Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels

Save this PDF as:

Size: px
Start display at page:

Download "Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels"

Transcription

1 1 P age Module 5: Combustion Technology Lecture 34: Calculation of calorific value of fuels

2 2 P age Keywords : Gross calorific value, Net calorific value, enthalpy change, bomb calorimeter 5.3 Calculation of calorific value of fuels The heating value or calorific value of a combustible material is an important property, which may be used to evaluate its effectiveness for using as a fuel and also for the design of chemical equipments where it is to be used. The calorific value may be defined as the quantity of heat liberated by the complete burning of a unit mass of the fuel with oxygen at constant volume process. In case of gaseous fuel, the heat released during the complete combustion of one cubic meter of gas at N.T.P (normal temperature and pressure) i.e, 1 atm pressure at 0 C is the measure of calorific value. Whereas, the calorific value for solid fuel is measured per gram or per kg of solid fuel. In general, the calorific value of a solid or liquid fuel is the gross calorific, which is determined at constant volume for a liquid fuel and for gaseous fuels at constant pressure. If the water formed and liberated during combustion is in the liquid phase, then the corresponding calorific value is called gross calorific value. The net calorific value corresponds to the process when the water formed during combustion remains as steam. The calorific value of fuel depends on the type of exothermic reaction and the heat of reaction. Heat of combustion is measured from the heat of reaction of the reaction. It is determined from the value of enthalpy change for the reaction at constant pressure and temperature. At constant pressure system, the enthalpy change is obtained from the equation. (1)

3 3 P age Therefore, the enthalpy change for the reaction may be determined from the internal energy and number of mole changes in the reaction. The internal energy change with the change of temperature is given as or, (2) From the knowledge of thermodynamics, and, -, (3) = (4) The heat of reactions may be determined from Eqn. (2) and (4), where the subscripts 1 and 2 are designated as reactants and products. and are the average temperature of reactants and products respectively. and are the heat capacities at constant pressure and constant volume respectively. The use of average heat capacities in the above equation is a well approximation. The heat of reaction may be determined from the heat capacities of all reactants and products. The heat capacity is usually the temperature dependent extensive property in thermodynamics. It may be expressed as The values of the constants,,,.etc are available in the literature. The calorific value of solid or liquid fuel may be measured by the bomb calorimeter.

4 4 P age From the summation of all heat of reactions of the possible reactions in the burning process of a fuel may give an idea of the heating value or the calorific value of the fuel. This procedure is easily applicable for the gaseous fuels. For gaseous fuels, such as, natural gas, LPG and producer gas, the heat of combustion is sufficient to be used as an approximate calorific value for natural gas. The composition of the fuel gas should be known. Then the values for the heat of reaction for oxidation of each constituent to CO 2 and H 2 O at 25 0 C are to be determined. The heat of reaction also can be determined from the standard heat of formation data of products and reactants. The summation of all these heat of reactions are made to obtain the heat of combustion in kcal or kj per mole of the gas and further it may be converted in per unit mass or volume. The values of the standard heat of formation ( H f ) of reactants and products are available in the literature. The water formed during combustion may be either in liquid phase and vapor state, an addition amount of heat is required to vaporize the water present in the fuel. Then the heat generated by combustion, known as the gross calorific value if water is in liquid state after condensing the vapor. Otherwise, the water will be in the vapor state. Then the heating value is called the net calorific value. This is called the net calorific value is obtained by subtracting the latent heat of vaporization ( H v ) from the gross calorific value. Example: Calculating the heating value of Methane It may be assumed the methane is burnt in pure oxygen and does not contain any water vapor. The reaction stoichiometry is CH 4 (g) + 2O 2 (g) CO 2 (g) + 2H 2 O(g) The H comb of methane at 298K is the heat of reaction between CH 4 and O 2 to form CO 2 (g) and H 2 O(g), The heat of formation data are as follows:

5 5 P age H f of CO 2 (g)= kj/mol, H f of H 2 O(g) = kj/mol and H f of CH 4 (g) = 74.8 kj/mol Then the heat of combustion of methane is calculated from the equation,, kj/mol So, the heat of combustion of methane at 298 K is kj/mol assuming water formed is in vapor phase, this is same as the net calorific value of methane. If water is in the liquid phase, then the heat H of H O liquid kj/mol kj/mol The heating value or heat of combustion is kj/mol, which 86.8 kj/mol more than the value obtained for water in vapor phase. The heat of vaporization of water = 86.8/2=43.1 kj/mol. This heating value is identical to gross calorific value. The calorific value for gaseous fuel may be experimentally determined using Junker s gas calorimeter. The calorimeter consists of a combustion cylinder surrounded by a water jacket and fuel burner is kept below the combustion cylinder. The flow of cooling water may be adjusted by a control valve. The temperature of the gas exhaust, cooling water inlet and outlet temperatures are measured. The burner is set in such a way so that a complete combustion of the gaseous fuel is occurred. The flow rate of water is then measured. Temperature of the exhaust gas is brought down to the ambient temperature by the flow of cooling water. Water vapour

6 6 P age contained in the flue gas is condensed. The heat released by the combustion process is used to heat up the gases inside the combustion chamber (i.e. air and fuel). Then the gases are cooled by the cooling water and the outlet water temperature is increased. If the flue gas is cooled down to ambient temperature, then the heat of the hot gas is completely transferred to the cooling water. Assuming the continuous water flow rate, a steady state heat balance may be written as:.. If the heat loss from the calorimeter body to surrounding is negligible for the temperature of wall of the instrument is same as the ambient temperature. So, 0.,. /. Where, and are the mass flow rate of fuel and water respectively. and are outlet and inlet temperature of water respectively. is the specific heat of water. If water is condensed and collected from the gas outlet for a specified time interval, then the net calorific value is,, where, = mass of water condensed, and = heat of condensation of water vapor. The calorific value of solid or liquid fuel may be experimentally determined in a bomb calorimeter. The sketch of a bomb calorimeter is given in Fig.1 of Lecture-6 in Module-1. The total quantity of heat generated by combustion including the heat needed to vaporize the water is obtained, which is called gross calorific value. These measurements are obtained by burning a representative sample in a high pressure oxygen atmosphere within a stainless steel pressure

7 7 P age vessel or bomb. The heat released by this combustion is absorbed by water within the calorimeter and the resulting temperature change of water is noted. The heat absorbed by the water in the calorimeter, Where, = water equivalent of the calorimeter, = mass of water in the calorimeter, = specific heat of water, = mass of fuel, = initial temperature of water and = final temperature of the water.

8 8 P age Reference 1. Fuels and Combustion, S. Sarkar, 3 rd Edition, University Press, India, Physical Chemistry, P. C. Rakshit, 6 th Edition, Sarat Book Distributers, India, Chemical Process principles, Part-I, Materials and Energy Balances, O. A. Hougen, K. M. Watson and R. A. Ragatz, 1 st Edn, (Reprint), Asia Publishing House, Calcutta, 1976.

Module 5: Combustion Technology. Lecture 33: Combustion air calculation

1 P age Module 5: Combustion Technology Lecture 33: Combustion air calculation 2 P age Keywords: Heat of combustion, stoichiometric air, excess air, natural gas combustion Combustion air calculation The

System. System, Boundary and surroundings: Nature of heat and work: Sign convention of heat: Unit-7 Thermodynamics

Unit-7 Thermodynamics Introduction: The term Thermo means heat and dynamics means flow or movement.. So thermodynamics is concerned with the flow of heat. The different forms of the energy are interconvertible

The Relationships Between. Internal Energy, Heat, Enthalpy, and Calorimetry

The Relationships Between Internal Energy, Heat, Enthalpy, and Calorimetry Recap of Last Class Last class, we began our discussion about energy changes that accompany chemical reactions Chapter 5 discusses:

COMBUSTION. In order to operate a heat engine we need a hot source together with a cold sink

COMBUSTION In order to operate a heat engine we need a hot source together with a cold sink Occasionally these occur together in nature eg:- geothermal sites or solar powered engines, but usually the heat

Example. c. Calculate the amount of heat (in kj) required to heat 1.00 kg (~1 L) of water at 25 C to its boiling point.

Example When consuming an ice-cold drink, one must raise the temperature of the beverage to 37.0 C (normal body temperature). Can one lose weight by drinking ice-cold beverages if the body uses up about

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry I. Nature of Energy Energy units SI unit is joule, J From E = 1/2 mv 2, 1J = 1kg. m 2 /s 2 Traditionally, we use the calorie as a unit of energy. 1 cal = 4.184J (exactly) The

Thermochemistry Reading: Chapter 5 (omit 5.8) As you read ask yourself What is meant by the terms system and surroundings? How are they related to each other? How does energy get transferred between them?

Name Date Class THERMOCHEMISTRY. SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510)

17 THERMOCHEMISTRY SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510) This section explains the relationship between energy and heat, and distinguishes between heat capacity and specific heat.

Bomb Calorimetry. Example 4. Energy and Enthalpy

Bomb Calorimetry constant volume often used for combustion reactions heat released by reaction is absorbed by calorimeter contents need heat capacity of calorimeter q cal = q rxn = q bomb + q water Example

Bomb Calorimetry Stirrer Electrical leads Oxygen inlet valve Bomb Fuse Calorimeter Outer jacket Not shown: heating and cooling system for outer jacket, and controls that keep the outer jacket at the same

ENERGY. Thermochemistry. Heat. Temperature & Heat. Thermometers & Temperature. Temperature & Heat. Energy is the capacity to do work.

ENERGY Thermochemistry Energy is the capacity to do work. Chapter 6 Kinetic Energy thermal, mechanical, electrical, sound Potential Energy chemical, gravitational, electrostatic Heat Heat, or thermal energy,

AP* Chemistry THERMOCHEMISTRY

AP* Chemistry THERMOCHEMISTRY Terms for you to learn that will make this unit understandable: Energy (E) the ability to do work or produce heat ; the sum of all potential and kinetic energy in a system

Thermodynamics. Energy can be used * to provide heat * for mechanical work * to produce electric work * to sustain life

Thermodynamics Energy can be used * to provide heat * for mechanical work * to produce electric work * to sustain life Thermodynamics is the study of the transformation of energy into heat and for doing

Chapter 5 Energy Relationships in Chemistry: Thermochemistry

Chapter 5 Energy Relationships in Chemistry: Thermochemistry In order to study thermochemical changes, we first have to define (a) system that specify part of the universe of interest to us. (b) surrounding

CHAPTER 3 PROPERTIES OF NATURAL GASES

CHAPTER 3 PROPERTIES OF NATURAL GASES The behavior of natural gas, whether pure methane or a mixture of volatile hydrocarbons and the nonhydrocarbons nitrogen, carbon dioxide, and hydrogen sulfide, must

Energy and Chemical Reactions. Characterizing Energy:

Energy and Chemical Reactions Energy: Critical for virtually all aspects of chemistry Defined as: We focus on energy transfer. We observe energy changes in: Heat Transfer: How much energy can a material

Calorimetry and Enthalpy. Chapter 5.2

Calorimetry and Enthalpy Chapter 5.2 Heat Capacity Specific heat capacity (c) is the quantity of thermal energy required to raise the temperature of 1g of a substance by 1⁰C The units for specific heat

THERMOCHEMISTRY & DEFINITIONS

THERMOCHEMISTRY & DEFINITIONS Thermochemistry is the study of the study of relationships between chemistry and energy. All chemical changes and many physical changes involve exchange of energy with the

Energy Changes in Chemical Reactions. System loses heat (negative); gains heat (positive) Describe the difference between the two.

Energy Changes in Chemical Reactions Most reactions give off or absorb energy Energy is the capacity to do work or supply heat. Heat: transfer of thermal (kinetic) energy between two systems at different

Unit 5 Practice Test. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: Class: Date: Unit 5 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The internal energy of a system is always increased by. A) adding

Enthalpy changes and calorimetry. Enthalpy changes in reactions Calorimetry and heat measurement Hess s Law Heats of formation

Enthalpy changes and calorimetry Enthalpy changes in reactions Calorimetry and heat measurement Hess s Law Heats of formation Learning objectives Describe the standard state for thermodynamic functions

1. Thermite reaction 2. Enthalpy of reaction, H 3. Heating/cooling curves and changes in state 4. More thermite thermodynamics

Chem 105 Fri 10-23-09 1. Thermite reaction 2. Enthalpy of reaction, H 3. Heating/cooling curves and changes in state 4. More thermite thermodynamics 10/23/2009 1 Please PICK UP your graded EXAM in front.

3. Of energy, work, enthalpy, and heat, how many are state functions? a) 0 b) 1 c) 2 d) 3 e) 4 ANS: c) 2 PAGE: 6.1, 6.2

1. A gas absorbs 0.0 J of heat and then performs 15.2 J of work. The change in internal energy of the gas is a) 24.8 J b) 14.8 J c) 55.2 J d) 15.2 J ANS: d) 15.2 J PAGE: 6.1 2. Calculate the work for the

SUPPLEMENTARY TOPIC 3 ENERGY AND CHEMICAL REACTIONS

SUPPLEMENTARY TOPIC 3 ENERGY AND CHEMICAL REACTIONS Rearranging atoms. In a chemical reaction, bonds between atoms in one or more molecules (reactants) break and new bonds are formed with other atoms to

Chapter 5 Thermo. Energy & Chemistry. Energy & Chemistry. Units of Energy. Energy & Chemistry. Potential & Kinetic Energy. Some Basic Principles

1 Energy & Chemistry effrey Mack California State University, Sacramento Chapter 5 Principles of Chemical Reactivity: Energy and Chemical Reactions Questions that need to be addressed: How do we measure

Introductory Chemistry, 3 rd Edition Nivaldo Tro. Roy Kennedy Massachusetts Bay Community College Wellesley Hills, Maqqwertd ygoijpk[l

Introductory Chemistry, 3 rd Edition Nivaldo Tro Quantities in Car an octane and oxygen molecules and carbon dioxide and water Chemical Reactions Roy Kennedy Massachusetts Bay Community College Wellesley

OUTCOME 4 - TUTORIAL 1

Unit 42: Heat Transfer and Combustion Unit code: K/601/1443 QCF level: 5 Credit value: 15 OUTCOME 4 - TUTORIAL 1 4 Combustion processes Combustion chemistry: composition of air and hydrocarbon fuels; combustion

R.A. Chaplin Department of Chemical Engineering, University of New Brunswick, Canada

POWER PLANT COMBUSTION THEORY R.A. Chaplin Department of Chemical Engineering, University of New Brunswick, Canada Keywords: Combustion, Efficiency, Calorific Value, Combustion Products, Gas Analysis Contents

Determination of the enthalpy of combustion using a bomb calorimeter TEC

Determination of the enthalpy of TEC Related concepts First law of thermodynamics, Hess s law of constant heat summation, enthalpy of combustion, enthalpy of formation, heat capacity. Principle The bomb

Lecture 35: Atmosphere in Furnaces

Lecture 35: Atmosphere in Furnaces Contents: Selection of atmosphere: Gases and their behavior: Prepared atmospheres Protective atmospheres applications Atmosphere volume requirements Atmosphere sensors

Chemistry Guide

551534 - Chemistry Guide 1- Contents Question Item Objective Type Skill 1 0102 M03.02.04 Multiple-choice answer Mastery of Problem Solving 2 0099 M03.03.02 Multiple-choice answer Mastery of Concepts 3

Thermodynamics: First Law, Calorimetry, Enthalpy. Calorimetry. Calorimetry: constant volume. Monday, January 23 CHEM 102H T.

Thermodynamics: First Law, Calorimetry, Enthalpy Monday, January 23 CHEM 102H T. Hughbanks Calorimetry Reactions are usually done at either constant V (in a closed container) or constant P (open to the

Calorimeter: A device in which the heat associated with a specific process is measured.

1 CALORIMETRY p. 661-667 (simple), 673-675 (bomb) Calorimeter: A device in which the heat associated with a specific process is measured. There are two basic types of calorimeters: 1. Constant-pressure

Example: orange juice from frozen concentrate.

Dilution: a process in which the concentration (molarity) of a solution is lowered. The amount of solute (atoms, moles, grams, etc.) remains the same, but the volume is increased by adding more solvent.

Extended experimental investigation

Chemistry 2007 Sample assessment instrument and indicative responses Extended experimental investigation This sample is intended to inform the design of assessment instruments in the senior phase of learning.

The first law: transformation of energy into heat and work. Chemical reactions can be used to provide heat and for doing work.

The first law: transformation of energy into heat and work Chemical reactions can be used to provide heat and for doing work. Compare fuel value of different compounds. What drives these reactions to proceed

k is change in kinetic energy and E

Energy Balances on Closed Systems A system is closed if mass does not cross the system boundary during the period of time covered by energy balance. Energy balance for a closed system written between two

Thermochemical equations allow stoichiometric calculations.

CHEM 1105 THERMOCHEMISTRY 1. Change in Enthalpy ( H) Heat is evolved or absorbed in all chemical reactions. Exothermic reaction: heat evolved - heat flows from reaction mixture to surroundings; products

Sample Exercise 15.1 Writing Equilibrium-Constant Expressions

Sample Exercise 15.1 Writing Equilibrium-Constant Expressions Write the equilibrium expression for K c for the following reactions: Solution Analyze: We are given three equations and are asked to write

2. A process that releases heat into the surroundings is called. A process that can be reversed by an infinitesimal change in a parameter

Sample quiz and test questions Chapter 2. I. Terms and short answers 1. A system that can exchange neither matter nor energy with its surroundings is called isolated 2. A process that releases heat into

CHEMISTRY 3310 PROBLEM SHEET #4

CHEMISTRY 3310 PROBLEM SHEET #4 1. The specific heats of a number of materials are listed below. Calculate the molar heat capacity for each. (a) gold, (b) rust (Fe 2 O 3 ) (c) sodium chloride 2. Calculate

Absorption of Heat. Internal energy is the appropriate energy variable to use at constant volume

6 Absorption of Heat According to the First Law, E = q + w = q - P V, assuming P-V work is the only kind that can occur. Therefore, E = q V. The subscript means that the process occurs at constant volume.

PREPARATION FOR CHEMISTRY LAB: COMBUSTION

1 Name: Lab Instructor: PREPARATION FOR CHEMISTRY LAB: COMBUSTION 1. What is a hydrocarbon? 2. What products form in the complete combustion of a hydrocarbon? 3. Combustion is an exothermic reaction. What

Chapter 18 Homework Answers 18.22. 18.24. 18.26. a. Since G RT lnk, as long as the temperature remains constant, the value of G also remains constant. b. In this case, G G + RT lnq. Since the reaction

PREPARATION FOR CHEMISTRY LAB: COMBUSTION

1 1. What is a hydrocarbon? PREPARATION FOR CHEMISTRY LAB: COMBUSTION 2. Give an example of a combustion reaction? 3. What products form in the complete combustion of a hydrocarbon? Are these products

Ca 3 N 2 (s) + 6H 2 O(l) H 2NH 3 (g) + 3Ca(OH) 2 (s) mole ratio 1 : 6 : 2 : 3 molar mass (g/mole)

1. STOICHIOMETRY INVOLVING ONLY PURE SUBSTANCES For all chemical reactions, the balanced chemical equation gives the mole ratios of reactants and products. If we are dealing with pure chemicals, the molar

Thermodynamics- Chapter 19 Schedule and Notes

Thermodynamics- Chapter 19 Schedule and Notes Date Topics Video cast DUE Assignment during class time One Review of thermodynamics 1_thermo_review AND Review of thermo Wksheet 2.1ch19_intro Optional: 1sc_thermo

Determination of the enthalpy of combustion using a bomb calorimeter TEC. Safety precautions

Safety precautions Naphthalene is harmful if swallowed. May cause cancer. Is further very toxic to aquatic organisms and can have long-term harmful effects in bodies of water. Equipment 1 Bomb calorimeter

Heats of Transition, Heats of Reaction, Specific Heats, and Hess s Law

Heats of Transition, Heats of Reaction, Specific Heats, and Hess s Law GOAL AND OVERVIEW A simple calorimeter will be made and calibrated. It will be used to determine the heat of fusion of ice, the specific

Boiler efficiency measurement. Department of Energy Engineering

Boiler efficiency measurement Department of Energy Engineering Contents Heat balance on boilers Efficiency determination Loss categories Fluegas condensation principals Seasonal efficiency Emission evaluation

Transfer of heat energy often occurs during chemical reactions. A reaction

Chemistry 111 Lab: Thermochemistry Page I-3 THERMOCHEMISTRY Heats of Reaction The Enthalpy of Formation of Magnesium Oxide Transfer of heat energy often occurs during chemical reactions. A reaction may

Standard Free Energies of Formation at 298 K. Average Bond Dissociation Energies at 298 K

1 Thermodynamics There always seems to be at least one free response question that involves thermodynamics. These types of question also show up in the multiple choice questions. G, S, and H. Know what

CHAPTER 6 THERMOCHEMISTRY

Chapter 6 Thermochemistry Page 1 CHAPTER 6 THERMOCHEMISTRY 6-1. The standard state of an element or compound is determined at a pressure of and a temperature of. (a) 760 atm, 0 o C (b) 1 mmhg, 273 o C

Unit 14 Thermochemistry

Unit 14 Thermochemistry Name May 5 6 Unit 13 Acids and Bases Test Intro to Thermochemistry Videos (p.2-3) HW: p. 4-5 9 10 11 12 13 Thermochemistry Interpret graphs Heat of reaction & Specific Heat Heat

Experiment 30 ENERGY CONTENT OF FUELS

Experiment 30 ENERGY CONTENT OF FUELS FV 8/12/2014 MATERIALS: 12-oz. aluminum beverage can with top cut out and holes on side, thermometer, 100 ml graduated cylinder, 800 ml beaker, long-stem lighter,

Enthalpy of Combustion via Calorimetry

Enthalpy of Combustion via Calorimetry Introduction This experiment measures the enthalpy change when a system consisting of a known amount of a substance in the presence of excess oxygen is quantitatively

1 Exercise 2.19a pg 86

In this solution set, an underline is used to show the last significant digit of numbers. For instance in x = 2.51693 the 2,5,1, and 6 are all significant. Digits to the right of the underlined digit,

Test 5 Review questions. 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will

Name: Thursday, December 13, 2007 Test 5 Review questions 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will 1. decrease 2. increase 3. remain the same 2. The graph below

AP Chem Lab 2 Quiz #1 Calorimetry. Conceptual Understanding. Write complete sentences to show your understanding.

AP Chem Lab 2 Quiz #1 Calorimetry Name Conceptual Understanding. Write complete sentences to show your understanding. Differentiate between kinetic energy and potential energy. Energy may be transferred

UNIT 1 THERMOCHEMISTRY

UNIT 1 THERMOCHEMISTRY THERMOCHEMISTRY LEARNING OUTCOMES Students will be expected to: THERMOCHEMISTRY STSE analyse why scientific and technological activities take place in a variety individual and group

Materials and Energy Balance in Metallurgical Processes. Prof. S.C. Koria. Department of Materials Science and Engineering

Materials and Energy Balance in Metallurgical Processes Prof. S.C. Koria Department of Materials Science and Engineering Indian Institute of Technology, Kanpur Module No. # 01 Lecture No. # 06 Thermochemistry

Chapter 5. Thermochemistry

Chapter 5. Thermochemistry THERMODYNAMICS - study of energy and its transformations Thermochemistry - study of energy changes associated with chemical reactions Energy - capacity to do work or to transfer

Thermochemistry. r2 d:\files\courses\1110-20\99heat&thermorans.doc. Ron Robertson

Thermochemistry r2 d:\files\courses\1110-20\99heat&thermorans.doc Ron Robertson I. What is Energy? A. Energy is a property of matter that allows work to be done B. Potential and Kinetic Potential energy

Module 1: History of Fuels. Lecture 6: Fundamental definitions, properties and various measurements

1 P age Module 1: History of Fuels Lecture 6: Fundamental definitions, properties and various measurements 2 P age Keywords: Characterisation, analytical methods, standards 1.3 Fundamental definitions,

STOICHIOMETRY OF COMBUSTION

STOICHIOMETRY OF COMBUSTION FUNDAMENTALS: moles and kilomoles Atomic unit mass: 1/12 126 C ~ 1.66 10-27 kg Atoms and molecules mass is defined in atomic unit mass: which is defined in relation to the 1/12

Test Review # 9. Chemistry R: Form TR9.13A

Chemistry R: Form TR9.13A TEST 9 REVIEW Name Date Period Test Review # 9 Collision theory. In order for a reaction to occur, particles of the reactant must collide. Not all collisions cause reactions.

Energy Flow in Marine Ecosystem

Energy Flow in Marine Ecosystem Introduction Marin ecosystem is a functional system and consists of living groups and the surrounding environment It is composed of some groups and subgroups 1. The physical

Calorimetry: Determining the Heat of Fusion of Ice and the Heat of Vaporization of Liquid Nitrogen - Chemistry I Acc

Calorimetry: Determining the Heat of Fusion of Ice and the Heat of Vaporization of Liquid Nitrogen - Chemistry I Acc O B J E C T I V E 1. Using a simple calorimeter, Determine the heat of fusion of ice

SUGGESTION ANSWER SCHEME CHAPTER 8: THERMOCHEMISTRY. 1 (a) Use the data in the table below to answer the following questions:

SUGGESTION ANSWER SCHEME CHAPTER 8: THERMOCHEMISTRY ANSWER SCHEME UPS 2004/2005 SK027 1 (a) Use the data in the table below to answer the following questions: Enthalpy change ΔH (kj/mol) Atomization energy

Physics Assignment No 2 Chapter 20 The First Law of Thermodynamics Note: Answers are provided only to numerical problems.

Serway/Jewett: PSE 8e Problems Set Ch. 20-1 Physics 2326 - Assignment No 2 Chapter 20 The First Law of Thermodynamics Note: Answers are provided only to numerical problems. 1. How long would it take a

ENTHALPY CHANGES FOR A CHEMICAL REACTION scaling a rxn up or down (proportionality) quantity 1 from rxn heat 1 from Δ r H. = 32.

CHEMISTRY 103 Help Sheet #10 Chapter 4 (Part II); Sections 4.6-4.10 Do the topics appropriate for your lecture Prepared by Dr. Tony Jacob http://www.chem.wisc.edu/areas/clc (Resource page) Nuggets: Enthalpy

Measuring the Energy Content of Food using the Bomb Calorimeter

Measuring the energy content o ood using the Bomb Calorimeter Measuring the Energy Content o Food using the Bomb Calorimeter Aim: The aim o this laboratory exercise is to apply the First Law o Thermodynamics

CHEM 105 HOUR EXAM III 28-OCT-99. = -163 kj/mole determine H f 0 for Ni(CO) 4 (g) = -260 kj/mole determine H f 0 for Cr(CO) 6 (g)

CHEM 15 HOUR EXAM III 28-OCT-99 NAME (please print) 1. a. given: Ni (s) + 4 CO (g) = Ni(CO) 4 (g) H Rxn = -163 k/mole determine H f for Ni(CO) 4 (g) b. given: Cr (s) + 6 CO (g) = Cr(CO) 6 (g) H Rxn = -26

EXPERIMENT 12: Empirical Formula of a Compound

EXPERIMENT 12: Empirical Formula of a Compound INTRODUCTION Chemical formulas indicate the composition of compounds. A formula that gives only the simplest ratio of the relative number of atoms in a compound

Continuous flow direct water heating for potable hot water

Continuous flow direct water heating for potable hot water An independently produced White Paper for Rinnai UK 2013 www.rinnaiuk.com In the 35 years since direct hot water systems entered the UK commercial

Enthalpy of Reaction and Calorimetry worksheet

Enthalpy of Reaction and Calorimetry worksheet 1. Calcium carbonate decomposes at high temperature to form carbon dioxide and calcium oxide, calculate the enthalpy of reaction. CaCO 3 CO 2 + CaO 2. Carbon

Going back to the original form of the internal energy equation, du = dq + dw expansion + dw other

CALORIMETRY Internal energy is measured in terms of work and heat, du = dq + dw exp + dw other This equation is often applied to the first law of thermodynamics. This law states that the energy of the

Name Class Date. physical property solid liquid

2.1 MATTER SECTION REVIEW Objectives Identify the characteristics of matter and substances Differentiate among the three states of matter Define physical property and list several common physical properties

CHEMICAL EQUILIBRIUM

Chemistry 10 Chapter 14 CHEMICAL EQUILIBRIUM Reactions that can go in both directions are called reversible reactions. These reactions seem to stop before they go to completion. When the rate of the forward

Chapter 16 Review Packet

Chapter 16 Review Packet AP Chemistry Chapter 16 Practice Multiple Choice Portion 1. For which process is ΔS negative? Note: ΔS = S final S initial therefore, if ΔS is positive, S final > S initial if

Chapter 8 and 9 Energy Balances

Chapter 8 and 9 Energy Balances Reference States. Recall that enthalpy and internal energy are always defined relative to a reference state (Chapter 7). When solving energy balance problems, it is therefore

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Given: 4 NO2(g) + O2(g) 2 N2O5(g) ΔH = -110.2 kj find ΔH for N2O5(g) 2 NO2(g) + 1/2 O2(g).

CHM111 Lab Enthalpy of Hydration of Sodium Acetate Grading Rubric

Name Team Name CHM111 Lab Enthalpy of Hydration of Sodium Acetate Grading Rubric Criteria Points possible Points earned Lab Performance Printed lab handout and rubric was brought to lab 3 Safety and proper

Chemistry B11 Chapter 4 Chemical reactions

Chemistry B11 Chapter 4 Chemical reactions Chemical reactions are classified into five groups: A + B AB Synthesis reactions (Combination) H + O H O AB A + B Decomposition reactions (Analysis) NaCl Na +Cl

Chapter 20. Thermodynamics p. 811 842. Spontaneity. What have we learned about spontaneity during this course?

Chapter 20 p. 811 842 Spontaneous process: Ex. Nonspontaneous process: Ex. Spontaneity What have we learned about spontaneity during this course? 1) Q vs. K? 2) So.. Spontaneous process occurs when a system

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry 1. The ΔE of a system that releases 14.4 J of heat and does 4.8 J of work on the surroundings is J. (a). 19.2 J (b). 14.4 J (c). 4.8 J (d). - 19.2 J Explanation: The ΔE can be

Bomb Calorimetry Determination of the Energy in a Biodiesel

Bomb Calorimetry Determination of the Energy in a Biodiesel So now we ve got our sample of biodiesel from the previous week, what do we do with it. Well, a fuel is something that ideally is able to be

Chem 1A Exam 2 Review Problems

Chem 1A Exam 2 Review Problems 1. At 0.967 atm, the height of mercury in a barometer is 0.735 m. If the mercury were replaced with water, what height of water (in meters) would be supported at this pressure?

Lab Session 9, Experiment 8: Calorimetry, Heat of Reaction

Lab Session 9, Experiment 8: Calorimetry, Heat of Reaction Specific heat is an intensive property of a single phase (solid, liquid or gas) sample that describes how the temperature of the sample changes

Chapter 5: thermochemstry. Internal Energy: E

Chapter 5: thermochemstry tonight s goals Energy and Enthalpy Review Enthalpies of Reaction Calorimetry Hess Law Enthalpies of Formation Internal Energy: E E = The sum of all kinetic and potential energies

It can be hypothesized that as the number of Carbon atoms in an alcohol increases; the enthalpy of combustion will also become more negative.

Chemistry Lab Report Aim: The combustion of organic compounds produces large quantities of energy. These compounds range from that of alkanes, to alkenes to even alcohols. Ethanol is a commonly used fuel

Chapter 5 Practise Test

Chapter 5 Practise Test 1. An open end mercury manometer was constructed from a U shaped tube. In a particular measurement, the level in the end connected to the gas manifold, on which the experiment was

C H A P T E R 3 FUELS AND COMBUSTION

85 C H A P T E R 3 FUELS AND COMBUSTION 3.1 Introduction to Combustion Combustion Basics The last chapter set forth the basics of the Rankine cycle and the principles of operation of steam cycles of modern

AP Practice Questions

1) AP Practice Questions The tables above contain information for determining thermodynamic properties of the reaction below. C 2 H 5 Cl(g) + Cl 2 (g) C 2 H 4 Cl 2 (g) + HCl(g) (a) Calculate ΔH for

Heat evolved by the reaction = Heat absorbed by the water + Heat absorbed by the bomb

ENERGY OF A PEANUT AN EXPERIMENT IN CALORIMETRY 2011, 2010, 2002, 1995, by David A. Katz. All rights reserved. Reproduction permitted for educational use provided original copyright is included. INTRODUCTION:

Chemical Reactions. Chemistry 100. Bettelheim, Brown, Campbell & Farrell. Introduction to General, Organic and Biochemistry Chapter 4

Chemistry 100 Bettelheim, Brown, Campbell & Farrell Ninth Edition Introduction to General, Organic and Biochemistry Chapter 4 Chemical Reactions Chemical Reactions In a chemical reaction, one set of chemical

Construction of separating calorimeter is as shown in figure:

1. Title: Measurement of dryness fraction by Separating Calorimeter, Throttling Calorimeter, Separating and Throttling Calorimeter. 2. Learning objectives: 2.1. Intellectual skills: a) Measurement of Dryness

Biomass gasification methods

Lecture 8 Biomass gasification methods Thermochemical conversion method Principle Gasifiers Operationtypes-Applications The thermo-chemical decomposition of hydrocarbons from biomass in a reducing (oxygen