INLET AND EXAUST NOZZLES Chap. 10 AIAA AIRCRAFT ENGINE DESIGN R01-07/11/2011

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "INLET AND EXAUST NOZZLES Chap. 10 AIAA AIRCRAFT ENGINE DESIGN R01-07/11/2011"

Transcription

1 MASTER OF SCIENCE IN AEROSPACE ENGINEERING PROPULSION AND COMBUSTION INLET AND EXAUST NOZZLES Chap. 10 AIAA AIRCRAFT ENGINE DESIGN R01-07/11/2011 LECTURE NOTES AVAILABLE ON https://www.ingegneriaindustriale.unisalento.it/scheda_docente/-/people/antonio.ficarella/materiale Prof. Eng. Antonio Ficarella 1

2 CONCEPTS integration of the engine and airframe engine performance (offdesign) cycle analysis major impact on the performance inlet area vs. Mach number and altitude partial throttle conditions inlet total pressure ratio vs. Mach n. 2

3 INLETS overall pressure ratio πr freestream pressure recovery πd diffuser total pressure ratio πc compressor pressure ratio πi = πr πd 3

4 inlet: compressor with no moving parts adiabatic efficiency τr = τi 4

5 inlet polytrophic efficiency the inlet is superior to mechanical compressor up to Mach 3.5 5

6 PERFORMANCE OF AN INLET to bring the required air with min pressure loss and flow distortion controllable flow matching low installation drag good starting and stability low acoustic, radar and infrared signature min weight and cost life and reliability goals sub and supersonic inlets differ considerably efficient and stable supersonic diffusion over a wide range of Mach n. is very difficult to achieve variable geometry 6

7 DESIGN TOOLS SUBSONIC INLETS because the subsonic inlet can draw in airflow whose freestream area (A0) is larger than the inlet area (A1), variable inlet geometry is not required except that blow-in doors during takeoff 7

8 inlet total pressure ratio πd was assumed to be constant and equal to πdmax the total pressure ratio due to friction 8

9 the diameter at the throat Dth is sized such that the Mach n. does not exceed 0.8 freestream area of chocked flow at the sea level A*0 9

10 the AOA can vary (takeoff and landing) angle of attack (AOA): velocity of the air (V) to the wing chord line (WCL) the airflow angle with respect to the engine centerline will change inclining the face of the nacelle 10

11 effect: flow separation Dhl/Dth =

12 INLET FLOW DISTORTION 12

13 INET DRAG AND ENGINEOUT DRAG drag-divergence Mach n. Mdd at which the drag increase dramatically 13

14 14

15 NACELLE AND INTERFERENCE DRAG 15

16 DIFFUSER maintaining the flow attached to the inside walls in the presence of the adverse pressure gradient, boundary layers tend to separate VORTEX GENERATORS 16

17 17

18 ZERO FLIGHT SPEED sharp curvature of the streamlines flow separation 18

19 DESIGN TOOLS SUPERSONIC INLETS the nature of supersonic flow makes this inlet more difficult to design GASTAB can calculate the change in properties across the shocks 19

20 INLET TYPES INTERNAL COMPRESSION EXTERNAL COMPRESSION MIXED COMPRESSION 20

21 INTERNAL COMPRESSION a series of internal oblique shocks waves followed by a terminal shock downstream of the throat requires variable throat area to swallow the normal shock during starting and fast bypass doors unstarted inlet flow pattern distrupted Aths to start the inlet / Athr at normal operation Mth=1.2 many experts do not include it as a useful type of inlet 21

22 EXTERNAL COMPRESSION INLET a series of oblique shocks followed by a normal shock 22

23 pitot inlet acceptable only for Mach < 1.6 the drag at the inlet is associated mainly with the loss of momentum of the excess air captured 23

24 WITH OBLIQUE SHOCKS the external compression ramp turns the flow diffuser duct must turn back the flow which may add weight, length, friction ACCEPTABLE MACH <

25 MIXED COMPRESSION INLET at flight Mach n. above 2.5 two-dimensional (rectangular) and axisymmetric (circular) 25

26 26

27 TOTAL PRESSURE RECOVERY ηr estimated by 27

28 for a general inlet compression inlet 28

29 total pressure ratio across a normal shock Mx upstream My downstream Mach n. for oblique shocks Mx replaced by M1sinβ (M1 upstream) and My replaced by M2sin(β- θ) 29

30 two limiting values θ* leading to M2=1 θmax for which an oblique shock solution exist 30

31 MASS FLOW CHARACTERISTICS inlet mass flow ratio the ratio of the actual mass flow rate to the mass flow rate captured by the undisturbed geometrical opening difference: air spilled around the inlet engine mass flow ratio difference boundary layer bleed 31

32 inlet matched to the engine critical operation terminal shock just inside the lip min air fraction spilled at the inlet UNMATCHED supercritical operation the shock is sucked down into the diffuser lower inlet total pressure recovery 32

33 BUZZ STABILITY OF TERMINAL SHOCK low frequency, high amplitude pressure oscillation Mach throat 1.2 normal shock downstream where Mach 1.3 UNSTARTING expelling the normal shock when engine needs less air excess air must bypass the engine 33

34 BOUNDARY LAYER SEPARATION there is an adverse pressure gradient 34

35 INLET DESIGN AND SIZING the capture and throat areas must be large enough not to choke the airflow required by the engine for supersonic flight conditions, the inlet s capture area A1 is sized to capture the required air flow since the airflow varies with both flight Mach and engine throttle, variable design geometry is needed 35

36 INLET DRAG 36

37 REQUIRED INLET AIR FLOW required engine airflow m0 (m0spec) and the corresponding freestream area A0 (A0spec) are based on the calculation of ηrspec since ηr may be different from ηrspec 37

38 the engines operates as a constant mass flow device mc2=constant 4% margin for boundary layer bleed 38

39 INLET MASS FLOW 39

40 INLET SIZE ref = reference cycle require inlet size at a flight condition 40

41 INLET AIRFRAME INTERFERENCE EFFECTS 41

42 SUBSONIC DIFFUSER 42

43 EXISTING INLET DESIGN FIXED, DOUBLE RAMP 43

44 VARIABLE, TRIPLE RAMP 44

45 FLOW SEPARATION FROM SHARP LIP INLETS blow-in doors to reduce additive drags (takeoff) 45

46 EXAUST NOZZLES to increase the velocity of exhaust gases to collect and straighten the flow the pressure ratio controls the expansion process max thrust when the exit pressure Pe equals the ambient pressure P0 NOZZLE ADIABATIC EFFICIENCY es = ideal exit conditions if inlet kinetic energy is small nozzle polytrophic efficiency 46

47 47

48 NOZZLE TYPES CONVERGENT NOZZLE when pressure ratio is low (<4) CONVERGENT-DIVERGENT (C-D) NOZZLE variable geometry 48

49 EJECTOR-NOZZLE CONFIGURATION 49

50 NOZZLE FUNCTIONS back-pressure control for the engine thrust vectoring ENGINE BACK PRESSURE CONTROL at reduced engine corrected mass flow rates (reduced throttle), the operating line of a compressor move closer to stall line INCREASE THE NOZZLE AREA to reduce the engine back-pressure and increase the corrected mass flow through the compressor 50

51 afterburning engines large change in nozzle throat area opening the nozzle to max area reduces the turbine back pressure the necessary power for starting may be produced at lower turbine temperature and the compressor may be started at a lower speed reduces the size of the starter 51

52 52

53 THRUST REVERSING AND VECTORING 53

54 54

55 DESIGN TOOLS EXHAUST NOZZLES TOTAL PRESSURE LOSS two-dimensional or axisymmetric nozzle the total pressure loss of a rectangular nozzle with an aspect ratio AR (W/H) of 2 will be 1.2 times that of a circular nozzle of the same area 55

56 NOZZLE COEFFICIENTS gross thrust coefficient discharge or flow coefficient if A8e is the actual area required to pass the flow of engine cycle calculation: 56

57 57

58 velocity coefficient 58

59 angular coefficient CA thrust loss due to the non-axial exit 59

60 ONE-DIMENSIONAL FLOW for adiabatic flow CA=1 60

61 separation: effective exit pressure just preceding the shock wave (0.37P0) there may be insufficient thrust increase for a C-D nozzle on a subsonic cruise to pay for the additional drag and weight of such a nozzle 61

62 62

63 GENERAL THRUST PERFORMANCE gross thrust coefficient 63

64 neglecting leakage and cooling 64

65 OFF-DESIGN 65

66 EXAMPLES 66

Gas Turbine Engine Performance Analysis. S. Jan

Gas Turbine Engine Performance Analysis. S. Jan Gas Turbine Engine Performance Analysis S. Jan Jul. 21 2014 Chapter 1 Basic Definitions Potential & Kinetic Energy PE = mgz/g c KE = mv 2 /2g c Total Energy Operational Envelopes & Standard Atmosphere

More information

SR-71 PROPULSION SYSTEM P&W J58 ENGINE (JT11D-20) ONE OF THE BEST JET ENGINES EVER BUILT

SR-71 PROPULSION SYSTEM P&W J58 ENGINE (JT11D-20) ONE OF THE BEST JET ENGINES EVER BUILT SR-71 PROPULSION SYSTEM P&W J58 ENGINE (JT11D-20) PETER LAW ONE OF THE BEST JET ENGINES EVER BUILT Rolls-Royce Milestone Engines Merlin Conway W2B Welland Derwent Trent SR-71 GENERAL CHARACTERISTICS

More information

UOT Mechanical Department / Aeronautical Branch

UOT Mechanical Department / Aeronautical Branch Chapter Eleven/Normal shock in converging diverging nozzles ------------------------------------------------------------------------------------------------------------------------------ --------------

More information

Summary. Engine Sizing & Selection. Propulsion Integration Extremely Important. Airframe Integrator s Motto. Piston Engine.

Summary. Engine Sizing & Selection. Propulsion Integration Extremely Important. Airframe Integrator s Motto. Piston Engine. Engine Sizing & Selection Copyright 2006 by Don Edberg Summary Engine Sizing & Arrangement Introduction Performance Requirements Engine Geometric Characteristics & Placement Airframe Integrator s Motto

More information

ME 239: Rocket Propulsion. Over- and Under-expanded Nozzles and Nozzle Configurations. J. M. Meyers, PhD

ME 239: Rocket Propulsion. Over- and Under-expanded Nozzles and Nozzle Configurations. J. M. Meyers, PhD ME 239: Rocket Propulsion Over- and Under-expanded Nozzles and Nozzle Configurations J. M. Meyers, PhD 1 Over- and Underexpanded Nozzles Underexpanded Nozzle Discharges fluid at an exit pressure greater

More information

Gasdynamics of nozzle flow

Gasdynamics of nozzle flow Chapter 0 Gasdynamics of nozzle flow nozzle is an extremely e cient device for converting thermal energy to kinetic energy. Nozzles come up in a vast range of applications. Obvious ones are the thrust

More information

ME 239: Rocket Propulsion. Nozzle Thermodynamics and Isentropic Flow Relations. J. M. Meyers, PhD

ME 239: Rocket Propulsion. Nozzle Thermodynamics and Isentropic Flow Relations. J. M. Meyers, PhD ME 39: Rocket Propulsion Nozzle Thermodynamics and Isentropic Flow Relations J. M. Meyers, PhD 1 Assumptions for this Analysis 1. Steady, one-dimensional flow No motor start/stopping issues to be concerned

More information

is the stagnation (or total) pressure, constant along a streamline.

is the stagnation (or total) pressure, constant along a streamline. 70 Incompressible flow (page 60): Bernoulli s equation (steady, inviscid, incompressible): p 0 is the stagnation (or total) pressure, constant along a streamline. Pressure tapping in a wall parallel to

More information

Ideal Jet Propulsion Cycle

Ideal Jet Propulsion Cycle Ideal Jet ropulsion Cycle Gas-turbine engines are widely used to power aircrafts because of their light-weight, compactness, and high power-to-weight ratio. Aircraft gas turbines operate on an open cycle

More information

How Supersonic Inlets Work

How Supersonic Inlets Work 8/19/13 How Supersonic Inlets Work Details of the Geometry and Operation of the SR-71 Mixed Compression Inlet By J. Thomas Anderson Technical Fellow Emeritus Lockheed Martin Skunk Works Copyright Lockheed

More information

COMBUSTION SYSTEMS - EXAMPLE Cap. 9 AIAA AIRCRAFT ENGINE DESIGN www.amazon.com

COMBUSTION SYSTEMS - EXAMPLE Cap. 9 AIAA AIRCRAFT ENGINE DESIGN www.amazon.com CORSO DI LAUREA MAGISTRALE IN Ingegneria Aerospaziale PROPULSION AND COMBUSTION COMBUSTION SYSTEMS - EXAMPLE Cap. 9 AIAA AIRCRAFT ENGINE DESIGN www.amazon.com LA DISPENSA E DISPONIBILE SU www.ingindustriale.unisalento.it

More information

CC RH A STUDY ON THE OPTIMIZATION OF JET ENGINES FOR COMBAT AIRCRAFTS. C. SSnchez Tarifa* E. Mera Diaz**

CC RH A STUDY ON THE OPTIMIZATION OF JET ENGINES FOR COMBAT AIRCRAFTS. C. SSnchez Tarifa* E. Mera Diaz** A STUDY ON THE OPTIMIZATION OF JET ENGINES FOR COMBAT AIRCRAFTS C. SSnchez Tarifa* E. Mera Diaz** Abstract In the paper the optimization of jet engines for combat aircrafts is discussed. This optimization

More information

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 20 Conservation Equations in Fluid Flow Part VIII Good morning. I welcome you all

More information

Forces on the Rocket. Rocket Dynamics. Equation of Motion: F = Ma

Forces on the Rocket. Rocket Dynamics. Equation of Motion: F = Ma Rocket Dynamics orces on the Rockets - Drag Rocket Stability Rocket Equation Specific Impulse Rocket otors Thrust orces on the Rocket Equation of otion: = a orces at through the Center of ass Center of

More information

CO 2 41.2 MPa (abs) 20 C

CO 2 41.2 MPa (abs) 20 C comp_02 A CO 2 cartridge is used to propel a small rocket cart. Compressed CO 2, stored at a pressure of 41.2 MPa (abs) and a temperature of 20 C, is expanded through a smoothly contoured converging nozzle

More information

PEMP RMD510. M.S.Ramaiah School of Advanced Studies, Bengaluru

PEMP RMD510. M.S.Ramaiah School of Advanced Studies, Bengaluru Turbine and Compressor Matching Session delivered by: Prof. Q. H. Nagpurwala 1 Session Objectives To discuss the operating characteristics of compressors and turbines To understand the basic conditions

More information

Chapter 17. For the most part, we have limited our consideration so COMPRESSIBLE FLOW. Objectives

Chapter 17. For the most part, we have limited our consideration so COMPRESSIBLE FLOW. Objectives Chapter 17 COMPRESSIBLE FLOW For the most part, we have limited our consideration so far to flows for which density variations and thus compressibility effects are negligible. In this chapter we lift this

More information

Ejector Refrigeration System

Ejector Refrigeration System Ejector Refrigeration System Design Team Matthew Birnie, Morgan Galaznik, Scott Jensen, Scott Marchione, Darren Murphy Design Advisor Prof. Gregory Kowalski Abstract An ejector refrigeration system utilizing

More information

AEROSPACE PROPULSION SYSTEMS

AEROSPACE PROPULSION SYSTEMS AEROSACE ROULSION SYSTEMS Chapter Fundamentals Chapter Rockets Chapter 3 iston Aerodynamic Engines Chapter 4 Gas Turbine Engines Chapter 5 Ramjets and Scramjets 00 John Wiley & Sons (Asia) te Ltd Courtesy

More information

CFD Analysis of Supersonic Exhaust Diffuser System for Higher Altitude Simulation

CFD Analysis of Supersonic Exhaust Diffuser System for Higher Altitude Simulation Page1 CFD Analysis of Supersonic Exhaust Diffuser System for Higher Altitude Simulation ABSTRACT Alan Vincent E V P G Scholar, Nehru Institute of Engineering and Technology, Coimbatore Tamil Nadu A high

More information

High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur

High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 06 One-dimensional Gas Dynamics (Contd.) We

More information

Jet Propulsion. Lecture-2. Ujjwal K Saha, Ph.D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1

Jet Propulsion. Lecture-2. Ujjwal K Saha, Ph.D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1 Lecture-2 Prepared under QIP-CD Cell Project Jet Propulsion Ujjwal K Saha, Ph.D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1 Simple Gas Turbine Cycle A gas turbine that

More information

OUTLINE SHEET 5-1-1 PRINCIPLES OF GAS TURBINE OPERATION

OUTLINE SHEET 5-1-1 PRINCIPLES OF GAS TURBINE OPERATION Sheet 1 of 2 OUTLINE SHEET 5-1-1 PRINCIPLES OF GAS TURBINE OPERATION A. INTRODUCTION This lesson topic introduces some basic propulsion theory as it applies to the gas turbine engine and explains some

More information

Introduction to Aerospace Engineering Formulas

Introduction to Aerospace Engineering Formulas Introduction to Aerospace Engineering Formulas Aerodynamics Formulas. Definitions p = The air pressure. (P a = N/m 2 ) ρ = The air density. (kg/m 3 ) g = The gravitational constant. (Value at sea level

More information

On Hammershock Propagation in a Supersonic Flow Field

On Hammershock Propagation in a Supersonic Flow Field NASA/TM 2002-211717 On Hammershock Propagation in a Supersonic Flow Field A. Robert Porro Glenn Research Center, Cleveland, Ohio July 2002 The NASA STI Program Office... in Profile Since its founding,

More information

Lift and Drag on an Airfoil ME 123: Mechanical Engineering Laboratory II: Fluids

Lift and Drag on an Airfoil ME 123: Mechanical Engineering Laboratory II: Fluids Lift and Drag on an Airfoil ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction In this lab the characteristics of airfoil lift, drag,

More information

Mechanical Design of Turbojet Engines. An Introduction

Mechanical Design of Turbojet Engines. An Introduction Mechanical Design of Turbomachinery Mechanical Design of Turbojet Engines An Introduction Reference: AERO0015-1 - MECHANICAL DESIGN OF TURBOMACHINERY - 5 ECTS - J.-C. GOLINVAL University of Liege (Belgium)

More information

Performance. 10. Thrust Models

Performance. 10. Thrust Models Performance 10. Thrust Models In order to determine the maximum speed at which an aircraft can fly at any given altitude, we must solve the simple-looking equations for : (1) We have previously developed

More information

Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics

Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics Lecture 6 - Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.

More information

INTRODUCTION TO FLUID MECHANICS

INTRODUCTION TO FLUID MECHANICS INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION

More information

Fundamentals of Pulse Detonation Engine (PDE) and Related Propulsion Technology

Fundamentals of Pulse Detonation Engine (PDE) and Related Propulsion Technology Fundamentals of Pulse Detonation Engine (PDE) and Related Propulsion Technology Dora E. Musielak, Ph.D. Aerospace Engineering Consulting Arlington, TX All rights reserved. No part of this publication may

More information

9210-228 Level 7 Post Graduate Diploma in Mechanical Engineering Aerospace engineering

9210-228 Level 7 Post Graduate Diploma in Mechanical Engineering Aerospace engineering 9210-228 Level 7 Post Graduate Diploma in Mechanical Engineering Aerospace engineering You should have the following for this examination one answer book non-programmable calculator pen, pencil, drawing

More information

Forces on a Model Rocket

Forces on a Model Rocket Forces on a Model Rocket This pamphlet was developed using information for the Glenn Learning Technologies Project. For more information, visit their web site at: http://www.grc.nasa.gov/www/k-12/aboutltp/educationaltechnologyapplications.html

More information

APP Aircraft Performance Program Demo Notes Using Cessna 172 as an Example

APP Aircraft Performance Program Demo Notes Using Cessna 172 as an Example APP Aircraft Performance Program Demo Notes Using Cessna 172 as an Example Prepared by DARcorporation 1. Program Layout & Organization APP Consists of 8 Modules, 5 Input Modules and 2 Calculation Modules.

More information

Wing Design: Major Decisions. Wing Area / Wing Loading Span / Aspect Ratio Planform Shape Airfoils Flaps and Other High Lift Devices Twist

Wing Design: Major Decisions. Wing Area / Wing Loading Span / Aspect Ratio Planform Shape Airfoils Flaps and Other High Lift Devices Twist Wing Design: Major Decisions Wing Area / Wing Loading Span / Aspect Ratio Planform Shape Airfoils Flaps and Other High Lift Devices Twist Wing Design Parameters First Level Span Area Thickness Detail Design

More information

Fluent Software Training TRN Boundary Conditions. Fluent Inc. 2/20/01

Fluent Software Training TRN Boundary Conditions. Fluent Inc. 2/20/01 Boundary Conditions C1 Overview Inlet and Outlet Boundaries Velocity Outline Profiles Turbulence Parameters Pressure Boundaries and others... Wall, Symmetry, Periodic and Axis Boundaries Internal Cell

More information

Airbreathing Rotating Detonation Wave Engine Cycle Analysis

Airbreathing Rotating Detonation Wave Engine Cycle Analysis 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 5-8 July 010, Nashville, TN AIAA 010-7039 Airbreathing Rotating Detonation Wave Engine Cycle Analysis Eric M. Braun, Frank K. Lu, Donald R.

More information

NACA Nomenclature NACA 2421. NACA Airfoils. Definitions: Airfoil Geometry

NACA Nomenclature NACA 2421. NACA Airfoils. Definitions: Airfoil Geometry 0.40 m 0.21 m 0.02 m NACA Airfoils 6-Feb-08 AE 315 Lesson 10: Airfoil nomenclature and properties 1 Definitions: Airfoil Geometry z Mean camber line Chord line x Chord x=0 x=c Leading edge Trailing edge

More information

Propeller Fundamentals. A propeller is an interface between an engine and an aircraft. It creates thrust for flying an aircraft.

Propeller Fundamentals. A propeller is an interface between an engine and an aircraft. It creates thrust for flying an aircraft. 28 1 Propeller Fundamentals A propeller is an interface between an engine and an aircraft. It creates thrust for flying an aircraft. 2 Propeller blade 4-bladed propeller 3-bladed propeller 3 All propulsors

More information

CFD ANALYSIS OF RAE 2822 SUPERCRITICAL AIRFOIL AT TRANSONIC MACH SPEEDS

CFD ANALYSIS OF RAE 2822 SUPERCRITICAL AIRFOIL AT TRANSONIC MACH SPEEDS CFD ANALYSIS OF RAE 2822 SUPERCRITICAL AIRFOIL AT TRANSONIC MACH SPEEDS K.Harish Kumar 1, CH.Kiran Kumar 2, T.Naveen Kumar 3 1 M.Tech Thermal Engineering, Sanketika Institute of Technology & Management,

More information

Textbook: Introduction to Fluid Mechanics by Philip J. Pritchard. John Wiley & Sons, 8th Edition, ISBN-13 9780470547557, -10 0470547553

Textbook: Introduction to Fluid Mechanics by Philip J. Pritchard. John Wiley & Sons, 8th Edition, ISBN-13 9780470547557, -10 0470547553 Semester: Spring 2016 Course: MEC 393, Advanced Fluid Mechanics Instructor: Professor Juldeh Sesay, 226 Heavy Engineering Bldg., (631)632-8493 Email: Juldeh.sessay@stonybrook.edu Office hours: Mondays

More information

ME 305 Fluid Mechanics I. Part 4 Integral Formulation of Fluid Flow

ME 305 Fluid Mechanics I. Part 4 Integral Formulation of Fluid Flow ME 305 Fluid Mechanics I Part 4 Integral Formulation of Fluid Flow These presentations are prepared by Dr. Cüneyt Sert Mechanical Engineering Department Middle East Technical University Ankara, Turkey

More information

6.1 AIRCRAFT TECHNICAL AND GENERAL AEROPLANE AIRFRAME AND SYSTEMS Fuselage. types of construction

6.1 AIRCRAFT TECHNICAL AND GENERAL AEROPLANE AIRFRAME AND SYSTEMS Fuselage. types of construction 6.1 IRCRFT TECHNICL ND GENERL EROPLNE 6.1.1 IRFRME ND SYSTEMS 6.1.1.1 Fuselage types of construction structural components and materials used stress 6.1.1.2 Cockpit and passenger cabin windows construction

More information

Chapter 4 Estimation of wing loading and thrust loading (Lectures 9 to 18)

Chapter 4 Estimation of wing loading and thrust loading (Lectures 9 to 18) Chapter 4 Estimation of wing loading and thrust loading (Lectures 9 to 18) Keywords : Choice of wing loading based on considerations of landing field length, prescribed flight speed, absolute ceiling,

More information

Investigations of the Performance on Vaned Diffusers for Low Specific Speed Centrifugal Compressor

Investigations of the Performance on Vaned Diffusers for Low Specific Speed Centrifugal Compressor International Journal of Gas Turbine, Propulsion and Power Systems February 2014, Volume 6, Number 1 International Journal of Gas Turbine, Propulsion and Power Systems Investigations of the Performance

More information

Simulation at Aeronautics Test Facilities A University Perspective Helen L. Reed, Ph.D., P.E. ASEB meeting, Irvine CA 15 October 2014 1500-1640

Simulation at Aeronautics Test Facilities A University Perspective Helen L. Reed, Ph.D., P.E. ASEB meeting, Irvine CA 15 October 2014 1500-1640 Simulation at Aeronautics Test A University Perspective Helen L. Reed, Ph.D., P.E. ASEB meeting, Irvine CA 15 October 2014 1500-1640 Questions How has the ability to do increasingly accurate modeling and

More information

Compressor and turbines

Compressor and turbines Compressor and turbines In this chapter, we will look at the compressor and the turbine. They are both turbomachinery: machines that transfer energy from a rotor to a fluid, or the other way around. The

More information

Chapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any

Chapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any Chapter 10 Flow Measurements Material from Theory and Design for Mechanical Measurements; Figliola, Third Edition Flow Rate Flow rate can be expressed in terms of volume flow rate (volume/time) or mass

More information

Routinely surveying tower overhead vacuum systems can

Routinely surveying tower overhead vacuum systems can Troubleshooting crude vacuum tower overhead ejector systems Use these guidelines to improve performance and product quality J. R. LINES AND L. L. FRENS, GRAHAM MANUFACTURING CO. INC., BATAVIA, NEW YORK

More information

AOE 3104 Aircraft Performance Problem Sheet 2 (ans) Find the Pressure ratio in a constant temperature atmosphere:

AOE 3104 Aircraft Performance Problem Sheet 2 (ans) Find the Pressure ratio in a constant temperature atmosphere: AOE 3104 Aircraft Performance Problem Sheet 2 (ans) 6. The atmosphere of Jupiter is essentially made up of hydrogen, H 2. For Hydrogen, the specific gas constant is 4157 Joules/(kg)(K). The acceleration

More information

Sheet 5:Chapter 5 5 1C Name four physical quantities that are conserved and two quantities that are not conserved during a process.

Sheet 5:Chapter 5 5 1C Name four physical quantities that are conserved and two quantities that are not conserved during a process. Thermo 1 (MEP 261) Thermodynamics An Engineering Approach Yunus A. Cengel & Michael A. Boles 7 th Edition, McGraw-Hill Companies, ISBN-978-0-07-352932-5, 2008 Sheet 5:Chapter 5 5 1C Name four physical

More information

ME 239: Rocket Propulsion Introductory Remarks

ME 239: Rocket Propulsion Introductory Remarks ME 239: Rocket Propulsion Introductory Remarks 1 Propulsion Propulsion: The act of changing a body s motion from mechanisms providing force to that body Jet Propulsion: Reaction force imparted to device

More information

g GEAE The Aircraft Engine Design Project- Engine Cycles Design Problem Overview Spring 2009 Ken Gould Phil Weed GE Aircraft Engines

g GEAE The Aircraft Engine Design Project- Engine Cycles Design Problem Overview Spring 2009 Ken Gould Phil Weed GE Aircraft Engines GEAE The Aircraft Engine Design Project- Engine Cycles Design Problem Overview Spring 2009 Ken Gould Phil Weed 1 Background The Aircraft Engine Design Project- Engine Cycles A new aircraft application

More information

Flow Loss in Screens: A Fresh Look at Old Correlation. Ramakumar Venkata Naga Bommisetty, Dhanvantri Shankarananda Joshi and Vighneswara Rao Kollati

Flow Loss in Screens: A Fresh Look at Old Correlation. Ramakumar Venkata Naga Bommisetty, Dhanvantri Shankarananda Joshi and Vighneswara Rao Kollati Journal of Mechanics Engineering and Automation 3 (013) 9-34 D DAVID PUBLISHING Ramakumar Venkata Naga Bommisetty, Dhanvantri Shankarananda Joshi and Vighneswara Rao Kollati Engineering Aerospace, MCOE,

More information

NUMERICAL ANALYSIS OF AERO-SPIKE NOZZLE FOR SPIKE LENGTH OPTIMIZATION

NUMERICAL ANALYSIS OF AERO-SPIKE NOZZLE FOR SPIKE LENGTH OPTIMIZATION IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET) ISSN(E): 2321-8843; ISSN(P): 2347-4599 Vol. 1, Issue 6, Nov 2013, 1-14 Impact Journals NUMERICAL ANALYSIS OF AERO-SPIKE

More information

AE 430 - Stability and Control of Aerospace Vehicles

AE 430 - Stability and Control of Aerospace Vehicles AE 430 - Stability and Control of Aerospace Vehicles Atmospheric Flight Mechanics 1 Atmospheric Flight Mechanics Performance Performance characteristics (range, endurance, rate of climb, takeoff and landing

More information

(NASA-CR-199637) FLOW N96-13156 CHARACTERISTICS IN BOUNDARY LAYER BLEED SLOTS WITH PLENUM (Cincinnati Univ.) 10 p Unclas 63/34 0072808

(NASA-CR-199637) FLOW N96-13156 CHARACTERISTICS IN BOUNDARY LAYER BLEED SLOTS WITH PLENUM (Cincinnati Univ.) 10 p Unclas 63/34 0072808 (NASA-CR-199637) FLOW N96-13156 CHARACTERISTICS IN BOUNDARY LAYER BLEED SLOTS WITH PLENUM (Cincinnati Univ.) 10 p Unclas 63/34 0072808 NASA-CR-199637 AIAA 95-0033 FLOW CHARACTERISTICS IN BOUNDARY LAYER

More information

Performance. Power Plant Output in Terms of Thrust - General - Arbitrary Drag Polar

Performance. Power Plant Output in Terms of Thrust - General - Arbitrary Drag Polar Performance 11. Level Flight Performance and Level flight Envelope We are interested in determining the maximum and minimum speeds that an aircraft can fly in level flight. If we do this for all altitudes,

More information

Modelling and Simulation of Supersonic Nozzle Using Computational Fluid Dynamics

Modelling and Simulation of Supersonic Nozzle Using Computational Fluid Dynamics Modelling and Simulation of Supersonic Nozzle Using Computational Fluid Dynamics 1 Venkatesh.V, 2 C Jaya pal Reddy Department of Aeronautical Engineering, MLR Institute of Technology and Management, Hyderabad

More information

Relevance of Modern Optimization Methods in Turbo Machinery Applications

Relevance of Modern Optimization Methods in Turbo Machinery Applications Relevance of Modern Optimization Methods in Turbo Machinery Applications - From Analytical Models via Three Dimensional Multidisciplinary Approaches to the Optimization of a Wind Turbine - Prof. Dr. Ing.

More information

High-Lift Systems. High Lift Systems -- Introduction. Flap Geometry. Outline of this Chapter

High-Lift Systems. High Lift Systems -- Introduction. Flap Geometry. Outline of this Chapter High-Lift Systems Outline of this Chapter The chapter is divided into four sections. The introduction describes the motivation for high lift systems, and the basic concepts underlying flap and slat systems.

More information

FUNDAMENTALS OF GAS TURBINE ENGINES

FUNDAMENTALS OF GAS TURBINE ENGINES FUNDAMENTALS OF GAS TURBINE ENGINES INTRODUCTION The gas turbine is an internal combustion engine that uses air as the working fluid. The engine extracts chemical energy from fuel and converts it to mechanical

More information

CFD Analysis of Swept and Leaned Transonic Compressor Rotor

CFD Analysis of Swept and Leaned Transonic Compressor Rotor CFD Analysis of Swept and Leaned Transonic Compressor Nivin Francis #1, J. Bruce Ralphin Rose *2 #1 Student, Department of Aeronautical Engineering& Regional Centre of Anna University Tirunelveli India

More information

The Aircraft Engine Design Project Fundamentals of Engine Cycles

The Aircraft Engine Design Project Fundamentals of Engine Cycles GE Aviation The Aircraft Engine Design Project Fundamentals of Engine Cycles Spring 2009 Ken Gould Phil Weed 1 GE Aviation Technical History I-A - First U.S. jet engine (Developed in Lynn, MA, 1941) U.S.

More information

Tangential Impulse Detonation Engine

Tangential Impulse Detonation Engine Tangential Impulse Detonation Engine Ionut Porumbel, Ph.D. Aerodays 2015 21.10.2015, London, UK Overview Ongoing FP 7 project breakthrough propulsion system technology a step change in air transportation;

More information

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 10 Steam Power Cycle, Steam Nozzle Good afternoon everybody.

More information

An insight into some innovative cycles for aircraft propulsion

An insight into some innovative cycles for aircraft propulsion 731 An insight into some innovative cycles for aircraft propulsion G Corchero 1, J L Montañés 1, D Pascovici 2, and S Ogaji 2 1 Universidad Politécnica de Madrid (UPM), E. T. S. Ingenieros Aeronáuticos,

More information

MODULE SPECIFICATION FORM

MODULE SPECIFICATION FORM MODULE SPECIFICATION FORM Module Title: Thermo-fluid and Propulsion Level: 5 Credit Value: 20 Module code: (if known) ENG538 Cost Centre: GAME JACS2 code: H141/H311/ H450 Semester(s) in which to be offered:

More information

THE EVOLUTION OF TURBOMACHINERY DESIGN (METHODS) Parsons 1895

THE EVOLUTION OF TURBOMACHINERY DESIGN (METHODS) Parsons 1895 THE EVOLUTION OF TURBOMACHINERY DESIGN (METHODS) Parsons 1895 Rolls-Royce 2008 Parsons 1895 100KW Steam turbine Pitch/chord a bit too low. Tip thinning on suction side. Trailing edge FAR too thick. Surface

More information

CFD Analysis of Civil Transport Aircraft

CFD Analysis of Civil Transport Aircraft IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 06, 2015 ISSN (online): 2321-0613 CFD Analysis of Civil Transport Aircraft Parthsarthi A Kulkarni 1 Dr. Pravin V Honguntikar

More information

1. Why are the back work ratios relatively high in gas turbine engines? 2. What 4 processes make up the simple ideal Brayton cycle?

1. Why are the back work ratios relatively high in gas turbine engines? 2. What 4 processes make up the simple ideal Brayton cycle? 1. Why are the back work ratios relatively high in gas turbine engines? 2. What 4 processes make up the simple ideal Brayton cycle? 3. For fixed maximum and minimum temperatures, what are the effect of

More information

Practice Problems on Conservation of Energy. heat loss of 50,000 kj/hr. house maintained at 22 C

Practice Problems on Conservation of Energy. heat loss of 50,000 kj/hr. house maintained at 22 C COE_10 A passive solar house that is losing heat to the outdoors at an average rate of 50,000 kj/hr is maintained at 22 C at all times during a winter night for 10 hr. The house is to be heated by 50 glass

More information

AEROSPACE PROPULSION & AERODYNAMICS SI MODULE CODE 55-5922 CREDITS 20 LEVEL 5 JACS CODE. Total Hours HOURS BY TYPE 48 52 100 200

AEROSPACE PROPULSION & AERODYNAMICS SI MODULE CODE 55-5922 CREDITS 20 LEVEL 5 JACS CODE. Total Hours HOURS BY TYPE 48 52 100 200 MODULE DESCRIPTOR TITLE AEROSPACE PROPULSIO & AERODAMICS SI MODULE CODE 55-5922 CREDITS 20 LEVEL 5 JACS CODE H450 SUBJECT GROUP Mechanical engineering DEPARTMET Engineering and Mathematics MODULE LEADER

More information

Chapter 7 Special considerations in configuration lay out (Lecture 31)

Chapter 7 Special considerations in configuration lay out (Lecture 31) Chapter 7 Special considerations in configuration lay out (Lecture 31) Keywords Considerations which influence airplane lay out aerodynamic, structural, crash worthiness, manufacturing, maintainability

More information

THEORY OF JETS. 2.1 Introduction. 2.2 Overview of Jet Flows. Contents

THEORY OF JETS. 2.1 Introduction. 2.2 Overview of Jet Flows. Contents 2 Contents THEORY OF JETS 2.1 2.2 2.3 2.4 2.5 Introduction Overview of Jet Flows Structure and Development of a Free Jet Factors Influencing Jet Spread Conclusion 2.1 Introduction In this chapter, the

More information

WEEKLY SCHEDULE. GROUPS (mark X) SPECIAL ROOM FOR SESSION (Computer class room, audio-visual class room)

WEEKLY SCHEDULE. GROUPS (mark X) SPECIAL ROOM FOR SESSION (Computer class room, audio-visual class room) SESSION WEEK COURSE: THERMAL ENGINEERING DEGREE: Aerospace Engineering YEAR: 2nd TERM: 2nd The course has 29 sessions distributed in 14 weeks. The laboratory sessions are included in these sessions. The

More information

Minor losses include head losses through/past hydrants, couplers, valves,

Minor losses include head losses through/past hydrants, couplers, valves, Lecture 10 Minor Losses & Pressure Requirements I. Minor Losses Minor (or fitting, or local ) hydraulic losses along pipes can often be estimated as a function of the velocity head of the water within

More information

Pressure Measurements

Pressure Measurements Pressure Measurements Measurable pressures Absolute pressure Gage pressure Differential pressure Atmospheric/barometric pressure Static pressure Total Pressure Pressure Measurement Mechanical Pressure

More information

Introduction to Aerospace Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay

Introduction to Aerospace Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Introduction to Aerospace Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Module No. # 01 Lecture No. # 39 Closure of the lecture

More information

UPPER-SURFACE BLOWING NACELLE DESIGN STUDY FOR A SWEPT WING AIRPLANE AT CRUISE CONDITIONS

UPPER-SURFACE BLOWING NACELLE DESIGN STUDY FOR A SWEPT WING AIRPLANE AT CRUISE CONDITIONS NASA CONTRACTOR REPORT NASA CR-2427 "8 a UPPER-SURFACE BLOWING NACELLE DESIGN STUDY FOR A SWEPT WING AIRPLANE AT CRUISE CONDITIONS by W. B. Gillette, L. W. Mohn, H. G. Ridley, and T. C. Nark Prepared by

More information

Gas Turbine cycles and Propulsion system. Sarika Goel 3 rd year,chemical Engineering, IIT Delhi Guide : Prof. Gautam Biswas & Prof. S.

Gas Turbine cycles and Propulsion system. Sarika Goel 3 rd year,chemical Engineering, IIT Delhi Guide : Prof. Gautam Biswas & Prof. S. Gas Turbine cycles and Propulsion system Sarika Goel 3 rd year,chemical Engineering, IIT Delhi Guide : Prof. Gautam Biswas & Prof. S. Sarkar Outline Introduction- Gas turbine cycles Applications of gas

More information

Effect of Pressure Ratio on Film Cooling of Turbine Aerofoil Using CFD

Effect of Pressure Ratio on Film Cooling of Turbine Aerofoil Using CFD Universal Journal of Mechanical Engineering 1(4): 122-127, 2013 DOI: 10.13189/ujme.2013.010403 http://www.hrpub.org Effect of Pressure Ratio on Film Cooling of Turbine Aerofoil Using CFD Vibhor Baghel

More information

Q. 1 Q. 5 carry one mark each.

Q. 1 Q. 5 carry one mark each. GATE 016 General Aptitude GA Set-8 Q. 1 Q. 5 carry one mark each. Q.1 The chairman requested the aggrieved shareholders to him. (A) bare with (B) bore with (C) bear with (D) bare Q. Identify the correct

More information

CFD SUPPORT FOR JET NOISE REDUCTION CONCEPT DESIGN AND EVALUATION FOR F/A 18 E/F AIRCRAFT

CFD SUPPORT FOR JET NOISE REDUCTION CONCEPT DESIGN AND EVALUATION FOR F/A 18 E/F AIRCRAFT CFD SUPPORT FOR JET NOISE REDUCTION CONCEPT DESIGN AND EVALUATION FOR F/A 18 E/F AIRCRAFT S.M. Dash, D.C. Kenzakowski, and C. Kannepalli Combustion Research and Flow Technology, Inc. (CRAFT Tech ) 174

More information

Validation and integration of a rubber engine model into an MDO environment

Validation and integration of a rubber engine model into an MDO environment Validation and integration of a rubber engine model into an MDO environment Hannes Wemming Division of Fluid and Mechatronic Systems Thesis work conducted at Advanced Design, Bombardier Aerospace, Montreal,

More information

Design and Analysis on Scramjet Engine Inlet

Design and Analysis on Scramjet Engine Inlet International Journal of Scientific and Research Publications, Volume 3, Issue 1, January 2013 1 Design and Analysis on Scramjet Engine Inlet Aqheel Murtuza Siddiqui 1, G.M.Sayeed Ahmed 2 1 Research Assistant,

More information

8 High Lift Systems and Maximum Lift Coefficients

8 High Lift Systems and Maximum Lift Coefficients 8-1 8 High Lift Systems and Maximum Lift Coefficients In Section 7 the wing was examined with flaps retracted (clean wing). According to the assumptions from Section 5, the wing is, however, supposed to

More information

A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Brno, Czech Republic

A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Brno, Czech Republic AiMT Advances in Military Technology Vol. 8, No. 1, June 2013 Aerodynamic Characteristics of Multi-Element Iced Airfoil CFD Simulation A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty

More information

AE:AEROSPACE ENGINEERING

AE:AEROSPACE ENGINEERING 013 AEROSPACE ENGINEERING AE AE:AEROSPACE ENGINEERING Duration: Three Hours Maximum Marks:100 Please read the following instructions carefully: General Instructions: 1. Total duration of examination is

More information

Advances in Military Technology Vol. 6, No. 1, June Gas Turbine Engine Off-Design Calculations Using Matlab. J. Pečinka 1*, M.

Advances in Military Technology Vol. 6, No. 1, June Gas Turbine Engine Off-Design Calculations Using Matlab. J. Pečinka 1*, M. AiMT Advances in Military Technology Vol. 6, No. 1, June 2011 Gas Turbine Engine Off-Design Calculations Using Matlab J. Pečinka 1*, M. Poledno 1 Department of Airspace and Rocket Technologies, University

More information

Circulation Control NASA activities

Circulation Control NASA activities National Aeronautics and Space Administration Circulation Control NASA activities Dr. Gregory S. Jones Dr. William E. Millholen II Research Engineers NASA Langley Research Center Active High Lift and Impact

More information

Speed Modifications to Improve Efficiency

Speed Modifications to Improve Efficiency Speed Modifications to Improve Efficiency International Comanche Society 2002 Annual Convention Reno, Nevada Hans D. Neubert ICS 7685 BSME, MSAE, FAA Structures DER PA-30 N7331Y Seminar Presentation Topics

More information

The Purpose and Function of Airplane Parts

The Purpose and Function of Airplane Parts The Purpose and Function of Airplane Parts Warm-Up Questions CPS Questions 1-2 Lesson Overview How the fuselage and wing shape correspond to an aircraft s mission The types, purpose, and function of airfoil

More information

Part IV. Conclusions

Part IV. Conclusions Part IV Conclusions 189 Chapter 9 Conclusions and Future Work CFD studies of premixed laminar and turbulent combustion dynamics have been conducted. These studies were aimed at explaining physical phenomena

More information

FUEL STORAGE Chap. 3 AIRCRAFT FUEL SYSTEMS

FUEL STORAGE Chap. 3 AIRCRAFT FUEL SYSTEMS UNIVERSITY OF SALENTO SCHOOL OF INDUSTRIAL ENGINEERING DEPT. OF ENGINEERING FOR INNOVATION Lecce-Brindisi (Italy) MASTER OF SCIENCE IN AEROSPACE ENGINEERING PROPULSION AND COMBUSTION FUEL STORAGE Chap.

More information

NUMERICAL INVESTIGATION OF WAVERIDER-DERIVED HYPERSONIC TRANSPORT CONFIGURATIONS

NUMERICAL INVESTIGATION OF WAVERIDER-DERIVED HYPERSONIC TRANSPORT CONFIGURATIONS NUMERICAL INVESTIGATION OF WAVERIDER-DERIVED HYPERSONIC TRANSPORT CONFIGURATIONS Marcus Lobbia* and Kojiro Suzuki Department of Aeronautics and Astronautics, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku,

More information

The Mission Defines the Cycle: Turbojet, Turbofan and Variable Cycle Engines for High Speed Propulsion

The Mission Defines the Cycle: Turbojet, Turbofan and Variable Cycle Engines for High Speed Propulsion and Variable Cycle Engines for High Speed Propulsion Joachim Kurzke Max Feldbauer Weg 5 85221 Dachau GERMANY kurzke@gasturb.de SUMMARY High speed propulsion employing turbojets, turbofans and variable

More information

Fundamentals of Aerodynamics

Fundamentals of Aerodynamics Fundamentals of Aerodynamics Fourth Edition John D. Anderson, Jr.; Curator of Aerodynamics National Air arid Space Museum Smithsonian Institution * and Professor Emeritus University of Maryland Mc Graw

More information

Detonation Waves and Pulse Detonation Engines

Detonation Waves and Pulse Detonation Engines Detonation Waves and Pulse Detonation Engines E. Wintenberger and J.E. Shepherd Explosion Dynamics Laboratory, Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, CA 95 Ae03,

More information

INJECTION PRESSURE AS A MEANS TO GUIDE AIR UTILIZATION IN DIESEL ENGINE COMBUSTION

INJECTION PRESSURE AS A MEANS TO GUIDE AIR UTILIZATION IN DIESEL ENGINE COMBUSTION INJECTION PRESSURE AS A MEANS TO GUIDE AIR UTILIZATION IN DIESEL ENGINE COMBUSTION H. Dembinski, Scania AB Sweden H.-E. Angstrom, KTH Stockholm, Sweden E. Winklhofer, AVL List GmbH, Austria London, March

More information