# Forces on the Rocket. Rocket Dynamics. Equation of Motion: F = Ma

Save this PDF as:

Size: px
Start display at page:

Download "Forces on the Rocket. Rocket Dynamics. Equation of Motion: F = Ma"

## Transcription

1 Rocket Dynamics orces on the Rockets - Drag Rocket Stability Rocket Equation Specific Impulse Rocket otors Thrust orces on the Rocket Equation of otion: = a orces at through the Center of ass Center of ass Grav Need to minimize total mass to maximize acceleration of the rocket (1) Gravity: Grav = g d (2) Thrust: Thrust = (V ) dt The thrust force seen by the rocket is equal to the rate of change of momentum carried away in the exhaust Thrust: Assuming that the propellant speed is approximately constant then 3 rd orce: Drag Resistance from the air to the rocket motion Thrust = PC E Where C E is the speed of the exhaust P is the rate of change propellant mass In other words, how fast you go is dependent on the speed of the propellant the mass available in propellant Thrust Center of ass Grav Drag D = 1 V 2 AC D 2 is the mass density of the air (1.2 kg/m sea level) V is the rocket speed A is the area of the rocket perpendicular to the rocket flow C D is the coefficient of drag There are three forms of drag, and their relative importance is highly dependent on the speed on the rocket relative to the sound speed, i.e. to the ach number = V/V s V s ~ 1050 ft/s or 331 m/s 1

2 Types of Drag 1. Skin friction arises from the friction of the fluid against the "skin" of the object that is moving through it. Skin friction arises from the interaction between the fluid and the skin of the body. (2) Pressure Drag or orm Drag arises because of the form of the object. The general size and shape of the body is the most important factor in form drag Bodies with a larger apparent crosssection will have a higher drag than thinner bodies. Sleek designs, or designs that are streamlined and change cross-sectional area gradually are also critical for achieving minimum form drag. Rivets on skin surface add significantly to total drag at supersonic speeds (2) Pressure Drag or orm Drag Drag coefficients for different shapes. Wave drag is caused by the formation of shock waves around the aircraft which radiate away a considerable amount of energy producing enhanced drag Although shock waves are typically associated with supersonic flow, they can form at much lower speeds at areas on the aircraft where local airflow accelerates to supersonic speeds. The effect is typically seen at transonic speeds above about ach 0.8, but it is possible to notice the problem at any speed over that of the critical ach of that aircraft's wing. Elimination of vortices in the wake reduce the drag The magnitude peaks at about four times the normal subsonic drag. It is so powerful that it was thought for some time that engines would not be able to provide enough power to easily overcome the effect, which led to the concept of a "sound barrier". 2

3 Rocket Stability Small perturbations will kick the rocket out of alignment Active control of thrust vector could be used to correct these perturbations Heavy and Expensive Passive control system through the use of fins Success depends on the relative position of the Center of Pressure relative to the Center of ass If you can get the rocket higher in altitude before going to high speed, effects from drag can be minimized Air Resultant otion: Unstable Air Resultant otion: Stable C P C C C P Center of ass has to be ABOVE Center of Pressure for Stable light 3

4 Rocket Equation Neglecting drag the equation of motion for the rocket is: dv dt d dt V E Percentage Payload to Orbit Using (1) H 2 /O 2 and (2) R p (highly refined kerosene)/o 2 V2 V1 dv V f E 0 d 0 V VE ln( ) 0 V OR exp( ) V E raction of Payload becomes exponential small when required V exceeds velocity of the propellant Specific Impulse (Isp) is a way to describe the efficiency of rocket and jet engines. It represents the impulse (change in momentum) per unit of propellant. The higher the specific impulse, the less propellant is needed to gain a given amount of momentum. dt Isp g mdt VE g mdt mdt VE g 4

5 Specific impulse of various propulsion technologies Engine Turbofan jet engine Solid rocket Bipropellant liquid rocket Ion thruster "Ve" exhaust velocity (m/s) 2,900 2,500 4,400 29,000 Specific impulse (s) 3, ,000 Energy per kg of exhaust (J/kg) ~ =1 Rocket nozzles the hot gas produced in the combustion chamber is permitted to escape from the combustion chamber through an opening (the "throat"), within a high expansionratio 'de Laval nozzle'. Provided sufficient pressure is provided to the nozzle (about 2.5-3x above ambient pressure) the nozzle chokes and a supersonic jet is formed, dramatically accelerating the gas, converting most of the thermal energy into kinetic energy. Type Solid rocket Hybrid rocket onopro pellant rocket Liquid Bipropell ant rocket Description Ignitable, self sustaining solid fuel/oxidiser mixture ("grain") with central hole and nozzle Separate oxidiser/fuel, typically oxidiser is liquid and kept in a tank, the other solid with central hole Propellant such as Hydrazine, Hydrogen Peroxide or Nitrous Oxide, flows over catalyst and exothermically decomposes Two fluid (typically liquid) propellants are introduced through injectors into combustion chamber and burnt Advantages Simple, often no moving parts, reasonably good mass fraction, reasonable Isp. A thrust schedule can be designed into the grain. Quite simple, solid fuel is essentially inert without oxidiser, safer; cracks do not escalate, throttleable and easy to switch off. Simple in concept, throttleable, low temperatures in combustion chamber Up to ~99% efficient combustion with excellent mixture control, throttleable, Disadvantages Once lit, extinguishing it is difficult although often possible, cannot be throttled in real time; handling issues from ignitable mixture, lower performance than liquid rockets, if grain cracks it can block nozzle with disastrous results, cracks burn and widen during burn. Some oxidisers are monopropellants, can explode in own right; mechanical failure of solid propellant can block nozzle (very rare with rubberised propellant), central hole widens over burn and negatively affects mixture ratio. catalysts can be easily contaminated, monopropellants can detonate if contaminated or provoked, Isp is perhaps 1/3 of best liquids Pumps needed for high performance are expensive to design, huge thermal fluxes across combustion chamber wall can impact reuse, failure modes include major explosions, a lot of plumbing is needed. Use of ultiple grains so that burning between grains leads to more uniform burn Solid Rocket otors Single Grain otor: Thrust increase with time due to increased surface area as the grain burns away. 5

6 Solid Rocket otors Alternately, use 5-point inocyl form a more uniform burn 6

### Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 20 Conservation Equations in Fluid Flow Part VIII Good morning. I welcome you all

### IV. Rocket Propulsion Systems. A. Overview

IV. Rocket Propulsion Systems A. Overview by J. M. Seitzman for AE 4451 Jet and Rocket Propulsion Seitzman Rocket Overview-1 Rocket Definition Rocket Device that provides thrust to a vehicle by accelerating

### Forces on a Model Rocket

Forces on a Model Rocket This pamphlet was developed using information for the Glenn Learning Technologies Project. For more information, visit their web site at: http://www.grc.nasa.gov/www/k-12/aboutltp/educationaltechnologyapplications.html

### ME 239: Rocket Propulsion Introductory Remarks

ME 239: Rocket Propulsion Introductory Remarks 1 Propulsion Propulsion: The act of changing a body s motion from mechanisms providing force to that body Jet Propulsion: Reaction force imparted to device

### LIQUID ROCKET PROPULSION

CVA Summer School 2010 - Roma July 8, 2011 LIQUID ROCKET PROPULSION 1 Christophe ROTHMUND SNECMA Space Engines Division christophe.rothmund@snecma.fr CONTENTS Part 1 : LIQUID ROCKET ENGINES Part 2 : NEAR

### ME 239: Rocket Propulsion. Nozzle Thermodynamics and Isentropic Flow Relations. J. M. Meyers, PhD

ME 39: Rocket Propulsion Nozzle Thermodynamics and Isentropic Flow Relations J. M. Meyers, PhD 1 Assumptions for this Analysis 1. Steady, one-dimensional flow No motor start/stopping issues to be concerned

### Introduction to Aerospace Engineering Formulas

Introduction to Aerospace Engineering Formulas Aerodynamics Formulas. Definitions p = The air pressure. (P a = N/m 2 ) ρ = The air density. (kg/m 3 ) g = The gravitational constant. (Value at sea level

### Lecture L14 - Variable Mass Systems: The Rocket Equation

J. Peraire, S. Widnall 16.07 Dynamics Fall 2008 Version 2.0 Lecture L14 - Variable Mass Systems: The Rocket Equation In this lecture, we consider the problem in which the mass of the body changes during

### ME 239: Rocket Propulsion. Over- and Under-expanded Nozzles and Nozzle Configurations. J. M. Meyers, PhD

ME 239: Rocket Propulsion Over- and Under-expanded Nozzles and Nozzle Configurations J. M. Meyers, PhD 1 Over- and Underexpanded Nozzles Underexpanded Nozzle Discharges fluid at an exit pressure greater

### CO 2 41.2 MPa (abs) 20 C

comp_02 A CO 2 cartridge is used to propel a small rocket cart. Compressed CO 2, stored at a pressure of 41.2 MPa (abs) and a temperature of 20 C, is expanded through a smoothly contoured converging nozzle

### 9210-228 Level 7 Post Graduate Diploma in Mechanical Engineering Aerospace engineering

9210-228 Level 7 Post Graduate Diploma in Mechanical Engineering Aerospace engineering You should have the following for this examination one answer book non-programmable calculator pen, pencil, drawing

### How Rockets Work Newton s Laws of Motion

How Rockets Work Whether flying a small model rocket or launching a giant cargo rocket to Mars, the principles of how rockets work are exactly the same. Understanding and applying these principles means

### G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M

G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M CONTENTS Foreword... 2 Forces... 3 Circular Orbits... 8 Energy... 10 Angular Momentum... 13 FOREWORD

### INLET AND EXAUST NOZZLES Chap. 10 AIAA AIRCRAFT ENGINE DESIGN R01-07/11/2011

MASTER OF SCIENCE IN AEROSPACE ENGINEERING PROPULSION AND COMBUSTION INLET AND EXAUST NOZZLES Chap. 10 AIAA AIRCRAFT ENGINE DESIGN R01-07/11/2011 LECTURE NOTES AVAILABLE ON https://www.ingegneriaindustriale.unisalento.it/scheda_docente/-/people/antonio.ficarella/materiale

### Ideal Jet Propulsion Cycle

Ideal Jet ropulsion Cycle Gas-turbine engines are widely used to power aircrafts because of their light-weight, compactness, and high power-to-weight ratio. Aircraft gas turbines operate on an open cycle

### Solution: (a) 1. Look up properties for air, Table A.6: k = 1.4, R = 287 J/kg K, c p = 1004 J/kgK 2. Calculate ρ. using the ideal gas equation:

Problem Given: Air entering a combustion chamber with: 0., T 580 K, and.0 Pa (abs). Heat addition, then 0.4, T 77 K, and 86.7 Find: (a) Local isentroic stagnation conditions at the inlet (b) Local isentroic

### Gasdynamics of nozzle flow

Chapter 0 Gasdynamics of nozzle flow nozzle is an extremely e cient device for converting thermal energy to kinetic energy. Nozzles come up in a vast range of applications. Obvious ones are the thrust

### Genetic Algorithm Optimization of a Cost Competitive Hybrid Rocket Booster

Genetic Algorithm Optimization of a Cost Competitive Rocket Booster George Story NASA MSFC Huntsville, Al www.nasa.gov Overview attributes are typically touted as to why hybrids should be pursued. Handling,

### ROYAL CANADIAN AIR CADETS PROFICIENCY LEVEL TWO INSTRUCTIONAL GUIDE SECTION 6 EO C240.03 IDENTIFY PARTS OF A ROCKET PREPARATION

ROYAL CANADIAN AIR CADETS PROFICIENCY LEVEL TWO INSTRUCTIONAL GUIDE SECTION 6 EO C240.03 IDENTIFY PARTS OF A ROCKET Total Time: 30 min PREPARATION PRE-LESSON INSTRUCTIONS Resources needed for the delivery

### Aerospace Propulsion Systems

Brochure More information from http://www.researchandmarkets.com/reports/1288672/ Aerospace Propulsion Systems Description: Aerospace Propulsion Systems is a unique book focusing on each type of propulsion

### Performance 4. Fluid Statics, Dynamics, and Airspeed Indicators

Performance 4. Fluid Statics, Dynamics, and Airspeed Indicators From our previous brief encounter with fluid mechanics we developed two equations: the one-dimensional continuity equation, and the differential

### Fundamentals of Pulse Detonation Engine (PDE) and Related Propulsion Technology

Fundamentals of Pulse Detonation Engine (PDE) and Related Propulsion Technology Dora E. Musielak, Ph.D. Aerospace Engineering Consulting Arlington, TX All rights reserved. No part of this publication may

### Sound. References: L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol. 2, Gas Dynamics, Chapter 8

References: Sound L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol., Gas Dynamics, Chapter 8 1 Speed of sound The phenomenon of sound waves is one that

### Heat transfer in Rotating Fluidized Beds in a Static Geometry: A CFD study

Heat transfer in Rotating Fluidized Beds in a Static Geometry: A CFD study Nicolas Staudt, Juray De Wilde* * Université catholique de Louvain MAPR / IMAP Réaumur, Place Sainte Barbe 2 1348 Louvain-la-Neuve

### HYBRID ROCKET TECHNOLOGY IN THE FRAME OF THE ITALIAN HYPROB PROGRAM

8 th European Symposium on Aerothermodynamics for space vehicles HYBRID ROCKET TECHNOLOGY IN THE FRAME OF THE ITALIAN HYPROB PROGRAM M. Di Clemente, R. Votta, G. Ranuzzi, F. Ferrigno March 4, 2015 Outline

### Science Standard Articulated by Grade Level Strand 5: Physical Science

Concept 1: Properties of Objects and Materials Classify objects and materials by their observable properties. Kindergarten Grade 1 Grade 2 Grade 3 Grade 4 PO 1. Identify the following observable properties

### Chapter 17. For the most part, we have limited our consideration so COMPRESSIBLE FLOW. Objectives

Chapter 17 COMPRESSIBLE FLOW For the most part, we have limited our consideration so far to flows for which density variations and thus compressibility effects are negligible. In this chapter we lift this

### Presentation of problem T1 (9 points): The Maribo Meteorite

Presentation of problem T1 (9 points): The Maribo Meteorite Definitions Meteoroid. A small particle (typically smaller than 1 m) from a comet or an asteroid. Meteorite: A meteoroid that impacts the ground

### Physics 1A Lecture 10C

Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. --Oprah Winfrey Static Equilibrium

### 1 Foundations of Pyrodynamics

1 1 Foundations of Pyrodynamics Pyrodynamics describes the process of energy conversion from chemical energy to mechanical energy through combustion phenomena, including thermodynamic and fluid dynamic

### AOE 3104 Aircraft Performance Problem Sheet 2 (ans) Find the Pressure ratio in a constant temperature atmosphere:

AOE 3104 Aircraft Performance Problem Sheet 2 (ans) 6. The atmosphere of Jupiter is essentially made up of hydrogen, H 2. For Hydrogen, the specific gas constant is 4157 Joules/(kg)(K). The acceleration

### Operating conditions. Engine 3 1,756 3,986 2.27 797 1,808 2.27 7,757 6,757 4,000 1,125 980 5.8 3,572 3,215 1,566

JOURNAL 658 OEFELEIN OEFELEIN AND YANG: INSTABILITIES IN F-l ENGINES 659 Table 2 F-l engine operating conditions and performance specifications Mass flow rate, kg/s, Ibm/s Fuel Oxidizer Mixture ratio Pressure,

### AEROSPACE PROPULSION & AERODYNAMICS SI MODULE CODE 55-5922 CREDITS 20 LEVEL 5 JACS CODE. Total Hours HOURS BY TYPE 48 52 100 200

MODULE DESCRIPTOR TITLE AEROSPACE PROPULSIO & AERODAMICS SI MODULE CODE 55-5922 CREDITS 20 LEVEL 5 JACS CODE H450 SUBJECT GROUP Mechanical engineering DEPARTMET Engineering and Mathematics MODULE LEADER

### Chapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any

Chapter 10 Flow Measurements Material from Theory and Design for Mechanical Measurements; Figliola, Third Edition Flow Rate Flow rate can be expressed in terms of volume flow rate (volume/time) or mass

### Rocket performance. Chapter 7. 7.1 Thrust

Chapter 7 Rocket performance 7.1 Thrust Figure 7.1 shows a sketch of a rocket in a test stand. The rocket produces thrust, T,by epelling propellant mass from a thrust chamber with a nozzle. The test stand

### Memo WFC 423 DA. Water Fuel Injector System processes and converts water into a useful hydrogen fuel on demand at the point of gas ignition.

Memo Water Fuel Cell Water Fuel Injection System Water Fuel Injector System processes and converts water into a useful hydrogen fuel on demand at the point of gas ignition. The Water Injector System is

### Behavioral Animation Simulation of Flocking Birds

Behavioral Animation Simulation of Flocking Birds Autonomous characters determine their actions Simulating the paths of individuals in: flocks of birds, schools of fish, herds of animals crowd scenes 1.

### AS COMPETITION PAPER 2008

AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question

### Newton's Laws of Motion in Motion

Newton's Laws of Motion in Motion Objectives: Students will use simple techniques to demonstrate Newton's 1 st and 3 rd Laws of Motion. Students will demonstrate their understanding of thrust, drag, lift,

### WEEKLY SCHEDULE. GROUPS (mark X) SPECIAL ROOM FOR SESSION (Computer class room, audio-visual class room)

SESSION WEEK COURSE: THERMAL ENGINEERING DEGREE: Aerospace Engineering YEAR: 2nd TERM: 2nd The course has 29 sessions distributed in 14 weeks. The laboratory sessions are included in these sessions. The

### Can Hubble be Moved to the International Space Station? 1

Can Hubble be Moved to the International Space Station? 1 On January 16, NASA Administrator Sean O Keefe informed scientists and engineers at the Goddard Space Flight Center (GSFC) that plans to service

### Practice Problems on Conservation of Energy. heat loss of 50,000 kj/hr. house maintained at 22 C

COE_10 A passive solar house that is losing heat to the outdoors at an average rate of 50,000 kj/hr is maintained at 22 C at all times during a winter night for 10 hr. The house is to be heated by 50 glass

### Acta Astronautica 69 (2011) 1066 1072. Contents lists available at ScienceDirect. Acta Astronautica

Acta Astronautica 69 (2011) 1066 1072 Contents lists available at ScienceDirect Acta Astronautica journal homepage: www.elsevier.com/locate/actaastro Feasibility of a single port Hybrid Propulsion system

### Tangential Impulse Detonation Engine

Tangential Impulse Detonation Engine Ionut Porumbel, Ph.D. Aerodays 2015 21.10.2015, London, UK Overview Ongoing FP 7 project breakthrough propulsion system technology a step change in air transportation;

### Detonation Waves and Pulse Detonation Engines

Detonation Waves and Pulse Detonation Engines E. Wintenberger and J.E. Shepherd Explosion Dynamics Laboratory, Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, CA 95 Ae03,

### du u U 0 U dy y b 0 b

BASIC CONCEPTS/DEFINITIONS OF FLUID MECHANICS (by Marios M. Fyrillas) 1. Density (πυκνότητα) Symbol: 3 Units of measure: kg / m Equation: m ( m mass, V volume) V. Pressure (πίεση) Alternative definition:

### Laser Propelled Hypersonic Air-Vehicle

Laser Propelled Hypersonic Air-Vehicle Tapojoy Chatterjee, Abhishweta Gupta Department of Aeronautical Engineering Department of Electronics and Communication Engineering Hindustan College Engineering,

### Graduate Certificate Program in Energy Conversion & Transport Offered by the Department of Mechanical and Aerospace Engineering

Graduate Certificate Program in Energy Conversion & Transport Offered by the Department of Mechanical and Aerospace Engineering Intended Audience: Main Campus Students Distance (online students) Both Purpose:

### SIMPLIFIED METHOD FOR ESTIMATING THE FLIGHT PERFORMANCE OF A HOBBY ROCKET

SIMPLIFIED METHOD FOR ESTIMATING THE FLIGHT PERFORMANCE OF A HOBBY ROCKET WWW.NAKKA-ROCKETRY.NET February 007 Rev.1 March 007 1 Introduction As part of the design process for a hobby rocket, it is very

### Force & Motion. Force & Mass. Friction

1 2 3 4 Next Force & Motion The motion of an object can be changed by an unbalanced force. The way that the movement changes depends on the strength of the force pushing or pulling and the mass of the

### Performance. 10. Thrust Models

Performance 10. Thrust Models In order to determine the maximum speed at which an aircraft can fly at any given altitude, we must solve the simple-looking equations for : (1) We have previously developed

### Laws and price drive interest in LNG as marine fuel

Laws and price drive interest in LNG as marine fuel The use of LNG as a marine fuel is one of the hottest topics in shipping. This growing interest is driven by legislation and price. By Henrique Pestana

### Atmospheric Reentry. Introduction, Mathematical Model and Simulation

Atmospheric Reentry Introduction, Mathematical Model and Simulation Julian Köllermeier Theodor-Heuss Akademie, August 23rd 2014 A short history of human spaceflight 1944 V2 is first rocket in space 1957

### Introduction to Aerospace Propulsion A course under NPTEL-II Prof. Bhaskar Roy ; Prof. A.M.Pradeep,

Introduction to Aerospace Propulsion A course under NPTEL-II Prof. Bhaskar Roy ; Prof. A.M.Pradeep, 1. Introduction to Propulsion (Prof B Roy) Jet Propulsion 1.1. The making of thrust to fly science and

### General aviation & Business System Level Applications and Requirements Electrical Technologies for the Aviation of the Future Europe-Japan Symposium

General aviation & Business System Level Applications and Requirements Electrical Technologies for the Aviation of the Future Europe-Japan Symposium 26 March 2015 2015 MITSUBISHI HEAVY INDUSTRIES, LTD.

### Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION

1 P a g e Inertia Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION The property of an object by virtue of which it cannot change its state of rest or of uniform motion along a straight line its own, is

### E - THEORY/OPERATION

E - THEORY/OPERATION 1995 Volvo 850 1995 ENGINE PERFORMANCE Volvo - Theory & Operation 850 INTRODUCTION This article covers basic description and operation of engine performance-related systems and components.

### Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1.

IB PHYSICS: Gravitational Forces Review 1. This question is about gravitation and ocean tides. (b) State Newton s law of universal gravitation. Use the following information to deduce that the gravitational

### AEROSPACE PROPULSION SYSTEMS

AEROSACE ROULSION SYSTEMS Chapter Fundamentals Chapter Rockets Chapter 3 iston Aerodynamic Engines Chapter 4 Gas Turbine Engines Chapter 5 Ramjets and Scramjets 00 John Wiley & Sons (Asia) te Ltd Courtesy

### Ejector Refrigeration System

Ejector Refrigeration System Design Team Matthew Birnie, Morgan Galaznik, Scott Jensen, Scott Marchione, Darren Murphy Design Advisor Prof. Gregory Kowalski Abstract An ejector refrigeration system utilizing

### Safety issues of hydrogen in vehicles Frano Barbir Energy Partners 1501 Northpoint Pkwy, #102 West Palm Beach, FL 33407, U.S.A.

Safety issues of hydrogen in vehicles Frano Barbir Energy Partners 1501 Northpoint Pkwy, #102 West Palm Beach, FL 33407, U.S.A. Properties of hydrogen Hydrogen is an odorless, colorless gas. With molecular

### FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER

VISUAL PHYSICS School of Physics University of Sydney Australia FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER? What type of fluid flow is observed? The above pictures show how the effect

### Heating & Cooling in Molecular Clouds

Lecture 8: Cloud Stability Heating & Cooling in Molecular Clouds Balance of heating and cooling processes helps to set the temperature in the gas. This then sets the minimum internal pressure in a core

### ACOUSTIC CAVITIES DESIGN PROCEDURES

ACOUSTIC CAVITIES DESIGN PROCEDURES A. Santana Jr. a, M. S. Silva b, P. T. Lacava. b, and L. C. S. Góes b a Instituto de Aeronáutica e Espaço Divisão de Sistemas Espaciais CP. 12228-94, São José Campos,

### Spark Ignition Engine Combustion

Spark Ignition Engine Combustion MAK 652E Lean Combustion in Stratified Charge Engines Prof.Dr. Cem Soruşbay Istanbul Technical University - Automotive Laboratories Contents Introduction Lean combustion

### AE 430 - Stability and Control of Aerospace Vehicles

AE 430 - Stability and Control of Aerospace Vehicles Atmospheric Flight Mechanics 1 Atmospheric Flight Mechanics Performance Performance characteristics (range, endurance, rate of climb, takeoff and landing

### Rocketry for Kids. Science Level 4. Newton s Laws

Rocketry for Kids Science Level 4 Newton s Laws Victorian Space Science Education Centre 400 Pascoe Vale Road Strathmore, Vic 3041 www.vssec.vic.edu.au Some material for this program has been derived from

### Ch 6 Forces. Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79

Ch 6 Forces Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79 Friction When is friction present in ordinary life? - car brakes - driving around a turn - walking - rubbing your hands together

### Foundations and Mathematical Application of the Water Rocket

Foundations and Mathematical Application of the Water Rocket Students Utilize 2-Liter Bottle Rocket Launcher will help students to explore the science of rocketry. Students build &propel 2-liter bottle

### Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

.1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations

### 2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was

### FUNDAMENTALS OF ENGINEERING THERMODYNAMICS

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS System: Quantity of matter (constant mass) or region in space (constant volume) chosen for study. Closed system: Can exchange energy but not mass; mass is constant

### Performance. 15. Takeoff and Landing

Performance 15. Takeoff and Landing The takeoff distance consists of two parts, the ground run, and the distance from where the vehicle leaves the ground to until it reaches 50 ft (or 15 m). The sum of

### Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows

Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows 3.- 1 Basics: equations of continuum mechanics - balance equations for mass and momentum - balance equations for the energy and the chemical

### Motion of a Leaky Tank Car

1 Problem Motion of a Leaky Tank Car Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 8544 (December 4, 1989; updated October 1, 214) Describe the motion of a tank car initially

### Design considerations when selecting lowparticle

Design considerations when selecting lowparticle content solid propellants for deorbiting applications Space Debris Mitigation and CleanSat Workshop ESA/ESTEC, Noordwijk, 17-18 March 2015 Onno Verberne

### Jet Propulsion. Lecture-2. Ujjwal K Saha, Ph.D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1

Lecture-2 Prepared under QIP-CD Cell Project Jet Propulsion Ujjwal K Saha, Ph.D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1 Simple Gas Turbine Cycle A gas turbine that

### Från Vindtunnel till Rymdtunnel

-1- Från Vindtunnel till Rymdtunnel M. Persson, K. Anflo Presented by: Mathias Persson President, ECAPS AB FLYGTEKNIK 2010 2010-10-18 -2- ECAPS locations ARCTIC CIRCLE SSC/ECAPS Engineering Center Solna

### CLASSIFICATION OF AIRCRAFT AND SPACECRAFT

TYPES OF AIRCRAFT CLASSIFICATION OF AIRCRAFT AND SPACECRAFT Aircraft can be classified into various types based on the mode of classification. In the following slide, a general classification of aircraft

### Design Considerations for Water-Bottle Rockets. The next few pages are provided to help in the design of your water-bottle rocket.

Acceleration= Force OVER Mass Design Considerations for Water-Bottle Rockets The next few pages are provided to help in the design of your water-bottle rocket. Newton s First Law: Objects at rest will

### High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur

High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 06 One-dimensional Gas Dynamics (Contd.) We

### The soot and scale problems

Dr. Albrecht Kaupp Page 1 The soot and scale problems Issue Soot and scale do not only increase energy consumption but are as well a major cause of tube failure. Learning Objectives Understanding the implications

### Typhoon Haiyan 1. Force of wind blowing against vertical structure. 2. Destructive Pressure exerted on Buildings

Typhoon Haiyan 1. Force of wind blowing against vertical structure 2. Destructive Pressure exerted on Buildings 3. Atmospheric Pressure variation driving the Typhoon s winds 4. Energy of Typhoon 5. Height

### F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26

Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,

### COMBUSTION. In order to operate a heat engine we need a hot source together with a cold sink

COMBUSTION In order to operate a heat engine we need a hot source together with a cold sink Occasionally these occur together in nature eg:- geothermal sites or solar powered engines, but usually the heat

### Force. Force as a Vector Real Forces versus Convenience The System Mass Newton s Second Law. Outline

Force Force as a Vector Real Forces versus Convenience The System Mass Newton s Second Law Outline Force as a Vector Forces are vectors (magnitude and direction) Drawn so the vector s tail originates at

### STORE HAZARDOUS SUBSTANCES SAFELY. incompatibles gas cylinders

STORE HAZARDOUS SUBSTANCES SAFELY Suitable containers incompatibles gas cylinders Oxy-Acetylene welding flammable substances 35 36 STORE HAZARDOUS SUBSTANCES SAFELY STORE HAZARDOUS SUBSTANCES SAFELY Storing

### by Robert L. Cannon Updated and edited by Ann Grimm and Jim Kranich

by Robert L. Cannon Updated and edited by Ann Grimm and Jim Kranich NEWTON S FIRST LAW OF MOTION: WHY SATELLITES STAY IN ORBIT This booklet is designed to help you understand some principles of rocket

### Marine Piston Damage By Tom Benton, Marine Surveyor

Marine Piston Damage By Tom Benton, Marine Surveyor In the last several years I have noticed an increase in the number of outboard motors which have sustained piston damage, and several cases in V-8 inboard

### 11.0 Fuels and Lubricants

11.0 Fuels and Lubricants 11.1 Fuels Fuels, especially fuels for turbines, have two basic functions: a dense energy source and cooling. The energy density of hydrocarbon fuels combusted with air is unsurpassed.

### Chem 1A Exam 2 Review Problems

Chem 1A Exam 2 Review Problems 1. At 0.967 atm, the height of mercury in a barometer is 0.735 m. If the mercury were replaced with water, what height of water (in meters) would be supported at this pressure?

### Lecture L2 - Degrees of Freedom and Constraints, Rectilinear Motion

S. Widnall 6.07 Dynamics Fall 009 Version.0 Lecture L - Degrees of Freedom and Constraints, Rectilinear Motion Degrees of Freedom Degrees of freedom refers to the number of independent spatial coordinates

### Experiment: Static and Kinetic Friction

PHY 201: General Physics I Lab page 1 of 6 OBJECTIVES Experiment: Static and Kinetic Friction Use a Force Sensor to measure the force of static friction. Determine the relationship between force of static

### DUAL REGENERATIVE COOLING CIRCUITS FOR LIQUID ROCKET ENGINES (Preprint)

DUAL REGENERATIVE COOLING CIRCUITS FOR LIQUID ROCKET ENGINES (Preprint) M.H. Naraghi * Department of Mechanical Engineering, Manhattan College, Riverdale, NY 10471 and S. Dunn and D. Coats SEA Inc., 1802

### CFD Analysis of Supersonic Exhaust Diffuser System for Higher Altitude Simulation

Page1 CFD Analysis of Supersonic Exhaust Diffuser System for Higher Altitude Simulation ABSTRACT Alan Vincent E V P G Scholar, Nehru Institute of Engineering and Technology, Coimbatore Tamil Nadu A high

### Unit 1: Fire Engineering Science (A/505/6005)

L3D1 THE INSTITUTION OF FIRE ENGINEERS Founded 1918 Incorporated 1924 IFE Level 3 Diploma in Fire Science and Fire Safety (VRQ) Unit 1: Fire Engineering Science (A/505/6005) Friday 13 March 2015 10:15

### Fluids and Solids: Fundamentals

Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.

### Newton s Wagon Newton s Laws

Newton s Wagon Newton s Laws What happens when you kick a soccer ball? The kick is the external force that Newton was talking about in his first law of motion. What happens to the ball after you kick it?