# CO MPa (abs) 20 C

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 comp_02 A CO 2 cartridge is used to propel a small rocket cart. Compressed CO 2, stored at a pressure of 41.2 MPa (abs) and a temperature of 20 C, is expanded through a smoothly contoured converging nozzle with a throat area of 0.13 cm 2. Assume that the cartridge is well insulated and that the pressure surrounding the cartridge is 101 kpa (abs). For the given conditions, a. Calculate the pressure at the nozzle throat. b. Evaluate the mass flow rate of carbon dioxide through the nozzle. c. Determine the force, F, required to hold the cart stationary. d. Sketch the process on a T-s diagram. e. For what range of cartridge pressures will the flow through the nozzle be choked? f. Will the mass flow rate from the cartridge remain constant for the range of cartridge pressures you found in part (e)? Explain your answer. g. Write down (but do not solve) the differential equations describing how the pressure within the tank varies with time while the flow is choked. Note: For CO 2, the ideal gas constant is 189 J/(kg-K) and the specific heat ratio is F CO MPa (abs) 20 C throat area = 0.13 cm 2 surrounding pressure = 101 kpa (abs) 22.5 MPa p E m 1.52 kg s F 671 N p kpa C. Wassgren, Purdue University Page 1 of 42 Last Updated: 2010 Dec 01

2 comp_15 The orientation of a hole can make a difference. Consider holes A and B in the figure below which are identical but reversed. For the given air properties on either side, compute the mass flow rate through each hole and explain why they are different. p 0 = 150 kpa (abs) T 0 = 20 C 0.2 cm cm 2 A 0.3 cm 2 B 0.2 cm 2 p back = 100 kpa (abs) m = 6.78e-3 kg/s m = 7.08e-3 kg/s C. Wassgren, Purdue University Page 2 of 42 Last Updated: 2010 Dec 01

3 comp_16 A large tank supplies helium through a converging-diverging nozzle to the atmosphere. Pressure in the tank remains constant at 8.00 MPa (abs) and temperature remains constant at 1000 K. There are no shock waves in the nozzle. The nozzle is designed to discharge at an exit Mach number of 3.5. The exit area of the nozzle is 100 mm 2. Note that for helium the specific heat ratio is 1.66 and the ideal gas constant is 2077 J/(kg K). a. Determine the pressure at the exit of the converging/diverging nozzle. b. Determine the mass flow rate through the device. c. Sketch the flow process from the tank through the converging/diverging nozzle to the exit on a T-s diagram. p e = 137 kpa m = 9.59e-6 kg/s C. Wassgren, Purdue University Page 3 of 42 Last Updated: 2010 Dec 01

4 comp_23 An air blower takes air from the atmosphere (100 kpa and 293 K) and ingests it through a smooth entry duct so that the losses are negligible. The cross-sectional area of the entry duct just upstream of the blower and that of the exit duct are both 0.01 m 2. p 1 blower p 2 entry duct exit duct The pressure ratio, p 2 /p 1, across the blower is 1.05 and the exit pressure is equal to atmospheric pressure. The air is assumed to behave isentropically upstream of the blower. Find: a. the velocity of the air entering the blower, and b. the mass flow rate of air through the system. V 1 = 90 m/s m = 1.03 kg/s C. Wassgren, Purdue University Page 4 of 42 Last Updated: 2010 Dec 01

5 comp_24 A pitot tube is used to measure the velocity of air. At low speeds, we can reasonably treat the air as an incompressible fluid; however, at high speeds this assumption is not very good due to compressibility effects. At what Mach number does the incompressibility assumption become inaccurate for engineering calculations? Justify your answer with appropriate calculations. V isentropic V incompressible 1 ideal gas Ma 1 2 V isentropic Ma 2 ideal gas if we consider <1% error acceptable, the incompressibility assumption is valid for Ma < 0.3. C. Wassgren, Purdue University Page 5 of 42 Last Updated: 2010 Dec 01

6 comp_25 A rocket engine can be modeled as a reservoir of gas at high temperature feeding gas to a convergent/divergent nozzle as shown in the figure below. reservoir For the questions below, assume the following: 1. The temperature in the reservoir is 3000 K. 2. The exhaust gases have the same properties as air: =1.4, R=287 J/(kg K). 3. The exit Mach number is The rocket operates at design conditions (no shock waves or expansion waves present) where the surrounding pressure is 1*10 5 Pa. 5. The area of the exit is 1*10-4 m 2. Determine: a. the temperature of the flow at the exit, b. the pressure in the reservoir, c. the throat area, d. the mass flow rate out of the rocket, e. the thrust produced by the rocket, and f. sketch the process on a T-s diagram. T E = 1333 K p 0 = 1.709*10 6 Pa A T = 3.79*10-5 m 2 2 m 4.776*10 kg/s F = 87.4 N C. Wassgren, Purdue University Page 6 of 42 Last Updated: 2010 Dec 01

7 comp_32 A small, solid fuel rocket motor is tested on a horizontal thrust stand at atmospheric conditions. The chamber (essentially a large tank) absolute pressure and temperature are maintained at 4.2 MPa (abs) and 3333 K, respectively. The rocket s converging-diverging nozzle is designed to expand the exhaust gas isentropically to an absolute pressure of 69 kpa. The nozzle exit area is m 2. The gas may be treated as a perfect gas with a specific heat ratio of 1.2 and an ideal gas constant of 300 J/(kg K). Determine, for design conditions: a. the mass flow rate of propellant gas, and b. the thrust force exerted on the test stand. m kg/s T 4.380e4 N C. Wassgren, Purdue University Page 7 of 42 Last Updated: 2010 Dec 01

8 comp_33 A steady flow of air passes through the elbow-nozzle assembly shown. At the inlet (1), the pipe diameter is D 1 = m and the air properties are p 1 = kpa (abs), T 1 = K, and V 1 = m/s. The air is expanded through a converging-diverging nozzle discharging into the atmosphere where p atm = kpa (abs). At the nozzle exit (2), the nozzle diameter is D 2 = m and the air properties are T 2 = K and V 2 = m/s. 1 attachment flange 2 p atm a. Is the flow through the elbow-nozzle assembly adiabatic? b. Determine the components of the force in the attachment flange required to hold the elbow-nozzle assembly in place. You may neglect the effects of gravity. the flow can be considered adiabatic in going from 1 to 2 F x = kn F y = kn C. Wassgren, Purdue University Page 8 of 42 Last Updated: 2010 Dec 01

9 comp_36 A rocket engine is designed to operate at a pressure ratio (inlet reservoir pressure/back pressure) of 37. Find: a. the ratio of the exit area to the throat area which is necessary for the supersonic exhaust to be correctly expanded, b. the Mach number of the exit flow under correctly expanded conditions, c. the lowest pressure ratio (p 0 /p b ) at which the same nozzle would be choked, and d. the pressure ratio (p 0 /p b ) at which there would be a normal shock wave at the exit. Assume the specific heat ratio of the gas is 1.4. Ma e = 3.0 A e /A t = 4.3 p 0 /p b = 1.01 p 01 /p b = 3.6 C. Wassgren, Purdue University Page 9 of 42 Last Updated: 2010 Dec 01

10 comp_38 A force of 500 N pushes a piston of diameter 12 cm through an insulated cylinder containing air at 20 C. The exit diameter is 3 mm and the atmospheric pressure is 1 atm. Estimate: 1. the exit velocity, 2. the velocity near the piston (V p ), and 3. mass flow rate out of the device. 500 N V p 12 cm 3 mm V 2 = 241 m/s V 1 = m/s 3 m 2.27*10 kg s C. Wassgren, Purdue University Page 10 of 42 Last Updated: 2010 Dec 01

11 comp_40 Air flows steadily between two sections in a long straight portion of 10.2 cm diameter pipe. The temperature and pressure at the inlet are 27 C and 590 kpa (gage), and at the outlet are 10 C and 26 kpa (gage). Calculate: a. the change in specific internal energy between the inlet and outlet, b. the change in the specific enthalpy between the inlet and outlet, c. the change in density between the inlet and outlet, and d. the change in specific entropy between the inlet and outlet. e. Would you expect compressibility effects to be important for this flow? State any major assumptions you make. u2 u kj kg h2 h kj kg kg m s2 s1 428 J kg Since the change in density is large compared to the flow s initial density, kg m (1) kg m we should expect that compressibility effects are significant. C. Wassgren, Purdue University Page 11 of 42 Last Updated: 2010 Dec 01

12 comp_41 Air enters a turbine in steady flow at 0.5 kg/s with negligible velocity. Inlet conditions are 1300 C and 2.0 MPa (abs). The air is expanded through the turbine to atmospheric pressure. If the actual temperature and velocity at the turbine exit are 500 C and 200 m/s, determine the power produced by the turbine. Determine the change in specific entropy for the process. Label state points on a Ts diagram for this process. W 390 kw extracted from air s 140 J kg K 0 C. Wassgren, Purdue University Page 12 of 42 Last Updated: 2010 Dec 01

13 comp_44 Which nozzle will fill the tank faster (or will they fill at the same rate), assuming that the tank is initially evacuated? Justify your answer. The upstream stagnation properties, throat areas, and tank volumes are identical in both cases. A t p 0, T 0 A t V tank p 0, T 0 V tank converging-diverging nozzle converging nozzle The converging-diverging nozzle will fill the tank faster. C. Wassgren, Purdue University Page 13 of 42 Last Updated: 2010 Dec 01

14 isentropic1d_02 Air flows isentropically through a converging nozzle. At a section where the nozzle area is ft 2, the local pressure, temperature, and Mach number are 60 psia, 40 F, and 0.52, respectively. The back pressure is 30 psia. Determine: a. the Mach number at the throat, b. the mass flow rate, and c. the throat area. Ma T = 1 A T = A * = 9.97*10-3 ft 2 m lb m /s choked 2.40 C. Wassgren, Purdue University Page 14 of 42 Last Updated: 2010 Dec 01

15 isentropic1d_04 Air flows isentropically in a converging-diverging nozzle, with exit area of m 2. The nozzle is fed from a large plenum where the stagnation conditions are 350 K and 1.0 MPa (abs). The nozzle has a design back pressure of 87.5 kpa (abs) but is operating at a back pressure of 50.0 kpa (abs). Assuming the flow within the nozzle is isentropic, determine: a. the exit Mach number, and b. the mass flow rate through the nozzle. Ma E = m 1.04 kg s C. Wassgren, Purdue University Page 15 of 42 Last Updated: 2010 Dec 01

16 isentropic1d_06 The control systems for some smaller space vehicles use nitrogen (specific heat ratio of 1.4 and gas constant of J/(kg K)) from a high-pressure bottle. When the vehicle has to be maneuvered, a valve is opened allowing nitrogen to flow out through a nozzle thus generating thrust. In a typical system, the reservoir pressure and temperature are about 1.6 MPa (abs) and 30 C, respectively, while the pressure at the nozzle exit plane is about 10.5 kpa (abs). Assuming that the flow through the nozzle is isentropic: a. determine the temperature and the velocity of the nitrogen in the nozzle exit plane. b. If the thrust required to maneuver the vehicle is 1 kn, determine the area of the nozzle exit plane and the required mass flow rate of nitrogen. T E = 72 K V E = 690 m/s A E = 4.1*10-3 m 2 m = 1.4 kg/s C. Wassgren, Purdue University Page 16 of 42 Last Updated: 2010 Dec 01

17 isentropic1d_07 In wind-tunnel testing near Ma = 1, a small area decrease caused by model blockage can be important. Suppose the test section area is 1 m 2, with unblocked test conditions Ma = 1.10 and T = 20 C. a. What model area will first cause the test section to choke? b. If the model cross section is m 2 (0.4 % blockage), what percentage change in test section velocity results? m 2 % change = -2.2%. C. Wassgren, Purdue University Page 17 of 42 Last Updated: 2010 Dec 01

18 isentropic1d_11 Oxygen (not air) enters a device with a cross-sectional area of 1 ft 2 (refer to this location as section 1) with a stagnation temperature of 1000 R, stagnation pressure of 100 psia, and Mach number of 0.2. There is no heat transfer, work transfer, or losses as the gas passes through the device and expands to a pressure of 14.7 psia (section 2). a. Determine the density, velocity, and mass flow rate at section 1. b. Determine the Mach number, temperature, velocity, density, and area at section 2. c. What force does the fluid exert on the device? 1 = lb m /ft 3 V 1 = ft/s m = 85.6 lb m /s Ma 2 = 1.91 T 2 = R V 2 = 2144 ft/s 2 = lb m /ft 3 A 2 = 0.53 ft 2 force the fluid exerts on the device is 7950 lb f acting in the +x-direction C. Wassgren, Purdue University Page 18 of 42 Last Updated: 2010 Dec 01

19 isentropic1d_12 Air, at a stagnation pressure of 7.20 MPa (abs) and a stagnation temperature of 1100 K, flows isentropically through a converging-diverging nozzle having a throat area of 0.01 m 2. Determine the speed and the mass flow rate at the downstream section where the Mach number is 4.0. V = 1298 m/s m 87.6 kg s C. Wassgren, Purdue University Page 19 of 42 Last Updated: 2010 Dec 01

20 isentropic1d_13 The large compressed-air tank shown in the figure exhausts from a nozzle at an exit velocity of V e =235 m/s. Assuming isentropic flow, compute: a. the pressure in the tank b. the exit Mach number air at 30 C tank conditions remain constant V e p atm = 101 kpa Ma e = 0.71 p 0 = 141 kpa C. Wassgren, Purdue University Page 20 of 42 Last Updated: 2010 Dec 01

21 isentropic1d_14 Air flows isentropically through a converging nozzle. At a section where the nozzle area is ft 2, the local pressure, temperature, and Mach number are 60 psia, 40 F, and 0.52, respectively. The back pressure is 30 psia. The Mach number at the exit, the mass flow rate, and the exit area are to be determined. Ma e = 1 A e = 9.97*10-3 ft 2 2 m 7.46*10 slug/s C. Wassgren, Purdue University Page 21 of 42 Last Updated: 2010 Dec 01

22 isentropic1d_15 The Concorde aircraft flies at Ma 2.3 at 11 km standard altitude. Estimate the temperature in C at the front stagnation point. At what Mach number would it have a front stagnation point temperature of 450 C? T 0 = 447 K = 174 C Ma = 3.4 C. Wassgren, Purdue University Page 22 of 42 Last Updated: 2010 Dec 01

23 isentropic1d_16 A steady flow of air passes through a converging nozzle. At the nozzle inlet, the static pressure and temperature are p 1 = 150 kpa (abs), T 1 = 500 K, and V 1 = 150 m/s. At the nozzle exit, p 2 = kpa (abs), T 2 = K, and V 2 = m/s. Assume steady, uniform flow, and that the air behaves as a perfect gas with = 1.4, R = 287 J/(kg K), and c p = 1005 J/(kg K). a. Is the flow through the nozzle adiabatic? b. Is the flow through the nozzle isentropic? c. Is the flow through the nozzle frictionless? Support all of your answers. the flow must be adiabatic the flow is not isentropic the flow in this nozzle is not frictionless C. Wassgren, Purdue University Page 23 of 42 Last Updated: 2010 Dec 01

24 isentropic1d_17 A certain fixed amount of gaseous fuel is to be fed steadily from a tank to the atmosphere through a converging nozzle. A young engineer comes to you with the following scheme: Pressurize the tank to a pressure considerably higher than atmospheric pressure. At the fuel nozzle outlet the Mach number will then be equal to one. As long as the Mach number is one at the nozzle outlet, we will have the same mass flow rate. Do you agree with the young engineer, or do you send him back to the drawing board? Explain your answer. Back to the drawing board for the young engineer! C. Wassgren, Purdue University Page 24 of 42 Last Updated: 2010 Dec 01

25 isentropic1d_18 Natural gas, with the thermodynamic properties of methane, flows in an insulated, underground pipeline of 0.6 m diameter. The gage pressure at the inlet to a compressor station is 0.5 MPa; the outlet pressure is 8.0 MPa (gage). The gas temperature and speed at inlet are 13 C and 32 m/s, respectively. The compressor efficiency is 85%. Calculate the mass flow rate of natural gas through the pipeline. Evaluate the gas temperature and speed at the compressor outlet and the power required to drive the compressor. 1 m 3.7*10 kg s T o = 573 K V o = 4.7 m/s W 23 MW on gas C. Wassgren, Purdue University Page 25 of 42 Last Updated: 2010 Dec 01

26 isentropic1d_20 There is a long underground hallway between the Purdue Union and the Krannert School of Management (near the bowling alley). My kids and I call this hallway the echo hallway for obvious reasons. Using this echo, estimate the length of the hallway. [You actually need to perform this experiment to get the answer.] L echo = 110±3 m C. Wassgren, Purdue University Page 26 of 42 Last Updated: 2010 Dec 01

27 isentropic1d_21 A supersonic wind tunnel test section is designed to have a Mach number of 2.5 at a temperature of 60 F and 5 psia. The fluid is air. a. Determine the required inlet stagnation temperature and pressure. b. Calculate the required mass flow rate for a test section area of 2.0 ft 2. p 0 = 85.4 psia and T 0 = 1170 R m 145 lb s TS m C. Wassgren, Purdue University Page 27 of 42 Last Updated: 2010 Dec 01

28 isentropic1d_22 A large tank contains 0.7 MPa, 27 C air. The tank feeds a converging-diverging nozzle with a throat area of 6.45*10-4 m 2. At a particular point in the nozzle, the Mach number is 2. a. What is the area at that point? b. What is the mass flow rate at that point? A = 1.09*10-3 m 2 m 1.05 kg/s C. Wassgren, Purdue University Page 28 of 42 Last Updated: 2010 Dec 01

29 isentropic1d_23 An 8.5 m 3 vacuum tank is to be used to create a flow at an exit Mach number of Ma E = 2.0 (refer to the figure below). A plug is put into the nozzle and the tank is evacuated until it contains 0.45 kg of air at a temperature of 296 K. When the plug is removed, air flows from the atmosphere into the tank through the converging-diverging nozzle. The throat area is A T = 6.5 cm 2. atmosphere p atm = 101 kpa (abs) T atm = 296 K throat A T = 6.5 cm 2 exit volume = 8.5 m 3 initial mass = 0.45 kg initial temp = 296 K a. Determine the design exit area. b. Determine the initial pressure in the tank. c. Determine the initial mass flow rate through the nozzle. d. Determine the exit pressure, p E, immediately after the flow begins. e. Determine the tank pressure at which a normal shock wave will stand in the nozzle exit plane. A E,d = 11.0 cm 2 p tank (t = 0) = 4.50 kpa (abs) m kg/s choked p E,d = 12.9 kpa (abs) kpa (abs). C. Wassgren, Purdue University Page 29 of 42 Last Updated: 2010 Dec 01

30 normalshock_01 An explosion creates a spherical shock wave propagating radially into still air at standard conditions. A recording instrument registers a maximum pressure of 200 psig as the shock wave passes by. Estimate: a. the speed of the shock wave with respect to a fixed observer in ft/sec b. the wind speed following the shock with respect to a fixed observer in ft/sec BOOM! 4020 ft/s 3080 ft/s C. Wassgren, Purdue University Page 30 of 42 Last Updated: 2010 Dec 01

31 normalshock_02 Stagnation pressure and temperature probes are located on the nose of a supersonic aircraft at 35,000 ft altitude. A normal shock stands in front of the probes. The temperature probe indicates T 0 = 420 F behind the shock. a. Calculate the Mach number and airspeed of the plane. b. Find the static and stagnation pressures behind the shock. c. Show the process and the static and stagnation points on a T-s diagram. Ma 1 = 2.48 V 1 = 2410 ft/s p 2 = 24.2 psia p 02 = 29.1 psia C. Wassgren, Purdue University Page 31 of 42 Last Updated: 2010 Dec 01

32 normalshock_03 A converging-diverging nozzle, with an exit to throat area ratio, A e /A t, of 1.633, is designed to operate with atmospheric pressure at the exit plane, p e = p atm. a. Determine the range(s) of stagnation pressures for which the nozzle will be free from normal shocks. b. If the stagnation pressure is 1.5p atm, at what position, x, will the normal shock occur? The converging-diverging nozzle area, A, varies with position, x, as: 2 A x AE x AE AT L throat area, A t exit area, A e stagnation conditions x 1 / 2 L L 1 p0 p 1.11 p0 and p atm x/l = atm 1.71 C. Wassgren, Purdue University Page 32 of 42 Last Updated: 2010 Dec 01

33 normalshock_04 An air stream approaches a normal shock at Ma 1 = Upstream, p 01 = 3.00 MPa (abs) and 1 = 1.65 kg/m 3. Determine the downstream Mach number and temperature. Ma 2 = 0.50 T 2 = 680 K C. Wassgren, Purdue University Page 33 of 42 Last Updated: 2010 Dec 01

34 normalshock_05 Air approaches a normal shock with T 1 = 18 C, p 1 = 101 kpa (abs), and V 1 = 766 m/s. The temperature immediately downstream from the shock is T 2 = 551 K. 1. Determine the velocity immediately downstream from the shock. 2. Determine the pressure change across the shock. 3. Calculate the corresponding pressure change for a frictionless, shockless deceleration between the same speeds. V 2 = m/s p = 4.73*10 5 Pa p isentropic = 8.41*10 5 Pa C. Wassgren, Purdue University Page 34 of 42 Last Updated: 2010 Dec 01

35 normalshock_06 Air flows through a converging-diverging nozzle, with A e /A t = 3.5 where A t = 500 mm 2. The upstream stagnation conditions are atmospheric; the back pressure is maintained by a vacuum system. Determine the range of back pressures for which a normal shock will occur within the nozzle and the corresponding mass flow rate < p b /p 0 < m kg s choked C. Wassgren, Purdue University Page 35 of 42 Last Updated: 2010 Dec 01

36 normalshock_07 A total pressure probe is inserted into a supersonic air flow. A shock wave forms just upstream of the impact hole. The probe measures a total pressure of 500 kpa (abs) and the stagnation temperature at the probe head is 227 C. The static pressure upstream of the shock is measured with a wall tap to be 100 kpa (abs). a. Determine the Mach number of the incoming flow. b. Determine the velocity of the incoming flow. c. Sketch the process on a T-s diagram. Ma 1 = 1.87 V 1 = m/s C. Wassgren, Purdue University Page 36 of 42 Last Updated: 2010 Dec 01

37 normalshock_13 Air flows through a frictionless, adiabatic converging-diverging nozzle. The air in the reservoir feeding the nozzle has a pressure and temperature of 700 kpa and 500 K, respectively. The ratio of the nozzle exit to throat area is A normal shock wave stands where the upstream Mach number is 3.0. Calculate the Mach number, the static temperature, and static pressure at the nozzle exit plane. Ma 0.15 E T E = 498 K p E = 226 kpa (abs) C. Wassgren, Purdue University Page 37 of 42 Last Updated: 2010 Dec 01

38 normalshock_15 A converging-diverging nozzle, with A e /A t = 1.633, is designed to operate with atmospheric pressure at the exit plane. Determine the range(s) of stagnation pressures for which the nozzle will be free from normal shocks. p atm p p atm and p 0 > 1.71 p atm C. Wassgren, Purdue University Page 38 of 42 Last Updated: 2010 Dec 01

39 normalshock_17 According to a newspaper article, at the center of a 12,600 lb m Daisy-Cutter bomb explosion the overpressure in the air is approximately 1000 psi. Estimate: a. the speed of the resulting shock wave into the surrounding air, b. the wind speed following the shock wave, c. the temperature after the shock wave has passed, and d. the air density after the shock wave has passed. T R = 6100 R 0.42 lb /ft 2 m V 8700 ft/s shock, w/r/t ground V 7100 ft/s downstream wind, w/r/t ground 3 C. Wassgren, Purdue University Page 39 of 42 Last Updated: 2010 Dec 01

40 normalshock_20 An automobile tire bursts sending a shock wave (assume this is a normal shock wave) propagating into the ambient air which has a pressure of p 1, sonic speed, c 1, and specific heat ratio,. If the pressure behind the shock is p 2 (roughly the inflated tire pressure), show that the speed of propagation of the shock, u S, is given by: 1 p2 1 us c1 2 p1 2 Calculate this speed if the temperature of the ambient air is 30 C and the pressure ratio is p 2 /p 1 = 3.0 (e.g. p 1 = 14.7 psia and p 2 = 44.1 psia). u S = m/s C. Wassgren, Purdue University Page 40 of 42 Last Updated: 2010 Dec 01

41 normalshock_23 A supersonic aircraft flies at a Mach number of 2.7 at an altitude of 20 km. Air enters the engine inlet and is slowed isentropically to a Mach number of 1.3. A normal shock occurs at that location. The resulting flow is decelerated adiabatically, but not isentropically, further to a Mach number of 0.4. The final static pressure is 104 kpa (abs). Evaluate: a. the stagnation temperature for the flow, b. the pressure change, p, across the shock, c. the final stagnation pressure, and d. the total entropy change throughout the entire process. e. Sketch the process on a Ts diagram. T 0 = 533 K p = 37.0 kpa p 04 = 116 kpa (abs) s = 26.3 J/(kg K) C. Wassgren, Purdue University Page 41 of 42 Last Updated: 2010 Dec 01

42 normalshock_24 The Mach number and temperature upstream of a shock wave are 2 and 7 C, respectively. What is the air speed, relative to the shock wave, downstream of the shock wave? V 2 = 252 m/s C. Wassgren, Purdue University Page 42 of 42 Last Updated: 2010 Dec 01

### (b) 1. Look up c p for air in Table A.6. c p = 1004 J/kg K 2. Use equation (1) and given and looked up values to find s 2 s 1.

Problem 1 Given: Air cooled where: T 1 = 858K, P 1 = P = 4.5 MPa gage, T = 15 o C = 88K Find: (a) Show process on a T-s diagram (b) Calculate change in specific entropy if air is an ideal gas (c) Evaluate

### is the stagnation (or total) pressure, constant along a streamline.

70 Incompressible flow (page 60): Bernoulli s equation (steady, inviscid, incompressible): p 0 is the stagnation (or total) pressure, constant along a streamline. Pressure tapping in a wall parallel to

### hose-to-hose coupling pump-to-hose coupling

pipe_02 A homeowner plans to pump water from a stream in their backyard to water their lawn. A schematic of the pipe system is shown in the figure. 3 m 1 m inlet pipe-to-pump coupling stream re-entrant

### Practice Problems on Conservation of Energy. heat loss of 50,000 kj/hr. house maintained at 22 C

COE_10 A passive solar house that is losing heat to the outdoors at an average rate of 50,000 kj/hr is maintained at 22 C at all times during a winter night for 10 hr. The house is to be heated by 50 glass

### Chapter 17. For the most part, we have limited our consideration so COMPRESSIBLE FLOW. Objectives

Chapter 17 COMPRESSIBLE FLOW For the most part, we have limited our consideration so far to flows for which density variations and thus compressibility effects are negligible. In this chapter we lift this

### Sheet 5:Chapter 5 5 1C Name four physical quantities that are conserved and two quantities that are not conserved during a process.

Thermo 1 (MEP 261) Thermodynamics An Engineering Approach Yunus A. Cengel & Michael A. Boles 7 th Edition, McGraw-Hill Companies, ISBN-978-0-07-352932-5, 2008 Sheet 5:Chapter 5 5 1C Name four physical

### Performance 4. Fluid Statics, Dynamics, and Airspeed Indicators

Performance 4. Fluid Statics, Dynamics, and Airspeed Indicators From our previous brief encounter with fluid mechanics we developed two equations: the one-dimensional continuity equation, and the differential

### Chapter 6 Energy Equation for a Control Volume

Chapter 6 Energy Equation for a Control Volume Conservation of Mass and the Control Volume Closed systems: The mass of the system remain constant during a process. Control volumes: Mass can cross the boundaries,

### Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 20 Conservation Equations in Fluid Flow Part VIII Good morning. I welcome you all

### 20 m neon m propane 20

Problems with solutions:. A -m 3 tank is filled with a gas at room temperature 0 C and pressure 00 Kpa. How much mass is there if the gas is a) Air b) Neon, or c) Propane? Given: T73K; P00KPa; M air 9;

### ME 239: Rocket Propulsion. Nozzle Thermodynamics and Isentropic Flow Relations. J. M. Meyers, PhD

ME 39: Rocket Propulsion Nozzle Thermodynamics and Isentropic Flow Relations J. M. Meyers, PhD 1 Assumptions for this Analysis 1. Steady, one-dimensional flow No motor start/stopping issues to be concerned

### High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur

High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 06 One-dimensional Gas Dynamics (Contd.) We

### AOE 3104 Aircraft Performance Problem Sheet 2 (ans) Find the Pressure ratio in a constant temperature atmosphere:

AOE 3104 Aircraft Performance Problem Sheet 2 (ans) 6. The atmosphere of Jupiter is essentially made up of hydrogen, H 2. For Hydrogen, the specific gas constant is 4157 Joules/(kg)(K). The acceleration

### Gasdynamics of nozzle flow

Chapter 0 Gasdynamics of nozzle flow nozzle is an extremely e cient device for converting thermal energy to kinetic energy. Nozzles come up in a vast range of applications. Obvious ones are the thrust

### CHAPTER 25 IDEAL GAS LAWS

EXERCISE 139, Page 303 CHAPTER 5 IDEAL GAS LAWS 1. The pressure of a mass of gas is increased from 150 kpa to 750 kpa at constant temperature. Determine the final volume of the gas, if its initial volume

### Solution: (a) 1. Look up properties for air, Table A.6: k = 1.4, R = 287 J/kg K, c p = 1004 J/kgK 2. Calculate ρ. using the ideal gas equation:

Problem Given: Air entering a combustion chamber with: 0., T 580 K, and.0 Pa (abs). Heat addition, then 0.4, T 77 K, and 86.7 Find: (a) Local isentroic stagnation conditions at the inlet (b) Local isentroic

### THERMODYNAMICS NOTES - BOOK 2 OF 2

THERMODYNAMICS & FLUIDS (Thermodynamics level 1\Thermo & Fluids Module -Thermo Book 2-Contents-December 07.doc) UFMEQU-20-1 THERMODYNAMICS NOTES - BOOK 2 OF 2 Students must read through these notes and

### FIGURE P8 50E FIGURE P8 62. Minor Losses

8 48 Glycerin at 40 C with r 1252 kg/m 3 and m 0.27 kg/m s is flowing through a 4-cm-diameter horizontal smooth pipe with an average velocity of 3.5 m/s. Determine the pressure drop per 10 m of the pipe.

### ME 239: Rocket Propulsion. Over- and Under-expanded Nozzles and Nozzle Configurations. J. M. Meyers, PhD

ME 239: Rocket Propulsion Over- and Under-expanded Nozzles and Nozzle Configurations J. M. Meyers, PhD 1 Over- and Underexpanded Nozzles Underexpanded Nozzle Discharges fluid at an exit pressure greater

### ME 6404 THERMAL ENGINEERING. Part-B (16Marks questions)

ME 6404 THERMAL ENGINEERING Part-B (16Marks questions) 1. Drive and expression for the air standard efficiency of Otto cycle in terms of volume ratio. (16) 2. Drive an expression for the air standard efficiency

### Understanding Pressure and Pressure Measurement

Freescale Semiconductor Application Note Rev 1, 05/2005 Understanding Pressure and Pressure Measurement by: David Heeley Sensor Products Division, Phoenix, Arizona INTRODUCTION Fluid systems, pressure

### h b b h Q u da u 1 1 dy dz u 1 dy 1 dz u b h b h

P3.18 An incompressible fluid flows steadily through the rectangular duct in the figure. The exit velocity profile is given by u umax(1 y /b )(1 z /h ). (a) Does this profile satisfy the correct boundary

### APPLIED THERMODYNAMICS. TUTORIAL No.3 GAS TURBINE POWER CYCLES. Revise gas expansions in turbines. Study the Joule cycle with friction.

APPLIED HERMODYNAMICS UORIAL No. GAS URBINE POWER CYCLES In this tutorial you will do the following. Revise gas expansions in turbines. Revise the Joule cycle. Study the Joule cycle with friction. Extend

### CFD Analysis of Supersonic Exhaust Diffuser System for Higher Altitude Simulation

Page1 CFD Analysis of Supersonic Exhaust Diffuser System for Higher Altitude Simulation ABSTRACT Alan Vincent E V P G Scholar, Nehru Institute of Engineering and Technology, Coimbatore Tamil Nadu A high

### Mass and Energy Analysis of Control Volumes

MAE 320-Chapter 5 Mass and Energy Analysis of Control Volumes Objectives Develop the conservation of mass principle. Apply the conservation of mass principle to various systems including steady- and unsteady-flow

### Practice Problems on Pumps. Answer(s): Q 2 = 1850 gpm H 2 = 41.7 ft W = 24.1 hp. C. Wassgren, Purdue University Page 1 of 16 Last Updated: 2010 Oct 29

_02 A centrifugal with a 12 in. diameter impeller requires a power input of 60 hp when the flowrate is 3200 gpm against a 60 ft head. The impeller is changed to one with a 10 in. diameter. Determine the

### APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES

APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES INTRODUCTION This tutorial is designed for students wishing to extend their knowledge of thermodynamics to a more

### SOLUTION MANUAL SI UNIT PROBLEMS CHAPTER 9 SONNTAG BORGNAKKE VAN WYLEN. FUNDAMENTALS of. Thermodynamics. Sixth Edition

SOLUTION MANUAL SI UNIT PROBLEMS CHAPTER 9 SONNTAG BORGNAKKE VAN WYLEN FUNDAMENTALS of Thermodynamics Sixth Edition CONTENT SUBSECTION PROB NO. Correspondence table Concept-Study Guide Problems -20 Steady

### INTRODUCTION TO FLUID MECHANICS

INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION

### Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS

Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS Lecture slides by Hasan Hacışevki Copyright

### Fluid Mechanics Definitions

Definitions 9-1a1 Fluids Substances in either the liquid or gas phase Cannot support shear Density Mass per unit volume Specific Volume Specific Weight % " = lim g#m ( ' * = +g #V \$0& #V ) Specific Gravity

### ME 201 Thermodynamics

ME 0 Thermodynamics Second Law Practice Problems. Ideally, which fluid can do more work: air at 600 psia and 600 F or steam at 600 psia and 600 F The maximum work a substance can do is given by its availablity.

### Boston University BRAYTON CYCLE EXPERIMENT -JET ENGINE

Boston University ENG EK 304 Energy and Thermodynamics Laboratory Exercise II BRAYTON CYCLE EXPERIMENT -JET ENGINE (Based on an instruction set provided by Turbine Technologies Limited, 2002 Modified by

### Engineering Software P.O. Box 2134, Kensington, MD 20891 Phone: (301) 919-9670 Web Site:

Engineering Software P.O. Box 2134, Kensington, MD 20891 Phone: (301) 919-9670 E-Mail: info@engineering-4e.com Web Site: http://www.engineering-4e.com Brayton Cycle (Gas Turbine) for Propulsion Application

### Ideal Jet Propulsion Cycle

Ideal Jet ropulsion Cycle Gas-turbine engines are widely used to power aircrafts because of their light-weight, compactness, and high power-to-weight ratio. Aircraft gas turbines operate on an open cycle

### Chapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any

Chapter 10 Flow Measurements Material from Theory and Design for Mechanical Measurements; Figliola, Third Edition Flow Rate Flow rate can be expressed in terms of volume flow rate (volume/time) or mass

### Air Flow Measurements

ME-EM 30 ENERGY LABORATORY Air Flow Measurements Pitot Static Tube A slender tube aligned with the flow can measure local velocity by means of pressure differences. It has sidewall holes to measure the

### ME 239: Rocket Propulsion Introductory Remarks

ME 239: Rocket Propulsion Introductory Remarks 1 Propulsion Propulsion: The act of changing a body s motion from mechanisms providing force to that body Jet Propulsion: Reaction force imparted to device

### AEROSPACE PROPULSION SYSTEMS

AEROSACE ROULSION SYSTEMS Chapter Fundamentals Chapter Rockets Chapter 3 iston Aerodynamic Engines Chapter 4 Gas Turbine Engines Chapter 5 Ramjets and Scramjets 00 John Wiley & Sons (Asia) te Ltd Courtesy

### 3-1 Copyright Richard M. Felder, Lisa G. Bullard, and Michael D. Dickey (2014)

EQUATIONS OF STATE FOR GASES Questions A gas enters a reactor at a rate of 255 SCMH. What does that mean? An orifice meter mounted in a process gas line indicates a flow rate of 24 ft 3 /min. The gas temperature

### Aeration Air & Digester Gas Flow Metering Using Thermal Mass Technology. HWEA 2011 Conference Craig S. Johnson

Aeration Air & Digester Gas Flow Metering Using Thermal Mass Technology HWEA 2011 Conference Craig S. Johnson Presentation Overview Introduction Aeration Air & Digester gas challenges Gas flow metering

### 18 Q0 a speed of 45.0 m/s away from a moving car. If the car is 8 Q0 moving towards the ambulance with a speed of 15.0 m/s, what Q0 frequency does a

First Major T-042 1 A transverse sinusoidal wave is traveling on a string with a 17 speed of 300 m/s. If the wave has a frequency of 100 Hz, what 9 is the phase difference between two particles on the

### Chapter 19 Purging Air from Piping and Vessels in Hydrocarbon Service

BP Lower 48 Onshore Operations Safety Manual Page 4.19 1 Chapter 19 Purging Air from Piping and Vessels in Hydrocarbon Service I. General Requirements A. After motor vehicle accidents and underground excavation

### Performance. 10. Thrust Models

Performance 10. Thrust Models In order to determine the maximum speed at which an aircraft can fly at any given altitude, we must solve the simple-looking equations for : (1) We have previously developed

### UNIVERSITY ESSAY QUESTIONS:

UNIT I 1. What is a thermodynamic cycle? 2. What is meant by air standard cycle? 3. Name the various gas power cycles". 4. What are the assumptions made for air standard cycle analysis 5. Mention the various

### Ejector Refrigeration System

Ejector Refrigeration System Design Team Matthew Birnie, Morgan Galaznik, Scott Jensen, Scott Marchione, Darren Murphy Design Advisor Prof. Gregory Kowalski Abstract An ejector refrigeration system utilizing

### 1. A belt pulley is 3 ft. in diameter and rotates at 250 rpm. The belt which is 5 ins. wide makes an angle of contact of 190 over the pulley.

Sample Questions REVISED FIRST CLASS PARTS A1, A2, AND A3 (NOTE: these questions are intended as representations of the style of questions that may appear on examinations. They are not intended as study

### Operating conditions. Engine 3 1,756 3,986 2.27 797 1,808 2.27 7,757 6,757 4,000 1,125 980 5.8 3,572 3,215 1,566

JOURNAL 658 OEFELEIN OEFELEIN AND YANG: INSTABILITIES IN F-l ENGINES 659 Table 2 F-l engine operating conditions and performance specifications Mass flow rate, kg/s, Ibm/s Fuel Oxidizer Mixture ratio Pressure,

### This chapter deals with three equations commonly used in fluid mechanics:

MASS, BERNOULLI, AND ENERGY EQUATIONS CHAPTER 5 This chapter deals with three equations commonly used in fluid mechanics: the mass, Bernoulli, and energy equations. The mass equation is an expression of

### These slides contain some notes, thoughts about what to study, and some practice problems. The answers to the problems are given in the last slide.

Fluid Mechanics FE Review Carrie (CJ) McClelland, P.E. cmcclell@mines.edu Fluid Mechanics FE Review These slides contain some notes, thoughts about what to study, and some practice problems. The answers

### State Newton's second law of motion for a particle, defining carefully each term used.

5 Question 1. [Marks 28] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

### Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids

Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction Last lab you investigated flow loss in a pipe due to the roughness

### An Introduction to Liquid Pipeline Surge Relief. Technical Guide February 2012

An Introduction to Liquid Pipeline Surge Relief Technical Guide February 2012 Technical Guide The Importance of Surge Relief In many applications, such as pipelines, storage terminals and marine loading

### Problem Set 1 3.20 MIT Professor Gerbrand Ceder Fall 2003

LEVEL 1 PROBLEMS Problem Set 1 3.0 MIT Professor Gerbrand Ceder Fall 003 Problem 1.1 The internal energy per kg for a certain gas is given by U = 0. 17 T + C where U is in kj/kg, T is in Kelvin, and C

### Forces on the Rocket. Rocket Dynamics. Equation of Motion: F = Ma

Rocket Dynamics orces on the Rockets - Drag Rocket Stability Rocket Equation Specific Impulse Rocket otors Thrust orces on the Rocket Equation of otion: = a orces at through the Center of ass Center of

### Energy : ṁ (h i + ½V i 2 ) = ṁ(h e + ½V e 2 ) Due to high T take h from table A.7.1

6.33 In a jet engine a flow of air at 000 K, 00 kpa and 30 m/s enters a nozzle, as shown in Fig. P6.33, where the air exits at 850 K, 90 kpa. What is the exit velocity assuming no heat loss? C.V. nozzle.

### FLUID MECHANICS. TUTORIAL No.7 FLUID FORCES. When you have completed this tutorial you should be able to. Solve forces due to pressure difference.

FLUID MECHANICS TUTORIAL No.7 FLUID FORCES When you have completed this tutorial you should be able to Solve forces due to pressure difference. Solve problems due to momentum changes. Solve problems involving

### BLOWERS EXHAUSTERS CONTINENTAL INDUSTRIE ASME PTC 10 PERFORMANCE TEST PROCEDURE. Blowers & Exhausters. Page 1 of 6 PURPOSE STANDARDS INSTRUMENTS

PURPOSE Page 1 of 6 Test purpose is the measure of the following compressor operating parameters: flow of gas handled pressure rice produced shaft power requirement efficiency surge limit STANDARDS Test

### Chapter 7 Energy and Energy Balances

CBE14, Levicky Chapter 7 Energy and Energy Balances The concept of energy conservation as expressed by an energy balance equation is central to chemical engineering calculations. Similar to mass balances

### Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics

Lecture 6 - Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.

### Engineering Problem Solving as Model Building

Engineering Problem Solving as Model Building Part 1. How professors think about problem solving. Part 2. Mech2 and Brain-Full Crisis Part 1 How experts think about problem solving When we solve a problem

### Honors Chemistry. Chapter 11: Gas Law Worksheet Answer Key Date / / Period

Honors Chemistry Name Chapter 11: Gas Law Worksheet Answer Key Date / / Period Complete the following calculation by list the given information, rewriting the formula to solve for the unknown, and plugging

### Thermodynamics - Example Problems Problems and Solutions

Thermodynamics - Example Problems Problems and Solutions 1 Examining a Power Plant Consider a power plant. At point 1 the working gas has a temperature of T = 25 C. The pressure is 1bar and the mass flow

### Textbook: Introduction to Fluid Mechanics by Philip J. Pritchard. John Wiley & Sons, 8th Edition, ISBN-13 9780470547557, -10 0470547553

Semester: Spring 2016 Course: MEC 393, Advanced Fluid Mechanics Instructor: Professor Juldeh Sesay, 226 Heavy Engineering Bldg., (631)632-8493 Email: Juldeh.sessay@stonybrook.edu Office hours: Mondays

I. A mechanical device shakes a ball-spring system vertically at its natural frequency. The ball is attached to a string, sending a harmonic wave in the positive x-direction. +x a) The ball, of mass M,

### Condensers & Evaporator Chapter 5

Condensers & Evaporator Chapter 5 This raises the condenser temperature and the corresponding pressure thereby reducing the COP. Page 134 of 263 Condensers & Evaporator Chapter 5 OBJECTIVE QUESTIONS (GATE,

### Gas Turbine cycles and Propulsion system. Sarika Goel 3 rd year,chemical Engineering, IIT Delhi Guide : Prof. Gautam Biswas & Prof. S.

Gas Turbine cycles and Propulsion system Sarika Goel 3 rd year,chemical Engineering, IIT Delhi Guide : Prof. Gautam Biswas & Prof. S. Sarkar Outline Introduction- Gas turbine cycles Applications of gas

### 1 Foundations of Pyrodynamics

1 1 Foundations of Pyrodynamics Pyrodynamics describes the process of energy conversion from chemical energy to mechanical energy through combustion phenomena, including thermodynamic and fluid dynamic

### RITTER Multiple Sonic Nozzle Calibration System

RITTER Multiple Sonic Nozzle Calibration System »Wouldn t it be great to eliminate doubtful measurement results by using proven measurement technology? Providing the most precise results ensures and increases

### - Know basic of refrigeration - Able to analyze the efficiency of refrigeration system -

Refrigeration cycle Objectives - Know basic of refrigeration - Able to analyze the efficiency of refrigeration system - contents Ideal Vapor-Compression Refrigeration Cycle Actual Vapor-Compression Refrigeration

### = 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm

Chapter 13 Gases 1. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. Gases have volumes that depend on their conditions, and can be compressed or expanded by

### State Newton's second law of motion for a particle, defining carefully each term used.

5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

### Jet Propulsion. Lecture-2. Ujjwal K Saha, Ph.D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1

Lecture-2 Prepared under QIP-CD Cell Project Jet Propulsion Ujjwal K Saha, Ph.D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1 Simple Gas Turbine Cycle A gas turbine that

### A High Efficiency Ejector Refrigeration System. A Thesis. presented to. the Faculty of the Graduate School at. University of Missouri Columbia

A High Efficiency Ejector Refrigeration System A Thesis presented to the Faculty of the Graduate School at University of Missouri Columbia In Partial Fulfillment of the Requirements of the Degree Master

### Valve Sizing. Te chnic al Bulletin. Flow Calculation Principles. Scope. Sizing Valves. Safe Product Selection. www.swagelok.com

www.swagelok.com Valve Sizing Te chnic al Bulletin Scope Valve size often is described by the nominal size of the end connections, but a more important measure is the flow that the valve can provide. And

### VAPOUR-COMPRESSION REFRIGERATION SYSTEM

VAPOUR-COMPRESSION REFRIGERATION SYSTEM This case study demonstrates the modeling of a vapour compression refrigeration system using R22 as refrigerant. Both a steady-state and a transient simulation will

### Chapter 11. Refrigeration Cycles

Chapter 11 Refrigeration Cycles The vapor compression refrigeration cycle is a common method for transferring heat from a low temperature space to a high temperature space. The figures below show the objectives

### R = 1545 ft-lbs/lb mole ºR R = 1.986 BTU/lb mole ºR R = 1.986 cal/gm mole ºK

Flow Through the Regulator The SCUBA tank regulator arrangement can be idealized with the diagram shown below. This idealization is useful for computing pressures and gas flow rates through the system.

### EXPERIMENTAL RESEARCH ON FLOW IN A 5-STAGE HIGH PRESSURE ROTOR OF 1000 MW STEAM TURBINE

Proceedings of 11 th European Conference on Turbomachinery Fluid dynamics & Thermodynamics ETC11, March 23-27, 2015, Madrid, Spain EXPERIMENTAL RESEARCH ON FLOW IN A 5-STAGE HIGH PRESSURE ROTOR OF 1000

### CONTROL VALVE PRESSURE DROP AND SIZING

CONTENT Chapter Description Page I Purpose of Control Valve II Type and Main Components of Control Valve 3 III Power 5 IV. Pressure Drop Across Control Valve 7 V. Symbols and Units 10 VI. Unit Conversion

### INITIAL ASSESSMENT OF THE IMPACT OF JET FLAME HAZARD FROM HYDROGEN CARS IN ROAD TUNNELS AND THE IMPLICATION ON HYDROGEN CAR DESIGN

INITIAL ASSESSMENT OF THE IMPACT OF JET FLAME HAZARD FROM HYDROGEN CARS IN ROAD TUNNELS AND THE IMPLICATION ON HYDROGEN CAR DESIGN Wu, Y Department of Chemical and Process Engineering, University of Sheffield,

### LECTURE 28 to 29 ACCUMULATORS FREQUENTLY ASKED QUESTIONS

LECTURE 28 to 29 ACCUMULATORS FREQUENTLY ASKED QUESTIONS 1. Define an accumulator and explain its function A hydraulic accumulator is a device that stores the potential energy of an incompressible fluid

### Fan Performance By: Mark Stevens AMCA International Deputy Executive Director Technical Affairs

Fan Performance By: Mark Stevens AMCA International Deputy Executive Director Technical Affairs Fan Performance (Paper I.D. 021) Mark Stevens Air Movement and Control Association International Abstract

### INLET AND EXAUST NOZZLES Chap. 10 AIAA AIRCRAFT ENGINE DESIGN R01-07/11/2011

MASTER OF SCIENCE IN AEROSPACE ENGINEERING PROPULSION AND COMBUSTION INLET AND EXAUST NOZZLES Chap. 10 AIAA AIRCRAFT ENGINE DESIGN R01-07/11/2011 LECTURE NOTES AVAILABLE ON https://www.ingegneriaindustriale.unisalento.it/scheda_docente/-/people/antonio.ficarella/materiale

### 8. ENERGY PERFORMANCE ASSESSMENT OF COMPRESSORS 8.1 Introduction

8. ENERGY PERFORMANCE ASSESSMENT OF COMPRESSORS 8.1 Introduction The compressed air system is not only an energy intensive utility but also one o the least energy eicient. Over a period o time, both perormance

### FLUID MECHANICS. Problem 2: Consider a water at 20 0 C flows between two parallel fixed plates.

FLUID MECHANICS Problem 1: Pressures are sometimes determined by measuring the height of a column of liquid in a vertical tube. What diameter of clean glass tubing is required so that the rise of water

### C H A P T E R F I V E GAS TURBINES AND JET ENGINES

169 C H A P T E R F I V E GAS TURBINES AND JET ENGINES 5.1 Introduction History records over a century and a half of interest in and work on the gas turbine. However, the history of the gas turbine as

### THERMODYNAMICS TUTORIAL 5 HEAT PUMPS AND REFRIGERATION. On completion of this tutorial you should be able to do the following.

THERMODYNAMICS TUTORIAL 5 HEAT PUMPS AND REFRIGERATION On completion of this tutorial you should be able to do the following. Discuss the merits of different refrigerants. Use thermodynamic tables for

### Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels

1 P age Module 5: Combustion Technology Lecture 34: Calculation of calorific value of fuels 2 P age Keywords : Gross calorific value, Net calorific value, enthalpy change, bomb calorimeter 5.3 Calculation

### The First Law of Thermodynamics: Closed Systems. Heat Transfer

The First Law of Thermodynamics: Closed Systems The first law of thermodynamics can be simply stated as follows: during an interaction between a system and its surroundings, the amount of energy gained

### Second Law of Thermodynamics Alternative Statements

Second Law of Thermodynamics Alternative Statements There is no simple statement that captures all aspects of the second law. Several alternative formulations of the second law are found in the technical

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 7. General Energy Equation

### HOW TO SIZE A PRESSURE REGULATOR

CHOOSING THE CORRECT REGULATOR HOW TO SIZE A PRESSURE REGULATOR In order to choose the correct regulator the following information is needed: - Function: Pressure reducing or backpressure control? - Pressure:

### Physics 1114: Unit 6 Homework: Answers

Physics 1114: Unit 6 Homework: Answers Problem set 1 1. A rod 4.2 m long and 0.50 cm 2 in cross-sectional area is stretched 0.20 cm under a tension of 12,000 N. a) The stress is the Force (1.2 10 4 N)

### Lesson 5 Review of fundamental principles Thermodynamics : Part II

Lesson 5 Review of fundamental principles Thermodynamics : Part II Version ME, IIT Kharagpur .The specific objectives are to:. State principles of evaluating thermodynamic properties of pure substances

### Applied Fluid Mechanics

Applied Fluid Mechanics Sixth Edition Robert L. Mott University of Dayton PEARSON Prentkv Pearson Education International CHAPTER 1 THE NATURE OF FLUIDS AND THE STUDY OF FLUID MECHANICS 1.1 The Big Picture

### Basic Concepts of Thermodynamics

Basic Concepts of Thermodynamics Every science has its own unique vocabulary associated with it. recise definition of basic concepts forms a sound foundation for development of a science and prevents possible

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and