniques, Adders, Signed Numbers, Multiplexers, Code- Converters, Decoders, Encoders, Comparators and 7-segment displays. The laboratory component of the course reinforces the topics covered in the theory through relevant experiments performed by students using logic trainers. Corequisite(s): EET 111 or EET 104 Credits: 2 EET 110 Computer Applications An introduction to computer programming with applications. Examples and assignments are drawn from problems in Electrical and Computer Engineering Technology. The course uses Windows based PCs, the "C/C++" programming language (visual C++), and IEEE-488 Standard interfacing to programmable instrumentation. Prerequisite(s): EET 111 Credits: 2 EET 111 Electric Circuits I A basic course in direct current circuit theory. Concepts of charge, current and voltage; Ohm's Law, Kirchoff's Laws; analysis of series, parallel, and combination circuits; mesh and nodal analysis; Superposition, Thevenin's and Norton's theorems; maximum power transfer theorem; electric fields and capacitance; magnetic fields and inductance; analysis of R-C and R-L switching networks. The laboratory is coordinated with, and supports, the theory course. Corequisite(s): MTH 129 Credits: 4
6 EET 113 Electric Circuits II This is the second of a two-course sequence designed to provide the background needed to analyze electric networks. Topics covered in this course include sinusoidal waveforms and non-sinusoidal waveforms; the phasor representation of sinusoidal signals; the use of complex numbers to analyze R-C, R-L, and R-L-C networks under sinusoidal steady-state conditions; series and parallel resonance; average power calculations; simple passive filters, frequency response (db magnitude and phase) and its relations to the step response of simple R-C, R-L and R-L-C networks; transformer principles and types of transformers; three phase balance systems. Prerequisite(s): EET 111 and MTH 129 Credits: 4 EET 118 Semiconductor Devices and Circuits Fundamentals of semiconductor diodes and bipolar junction transistors are discussed in this course. Topics covered include: Q point operating conditions of semiconductor diodes in various circuit configurations, full and half-wave rectification, capacitor input filters, zener diodes and basic linear DC power supply configurations. Q point operating conditions of BJT transistors in various bias configurations are analyzed as well as small signal single-stage and multi-stage amplifiers at midband frequencies in terms of voltage gain, current gain, power gain, input impedance, output impedance, AC load lines and signal node voltages. Corequisite(s): EET 113 Credits: 4 EET 223 Digital Electronics Analysis and design of combinational and sequential logic circuits. SSI and MSI circuits; flip-flops, counters, and shift registers; integrated circuit families; multiplexers; semiconductor memory devices; D/A and A/D converters. The associated laboratory reinforces the topics covered in the theory through relevant experiments performed by the student. A formal report is part of the laboratory requirement. Prerequisite(s): EET 105, EET 118 Credits: 4 EET 224 Amplifiers Signal parameters of Class A and Class B power amplifiers as well as operational amplifiers are studied in this course. Topics covered include, efficiency, db, dbm, heat sinks, JFET and MOSFET transistors, operational amplifiers, and the frequency response of amplifier circuits. In addition, operational amplifier characteristics and models are used in the analysis of open loop and closed loop amplifiers. Adders, subtractors, active filters, comparators, differentiators, integrators, and the Schmitt trigger are also studied. Feedback concepts and the effect of feedback on gain, impedance and frequency response of amplifiers are studied as well as circuit stability, gain, and phase margins. Simulation software is used in the analysis of operating conditions and frequency response of amplifiers. Formal Report writing is part of the Laboratory requirement. Prerequisite(s): EET 118 Corequisite(s): EET 110, MTH 130 Credits: 4 EET 251 Microprocessors Fundamental microprocessor and microcontroller concepts; architecture, memory, memory interfacing, programming, signals, timing, delay calculations, I/O interfacing and interrupts. The students will be required to interface input and output devices to the embedded controller and quantify associated hardware/software trade-offs. Laboratory work requires programming in assembly language and in C/C++. Prerequisite(s): EET 223 Credits: 3 EET 316 Digital Design Introduction to Digital Design using FPGA (Field Programmable Gate Arrays) and VHDL (Hardware Description Languages). The FPGA circuits are designed using Schematic Capture as well as VHDL. The target chips are Xilinx FPGAs and Xilinx tools are used to simulate and to "place and route" the design. Designs are then tested using FPGA based platforms. Prerequisite(s): EET 223 Credits: 4 EET 418 Microprocessor Interfacing & Control This course covers an in-depth study of microprocessor systems by exploring the internal functions of a computer. Hardware and software capabilities are studied in order to build a foundation for the design and interfacing of microprocessor
7 based systems using real world examples. Assembly as well as a high level language such as "C++" is used in various programming projects and in interfacing devices. Prerequisite(s): EET 110 and 251 Credits: 4 EET 440 Data Communications and Networking This course covers the basic concepts of networking and computer connectivity. Several network topologies and related media access techniques are explored. The rudiments of Data Communications and Open System Interconnection (OSI) are discussed in detail. Students will learn the components of a client server networks using the Novell's Net Ware/ Intra Net Ware. Certain protocols such as TCP/IP and SPX/IPX are also discussed. Laboratory experiments are designed to give students a hands on experience in Network administration, configuration and resource management. Completion of this course includes a final project related to the design of a local area network, complete with Layers I and II, as well as the Directory Tree Structure based on the netware. An oral presentation by each student of his/her project is required. Prerequisite(s): Knowledge of digital electronics; familiarity with a real time operating system; ability to program in a high level language. Credits: 4 EET 441 Advanced Networking This course is a continuation of EET 440, Networking and Data Communications. The principles of Architecture Layering, Multiplexing and Encapsulation are discussed. TCP/IP, IPX, PPP, ISDN and Frame Relay Protocols are covered. Network equipment such as repeaters, bridges router hubs and switches are studied in detail. Equipment examples are drawn from key vendors such as CISCO, 3COM and Cabletron. The laboratory portion of the course will concentrate on experiments and projects designed using CISCO Systems networking equipment, such as 2500 and 2600 series routers, 1900 and 2900 catalysts switches. The students will also learn how to design networks using VLANS on the above mentioned equipment. Credits: 4 EET 450 Design Concepts General design considerations and concepts with particular emphasis in "worst case" design and "optimum" design. Case studies will be provided through examples of different areas of Electrical Engineering Technology. Product development procedures and processes will be presented along with testing and costing considerations. By the end of this course students must select their senior design project for EET 452W and must submit an appropriate proposal. Prerequisite(s): Completion of junior level EET courses or Department permission. Credits: 2 EET 452W Design Project The student's overall technical knowledge is applied to this "capstone" design project under the supervision of faculty. A complete oral and written presentation is required of each student explaining the design process and specifications, cost considerations, testing and/or computer simulation results when appropriate. NOTE: Students will be expected to write short exercises, as well as longer papers that will be revised and graded. This is a writing-intensive course. Prerequisite(s): EET 450 and EGL 101 with a grade of C or higher Credits: 2 Note: EET 452W can be used to fulfill the writing intensive requirement. Admission to Farmingdale State College - State University of New York is based on the qualifications of the applicant without regard to age, sex, marital or military status, race, color, creed, religion, national origin, disability or sexual orientation.
Applied Psychology. Dr. Marya Howell-Carter, Acting Chair Psychology Dept. Bachelor of Science Degree
Applied Psychology Dr. Marya Howell-Carter, Acting Chair Psychology Dept. Bachelor of Science Degree The Applied Psychology program leads to a Bachelor of Science degree with a concentration in Industrial/Organizational
Mechanical Engineering Technology
Mechanical Engineering Technology Dr. Hazem Tawfik, Chair Mechanical Engineering Technology Dept. [email protected] 631-420-2046 School of Engineering Technology Associate in Applied Science Degree
Construction Management Engineering Technology
Construction Management Engineering Technology Prof. James DeLucca, Acting Chair Architecture and Construction Management Department The Construction Engineering Management Technology program has been
Content Map For Career & Technology
Content Strand: Applied Academics CT-ET1-1 analysis of electronic A. Fractions and decimals B. Powers of 10 and engineering notation C. Formula based problem solutions D. Powers and roots E. Linear equations
ELECTRICAL ENGINEERING TECHNOLOGY (EET) TRANSFER ASSURANCE GUIDE (TAG) April 22, 2008
ELECTRICAL ENGINEERING TECHNOLOGY (EET) TRANSFER ASSURANCE GUIDE (TAG) April 22, 2008 Ohio Transfer Module: Ohio Transfer Module (OTM) Requirements: 36-40 semester hours / 54-60 quarter hours. Students
Manufacturing Engineering Technology
Manufacturing Engineering Technology Dr. Hazem Tawfik, Chair Mechanical Engineering Technology Dept. Bachelor of Science Degree This is a four year program offered by the Mechanical Engineering Technology
Computer Programming and Information Systems
Computer Programming and Information Systems Prof. Ruth Sapir, Chair Computer Systems Dept. Demand continues to be strong for students skilled in Information Technology. Of the top 10 degrees in demand
Metropolitan State University of Denver
ELECTRICAL ENGINEERING TECHNOLOGY Electrical Engineering Technology (EET) graduates have much of the know-why of the engineer and much of the knowhow of the technician. The EET curriculum combines theory
ENEE Electrical & Computer Engineering Summer 2015
This printed version of the Schedule of Classes is current as of 12/14/15 10:19 PM. ENEE Electrical & Computer Engineering Summer 2015 ENEE200 Social and Ethical Dimensions of Engineering Technology Credits:
SCHWEITZER ENGINEERING LABORATORIES, COMERCIAL LTDA.
Pocket book of Electrical Engineering Formulas Content 1. Elementary Algebra and Geometry 1. Fundamental Properties (real numbers) 1 2. Exponents 2 3. Fractional Exponents 2 4. Irrational Exponents 2 5.
DEGREE: Bachelor in Biomedical Engineering YEAR: 2 TERM: 2 WEEKLY PLANNING
SESSION WEEK COURSE: Electronic Technology in Biomedicine DEGREE: Bachelor in Biomedical Engineering YEAR: 2 TERM: 2 WEEKLY PLANNING DESCRIPTION GROUPS (mark X) SPECIAL ROOM FOR SESSION (Computer class
COLLEGE OF INFORMATION TECHNOLOGY
COLLEGE OF INFORMATION TECHNOLOGY COLLEGE OVERVIEW The College of Information Technology provides the structure and organization for male and female students to successfully pursue degree programs in Information
Prerequisite: High School Chemistry.
ACT 101 Financial Accounting The course will provide the student with a fundamental understanding of accounting as a means for decision making by integrating preparation of financial information and written
DISTANCE DEGREE PROGRAM CURRICULUM NOTE:
Bachelor of Science in Electrical Engineering DISTANCE DEGREE PROGRAM CURRICULUM NOTE: Some Courses May Not Be Offered At A Distance Every Semester. Chem 121C General Chemistry I 3 Credits Online Fall
Criminal Justice: Law Enforcement Technology
Criminal Justice: Law Enforcement Technology Dr. Kamal Shahrabi, Acting Chair Security Systems & Law Enforcement Technology Dept. Bachelor of Science The Bachelor of Science program in Criminal Justice:
Eastern Washington University Department of Computer Science. Questionnaire for Prospective Masters in Computer Science Students
Eastern Washington University Department of Computer Science Questionnaire for Prospective Masters in Computer Science Students I. Personal Information Name: Last First M.I. Mailing Address: Permanent
Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012
1 Secondary Task List 100 SAFETY 101 Demonstrate an understanding of State and School safety regulations. 102 Practice safety techniques for electronics work. 103 Demonstrate an understanding of proper
Bachelor of Science in Information Technology. Course Descriptions
Bachelor of Science in Information Technology Course Descriptions Year 1 Course Title: Calculus I Course Code: MATH 101 Pre- Requisite(s): This course introduces higher mathematics by examining the fundamental
BSEE Degree Plan Bachelor of Science in Electrical Engineering: 2015-16
BSEE Degree Plan Bachelor of Science in Electrical Engineering: 2015-16 Freshman Year ENG 1003 Composition I 3 ENG 1013 Composition II 3 ENGR 1402 Concepts of Engineering 2 PHYS 2034 University Physics
CIS 117 DATABASE MANAGEMENT SOFTWARE APPLICATIONS
CIS 117 DATABASE MANAGEMENT SOFTWARE APPLICATIONS This course provides students with hands-on experience using database management software. Students will develop skills common to most database management
Computer Science/Software Engineering
292 School of Science and Engineering Computer Science/Software Engineering Everald E. Mills, PhD, Chair Objectives The computer science program seeks to prepare students for careers that require sophisticated
The mission of the School of Electronic and Computing Systems 3 is to provide:
BSCOMPE-COMP Computer Engineering Assessment Plan Missions and Outcomes Three mission statements are provided below for the University of Cincinnati, the College of Engineering and Applied Science, and
Undergraduate Major in Computer Science and Engineering
University of California, Irvine 2015-2016 1 Undergraduate Major in Computer Science and Engineering On This Page: Overview Admissions Requirements for the B.S. in Computer Science and Engineering Sample
Division of Mathematical Sciences
Division of Mathematical Sciences Chair: Mohammad Ladan, Ph.D. The Division of Mathematical Sciences at Haigazian University includes Computer Science and Mathematics. The Bachelor of Science (B.S.) degree
Electrical Engineering Technology - Process Automation
Electrical Engineering Technology - Process Automation Ontario College Advanced Diploma (3 Years - 6 Semesters ) (4029) 705.759.6700 : 1.800.461.2260 : www.saultcollege.ca : Sault Ste. Marie, ON, Canada
One LAR Course Credits: 3. Page 4
Course Descriptions Year 1 30 credits Course Title: Calculus I Course Code: COS 101 This course introduces higher mathematics by examining the fundamental principles of calculus-- functions, graphs, limits,
Study Guide for the Electronics Technician Pre-Employment Examination
Bay Area Rapid Transit District Study Guide for the Electronics Technician Pre-Employment Examination INTRODUCTION The Bay Area Rapid Transit (BART) District makes extensive use of electronics technology
Electrical Engineering
306 Electrical Engineering Paul Neudorfer, Ph.D., Chair Objectives Electrical engineering is concerned with the use of electrical energy for the benefit of society. The profession of electrical engineering
2010-2011 Assessment for Master s Degree Program Fall 2010 - Spring 2011 Computer Science Dept. Texas A&M University - Commerce
2010-2011 Assessment for Master s Degree Program Fall 2010 - Spring 2011 Computer Science Dept. Texas A&M University - Commerce Program Objective #1 (PO1):Students will be able to demonstrate a broad knowledge
How To Get A Degree In Electrical Engineering
Metropolitan State University of Denver Electrical Engineering Technology Major, B.S.: Communications Concentration Minor (not required): Fall 2013 Catalog First Year Suggested Course plan Prerequisites
Please consult the Department of Engineering about the Computer Engineering Emphasis.
COMPUTER SCIENCE Computer science is a dynamically growing discipline. ABOUT THE PROGRAM The Department of Computer Science is committed to providing students with a program that includes the basic fundamentals
ÇANKAYA UNIVERSITY Faculty of Engineering and Architecture
ÇANKAYA UNIVERSITY Faculty of Engineering and Architecture Course Definition Form This form should be used for both a new elective or compulsory course being proposed and curricula development processes
EE 210 Introduction to Electrical Engineering Fall 2009 COURSE SYLLABUS. Massimiliano Laddomada, PhD Assistant Professor
1 Texas A&M University-Texarkana College of Science, Technology, Engineering, and Mathematics Department of Electrical Engineering Bachelor of Science in Electrical Engineering EE 210 Introduction to Electrical
CS & Applied Mathematics Dual Degree Curriculum Content
CS & Applied Mathematics Dual Degree Curriculum Content General Education (41 credits) COMM 101: Written and Oral Communication I COMM 301: Written and Oral Communication II ECON 201: Economic Principles
Criminal Justice - Law Enforcement
Criminal Justice - Law Enforcement Dr. Charles Adair, Acting Chair Criminal Justice Department [email protected] 631-420-2692 School of Arts & Sciences Associate in Science Degree The goal of this
Electrical Engineering Technician - Process Automation
Electrical Engineering Technician - Process Automation Ontario College Diploma (2 Years - 4 Semesters ) (4026) 705.759.6700 : 1.800.461.2260 : www.saultcollege.ca : Sault Ste. Marie, ON, Canada Section
MATHEMATICS. Administered by the Department of Mathematical and Computing Sciences within the College of Arts and Sciences. Degree Requirements
MATHEMATICS Administered by the Department of Mathematical and Computing Sciences within the College of Arts and Sciences. Paul Feit, PhD Dr. Paul Feit is Professor of Mathematics and Coordinator for Mathematics.
SUBJECT-SPECIFIC CRITERIA
SUBJECT-SPECIFIC CRITERIA Relating to the accreditation of Bachelor s and Master s degree programmes in electrical engineering and information technology (09 December 2011) The following specifications
SECTION C [short essay] [Not to exceed 120 words, Answer any SIX questions. Each question carries FOUR marks] 6 x 4=24 marks
UNIVERSITY OF KERALA First Degree Programme in Computer Applications Model Question Paper Semester I Course Code- CP 1121 Introduction to Computer Science TIME : 3 hrs Maximum Mark: 80 SECTION A [Very
ELECTRICAL ENGINEERING
EE ELECTRICAL ENGINEERING See beginning of Section H for abbreviations, course numbers and coding. The * denotes labs which are held on alternate weeks. A minimum grade of C is required for all prerequisite
University of Dayton Department of Computer Science Undergraduate Programs Assessment Plan DRAFT September 14, 2011
University of Dayton Department of Computer Science Undergraduate Programs Assessment Plan DRAFT September 14, 2011 Department Mission The Department of Computer Science in the College of Arts and Sciences
Bachelor of Games and Virtual Worlds (Programming) Subject and Course Summaries
First Semester Development 1A On completion of this subject students will be able to apply basic programming and problem solving skills in a 3 rd generation object-oriented programming language (such as
ANALOG & DIGITAL ELECTRONICS
ANALOG & DIGITAL ELECTRONICS Course Instructor: Course No: PH-218 3-1-0-8 Dr. A.P. Vajpeyi E-mail: [email protected] Room No: #305 Department of Physics, Indian Institute of Technology Guwahati,
ELECTRICAL/ELECTRONICS ENGINEERING TECHNOLOGY (EET) BODY OF KNOWLEDGE
ELECTRICAL/ELECTRONICS ENGINEERING TECHNOLOGY (EET) BODY OF KNOWLEDGE Page 2 of 11 1 Basic Concepts of Electricity 1.1 Systems of Units and Notation 1.1.1 Units Systems and Fundamental Units. 1.1.2 Standard
COURSE DESCRIPTION OF COMPUTER ENGINEERING SUBJECTS
SUMMARY OF COURSE DESCRIPTIONS BACHELOR OF SCIENCE IN COMPUTER ENGINEERING A. MATHEMATICS COURSE DESCRIPTION OF COMPUTER ENGINEERING SUBJECTS COLLEGE ALGEBRA - A course in algebra covering such topics
COURSE CATALOG. BS Networking and System Administration
COURSE CATALOG BS Networking and System Administration Program Overview Networking, the technology of interconnecting computing devices so information can flow between them, includes the design, deployment,
TEC 327 Electronic Devices Lab (1) Corequisite: TEC 326. Three hours lab per week. Experiments involving basic electronic devices.
TEC 201 Microcomputers Applications and Techniques (3) Two hours lecture and two hours lab per week. An introduction to microcomputer hardware and applications of the microcomputer in industry. Hands-on
Master of Science in Computer Science Information Systems
Master of Science in Computer Science Information Systems 1. General Admission Requirements. Admission to Graduate Studies (see graduate admission requirements). 2. Program Admission. In addition to meeting
REPORT ON CANDIDATES WORK IN THE CARIBBEAN ADVANCED PROFICIENCY EXAMINATION MAY/JUNE 2008 ELECTRICAL AND ELECTRONIC TECHNOLOGY (TRINIDAD AND TOBAGO)
CARIBBEAN EXAMINATIONS COUNCIL REPORT ON CANDIDATES WORK IN THE CARIBBEAN ADVANCED PROFICIENCY EXAMINATION MAY/JUNE 2008 ELECTRICAL AND ELECTRONIC TECHNOLOGY (TRINIDAD AND TOBAGO) Copyright 2008 Caribbean
Science, Technology and Society
Science, Technology and Society Dr. Stephen Patnode, Acting Program Director History, Politics, and Geography Dept. [email protected] 631-420-2220 School of Arts & Sciences Bachelor of Science Degree
Computer Science. 232 Computer Science. Degrees and Certificates Awarded. A.S. Degree Requirements. Program Student Outcomes. Department Offices
232 Computer Science Computer Science (See Computer Information Systems section for additional computer courses.) We are in the Computer Age. Virtually every occupation in the world today has an interface
SYLLABUSES FOR THE DEGREE OF BACHELOR OF ENGINEERING (BENG)
BEng-4 SYLLABUSES FOR THE DEGREE OF BACHELOR OF ENGINEERING (BENG) General Engineering courses (applicable to candidates admitted in the academic year 2010-2011 and thereafter) General Engineering courses
Assessment Plan for CS and CIS Degree Programs Computer Science Dept. Texas A&M University - Commerce
Assessment Plan for CS and CIS Degree Programs Computer Science Dept. Texas A&M University - Commerce Program Objective #1 (PO1):Students will be able to demonstrate a broad knowledge of Computer Science
Computer Science. General Education Students must complete the requirements shown in the General Education Requirements section of this catalog.
Computer Science Dr. Ilhyun Lee Professor Dr. Ilhyun Lee is a Professor of Computer Science. He received his Ph.D. degree from Illinois Institute of Technology, Chicago, Illinois (1996). He was selected
Department of Computer Science
82 Advanced Biochemistry Lab II. (2-8) The second of two laboratory courses providing instruction in the modern techniques of biochemistry. Experiments are performed on the isolation, manipulation and
Electrical and Computer Engineering Undergraduate Advising Manual
Electrical and Computer Engineering Undergraduate Advising Manual Department of Engineering University of Massachusetts Boston Revised: October 5, 2015 Table of Contents 1. Introduction... 3 2. Mission
M.S. Computer Science Program
M.S. Computer Science Program Pre-requisite Courses The following courses may be challenged by sitting for the placement examination. CSC 500: Discrete Structures (3 credits) Mathematics needed for Computer
CSEN301 Embedded Systems Trimester 1
Victoria University of Wellington (VUW) course offering for NZ-EU Joint Mobility Project Novel Sensing Technologies and Instrumentation in Environmental Climate Change Monitoring 1. General The Victoria
Mechanical Engineering Technology
Mechanical Engineering Technology Dr. Hazem Tawfik, Chair Mechanical Engineering Technology Dept. [email protected] 631-420-2046 School of Engineering Technology Bachelor of Science Degree This
Resolving ABET/TAC Criteria on Continuous Improvement: Surviving ABET Accreditation!
Resolving ABET/TAC Criteria on Continuous Improvement: Surviving ABET Accreditation! by Nasser Michigan Technological University [email protected] Abstract: The Electrical Engineering Technology program
Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) Institute of Technology. Electronics & Communication Engineering. B.
Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) Institute of Technology Electronics & Communication Engineering B.Tech III Semester 1. Electronic Devices Laboratory 2. Digital Logic Circuit Laboratory 3.
Computer Science. Computer Science 207. Degrees and Certificates Awarded. A.S. Computer Science Degree Requirements. Program Student Outcomes
Computer Science 207 Computer Science (See Computer Information Systems section for additional computer courses.) We are in the Computer Age. Virtually every occupation in the world today has an interface
COMPUTER SCIENCE. FACULTY: Jennifer Bowen, Chair Denise Byrnes, Associate Chair Sofia Visa
FACULTY: Jennifer Bowen, Chair Denise Byrnes, Associate Chair Sofia Visa COMPUTER SCIENCE Computer Science is the study of computer programs, abstract models of computers, and applications of computing.
ADVANCED SCHOOL OF SYSTEMS AND DATA STUDIES (ASSDAS) PROGRAM: CTech in Computer Science
ADVANCED SCHOOL OF SYSTEMS AND DATA STUDIES (ASSDAS) PROGRAM: CTech in Computer Science Program Schedule CTech Computer Science Credits CS101 Computer Science I 3 MATH100 Foundations of Mathematics and
CURRICULUM VITAE EDUCATION:
CURRICULUM VITAE Jose Antonio Lozano Computer Science and Software Development / Game and Simulation Programming Program Chair 1902 N. Loop 499 Harlingen, TX 78550 Computer Sciences Building Office Phone:
Visual Communications: Art & Graphic Design
Visual Communications: Art & Graphic Design Prof. Donna Proper, Chair Visual Communications Dept. The Visual Communications Department has a history of more than a half-century of innovation and excellence.
ELECTRICAL ENGINEERING Electrical Engineering
ELECTRICAL ENGINEERING Electrical Engineering Electrical Engineering Major - Required Courses and Recommended Course Sequence First Semester MTH- Calculus I CHM- Introductory Chemistry Lab for Engineers
W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören
W03 Analysis of DC Circuits Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors and
Computer Science. Computer Science 213. Faculty and Offices. Degrees and Certificates Awarded. AS Computer Science Degree Requirements
Computer Science 213 Computer Science (See Computer Information Systems section for additional computer courses.) Degrees and Certificates Awarded Associate in Science Degree, Computer Science Certificate
Progress Record. Course 21 (V) Associate of Applied Science in Computer Information Technology and Systems Management
Progress Record Study your lessons in the order listed below. As graded examinations are returned to you, enter your grade in the space below. Set a schedule for yourself then watch your progress. Course
Academic year: 2015/2016 Code: IES-1-307-s ECTS credits: 6. Field of study: Electronics and Telecommunications Specialty: -
Module name: Digital Electronics and Programmable Devices Academic year: 2015/2016 Code: IES-1-307-s ECTS credits: 6 Faculty of: Computer Science, Electronics and Telecommunications Field of study: Electronics
Study Plan for Bachelor Program in Department of teacher of upper basic level - Teaching Science
Study Plan for Bachelor Program in Department of teacher of upper basic level - Teaching Science Specialization Requirements: The students should complete the following courses with Average 70% and above:
IT LABOR CATEGORY REQUIREMENTS AND DESCRIPTIONS
IT LABOR CATEGORY REQUIREMENTS AND DESCRIPTIONS 1QUALIFICATION REQUIREMENTS. To perform on this schedule, contractor personnel must meet the minimum requirement for the skill categories described herein.
Department of Electrical and Computer Engineering
Department of Electrical and Computer Engineering Brian K. Johnson, Dept. Chair (214 Buchanan Engr. Lab. 83844-1023; phone 208/885-6554; www.ece.uidaho.edu). Faculty: Touraj Assefi, David H. Atkinson,
Progress Record. Seq. Lesson # Lesson Title Date Grade. Introduction to Computers (CORE COURSE) 1
F-710 M-230 M-110 Progress Record Study your lessons in the order listed below. As graded examinations are returned to you, enter your grade in the space below. Set a schedule for yourself then watch your
COURSE TITLE COURSE DESCRIPTION
COURSE TITLE COURSE DESCRIPTION CS-00X COMPUTING EXIT INTERVIEW All graduating students are required to meet with their department chairperson/program director to finalize requirements for degree completion.
Notes on Modifying an EET Associate Degree Curriculum to Improve Graduate Placement
Session 1448 Notes on Modifying an EET Associate Degree Curriculum to Improve Graduate Placement James Stewart, William Lin DeVry College of Technology North Brunswick, New Jersey / Purdue School of Engineering
School of Management and Information Systems
School of Management and Information Systems Business and Management Systems Information Science and Technology 176 Business and Management Systems Business and Management Systems Bachelor of Science Business
Undergraduate Curriculum Manual
Undergraduate Curriculum Manual for the Bachelor of Science Degree in Civil Engineering University of Kansas June 2014 THE UNIVERSITY OF KANSAS DEPARTMENT OF CIVIL, ENVIRONMENTAL AND ARCHITECTURAL ENGINEERING
CIVIL ENGINEERING UNDERGRADUATE GUIDE
CIVIL ENGINEERING UNDERGRADUATE GUIDE BACHELOR OF SCIENCE IN CIVIL ENGINEERING (BS CE) THE UNIVERSITY OF KANSAS CEAE DEPARTMENT Revised August 2015 THE UNIVERSITY OF KANSAS DEPARTMENT OF CIVIL, ENVIRONMENTAL
Pre-Engineering INDIVIDUAL PROGRAM INFORMATION 2014 2015. 866.Macomb1 (866.622.6621) www.macomb.edu
Pre-Engineering INDIVIDUAL PROGRAM INFORMATION 2014 2015 866.Macomb1 (866.622.6621) www.macomb.edu Pre Engineering PROGRAM OPTIONS CREDENTIAL TITLE CREDIT HOURS REQUIRED NOTES Associate of Science Pre
COMPUTER SCIENCE. Department of Mathematics & Computer Science
Department of Mathematics & Computer Science COMPUTER SCIENCE This document is meant as a planning guide only. Students are advised to consult with the Chair of the Department if they have specific questions
SINCLAIR COMMUNITY COLLEGE SCHOOL AND COMMUNITY PARTNERSHIPS College Credit Plus Course Descriptions 1
College Credit Plus Course Descriptions 1 ENGLISH & SOCIAL SCIENCES COM-2201: Introduction to Mass Communication An extensive examination of media theory and social effects. Topics covered include history,
SYLLABUSES FOR THE DEGREE OF BACHELOR OF ENGINEERING (BENG)
BEng-1 E30/812 SYLLABUSES FOR THE DEGREE OF BACHELOR OF ENGINEERING (BENG) General Engineering courses (applicable to candidates admitted in the academic year 2012-13 to the three-year curriculum) General
Department of Computer Science
The University of Texas at San Antonio 1 Department of Computer Science The Department of Computer Science offers a Bachelor of Science degree in Computer Science and a Minor in Computer Science. Admission
School of Engineering Computer Engineering General Education Requirements Code Title Credits CULT200 Introduction to Arab - Islamic Civilization The
School Major School of Engineering Computer Engineering General Education Requirements CULT200 Introduction to Arab - Islamic Civilization The purpose of this course is to acquaint students with the history
Brochure for the Pan-African e-network Program. Contents. 1. About BITS Pilani 3
BITS Pilani Contents 1. About BITS Pilani 3 2. Programmes on offer by BITS for the PAN-African e-network i.tracks available 3 ii.medium of instruction 3 iii.admission Eligibility 4 iv.certification Scheme
Eastern Washington University Department of Computer Science. Questionnaire for Prospective Masters in Computer Science Students
Eastern Washington University Department of Computer Science Questionnaire for Prospective Masters in Computer Science Students I. Personal Information Name: Last First M.I. Mailing Address: Permanent
The syllabus applies to students admitted in the academic year 2014-15 and thereafter under the fouryear
COMPUTER ENGINEERING SYLLABUS The syllabus applies to students admitted in the academic year 2014-15 and thereafter under the fouryear curriculum. Definition and Terminology Each course offered by the
How To Teach Engineering Science And Mechanics
Int. J. Engng Ed. Vol. 16, No. 5, pp. 436±440, 2000 0949-149X/91 $3.00+0.00 Printed in Great Britain. # 2000 TEMPUS Publications. Recent Curriculum Changes in Engineering Science and Mechanics at Virginia
2. EXPLAIN CHANGE TO DEGREE PROGRAM AND GIVE A DETAILED RATIONALE FOR EACH INDIVIDUAL CHANGE:
PROPOSED CHANGES TO THE BACHELOR OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING DEGREE PROGRAM IN THE COCKRELL SCHOOL OF ENGINEERING CHAPTER IN THE UNDERGRADUATE CATALOG 2016-2018 or LAW SCHOOL CATALOG
