# Valve Sizing. Te chnic al Bulletin. Flow Calculation Principles. Scope. Sizing Valves. Safe Product Selection.

Save this PDF as:

Size: px
Start display at page:

Download "Valve Sizing. Te chnic al Bulletin. Flow Calculation Principles. Scope. Sizing Valves. Safe Product Selection. www.swagelok.com"

## Transcription

1 Valve Sizing Te chnic al Bulletin Scope Valve size often is described by the nominal size of the end connections, but a more important measure is the flow that the valve can provide. And determining flow through a valve can be simple. This technical bulletin shows how flow can be estimated well enough to select a valve size easily, and without complicated calculations. Included are the principles of flow calculations, some basic formulas, and the effects of specific gravity and temperature. Also given are six simple graphs for estimating the flow of water or air through valves and other components and examples of how to use them. Sizing Valves The graphs cover most ordinary industrial applications from the smallest metering valves to large ball valves, at system pressures up to 000 psig and 0 bar. The water formulas and graphs apply to ordinary liquids and not to liquids that are boiling or flashing into vapors, to slurries (mixtures of solids and liquids), or to very viscous liquids. The air formulas and graphs apply to gases that closely follow the ideal gas laws, in which pressure, temperature, and volume are proportional. They do not apply to gases or vapors that are near the pressure and temperature at which they liquefy, such as a cryogenic nitrogen or oxygen. For convenience, the air flow graphs show gauge pressures, whereas the formulas use absolute pressure (gauge pressure plus one atmosphere). All the graphs are based on formulas adapted from ISA S75.01, Flow Equations for Sizing Control Valves. 1 Flow Calculation Principles The principles of flow calculations are illustrated by the common orifice flow meter (Fig. 1). We need to know only the size and shape of the orifice, the diameter of the pipe, and the fluid density. With that information, we can calculate the flow rate for any value of pressure drop across the orifice (the difference between inlet and outlet pressures). For a valve, we also need to know the pressure drop and the fluid density. But in addition to the dimensions of pipe diameter and orifice size, we need to know all the valve passage dimensions and all the changes in size and direction of flow through the valve. However, rather than doing complex calculations, we use the valve flow coefficient, which combines the effects of all the flow restrictions in the valve into a single number (Fig. 2). Pipe diameter Orifice diameter Pressure drop Orifice shape Fluid density Fig. 1. The flow rate through a fixed orifice can be calculated from the meter dimensions of pipe diameter and orifice size and shape. Pressure drop Safe Product Selection When selecting a product, the total system design must be considered to ensure safe, trouble-free performance. Function, material compatibility, adequate ratings, proper installation, operation, and maintenance are the responsibilities of the system designer and user. Pipe diameter Size changes Valve passage size Fluid density Direction changes Fig. 2. Calculating the flow rate through a valve is much more complex. The valve flow coefficient (C v ) takes into account all the dimensions and other factors including size and direction changes that affect fluid flow.

2 2 Valve Sizing Fig. 3. Valve manufacturers determine flow coefficients by testing the valve with water using a standard ISA test method. p 1 p p 2 Flow meter Test valve Flow control valve Flow control valve Standard distances from test valve Minimum lengths of straight pipe Valve manufacturers determine the valve flow coefficient by testing the valve with water at several flow rates, using a standard test method 2 developed by the Instrument Society of America for control valves and now used widely for all valves. Flow tests are done in a straight piping system of the same size as the valve, so that the effects of fittings and piping size changes are not included (Fig. 3). Liquid Flow Because liquids are incompressible fluids, their flow rate depends only on the difference between the inlet and outlet pressures (Dp, pressure drop). The flow is the same whether the system pressure is low or high, so long as the difference between the inlet and outlet pressures is the same. This equation shows the relationship: Symbols Used in Flow Equations q = N 1 C v p G f C v = flow coefficient q = flow rate p 1 = inlet pressure p 2 = outlet pressure Dp = pressure drop (p 1 p 2 ) G f = liquid specific gravity (water = 1.0) G g = gas specific gravity (air = 1.0) N 1, N 2 = constants for units T 1 = absolute upstream temperature: K = C R = F + 4 Note: p 1 and p 2 are absolute pressures for gas flow. The water flow graphs (pages 6 and 7) show water flow as a function of pressure drop for a range of C v values. Gas Flow p = p 1 p 2 p 1 p 2 C v Gas flow calculations are slightly more complex, because gases are compressible fluids whose density changes with pressure. In addition, there are two conditions that must be considered low pressure drop flow and high pressure drop flow. G f q

3 p 2 < 1/2p 1 q Valve Sizing 3 Low and High Pressure Drop Gas Flow The basic orifice meter illustrates the difference between high and low pressure drop flow conditions. In low pressure drop flow when outlet pressure (p 2 ) is greater than half of inlet pressure (p 1 ) outlet pressure restricts flow through the orifice: as outlet pressure decreases, flow increases, and so does the velocity of the gas leaving the orifice. When outlet pressure decreases to half of inlet pressure, the gas leaves the orifice at the velocity of sound. The gas cannot exceed the velocity of sound and therefore this becomes the maximum flow rate. The maximum flow rate is also known as choked flow or critical flow. Any further decrease in outlet pressure does not increase flow, even if the outlet pressure is reduced to zero. Consequently, high pressure drop flow only depends on inlet pressure and not outlet pressure. Low pressure drop p 1 p 2 Maximum flow p 1 p 2 Sonic flow High pressure drop p 1 p 2 q p 2 > 1/2p 1 p 2 = 1/2p 1 q This equation applies when there is low pressure drop flow outlet pressure (p 2 ) is greater than one half of inlet pressure (p 1 ): 2 p q = N 2 C v p 1 (1 ) 3p 1 p p 1 G g T 1 p 2 > 1/2p 1 pressure does not increase the flow because the gas has reached sonic velocity at the orifice, and it cannot break that sound barrier. The equation for high pressure drop flow is simpler because it depends only on inlet pressure and temperature, valve flow coefficient, and specific gravity of the gas: q = N 2 C v p 1 1 G g T 1 G g T 1 p 1 p 2 q p 2 < 1/2p 1 The low pressure drop air flow graphs (pages 8 and 9) show low pressure drop air flow for a valve with a C v of 1.0, given as a function of inlet pressure (p 1 ) for a range of pressure drop (Dp) values. When outlet pressure (p 2 ) is less than half of inlet pressure (p 1 ) high pressure drop any further decrease in outlet C v G g T 1 p 1 p 2 The high pressure drop air flow graphs (pages and 11) show high pressure drop air flow as a function of inlet pressure for a range of flow coefficients. C v q

4 4 Valve Sizing + Fig. 4. For most common liquids, the effect of specific gravity on flow is less than %. Also, most high-density liquids such as concentrated acids and bases usually are diluted in water and consequently the specific gravity of the mixtures is much closer to that of water than to that of the pure liquid. Percent change Change in specific gravity Change in flow rate Ether Alcohol Oils Nitric acid Sulfuric acid + Fig. 5. For common gases, the specific gravity of the gas changes flow by less than % from that of air. And just as with liquids, gases with exceptionally high or low densities often are mixed with a carrier gas such as nitrogen, so that the specific gravity of the mixture is close to that of air. Percent change + 0 Change in specific gravity Change in flow rate 1 Hydrogen Natural gas Oxygen Argon Carbon dioxide Effects of Specific Gravity The flow equations include the variables G f and G g liquid specific gravity and gas specific gravity which are the density of the fluid compared to the density of water (for liquids) or air (for gases). However, specific gravity is not accounted for in the graphs, so a correction factor must be applied, which includes the square root of G. Taking the square root reduces the effect and brings the value much closer to that of water or air, 1.0. For example, the specific gravity of sulfuric acid is % higher than that of water, yet it changes flow by just 34 %. The specific gravity of ether is 26 % lower than that of water, yet it changes flow by only 14 %. Figure 4 shows how the significance of specific gravity on liquid flow is diminished by taking its square root. Only if the specific gravity of the liquid is very low or very high will the flow change by more than % from that of water. The effect of specific gravity on gases is similar. For example, the specific gravity of hydrogen is 93 % lower than that of air, but it changes flow by just 74 %. Carbon dioxide has a specific gravity 53 % higher than that of air, yet it changes flow by only 24 %. Only gases with very low or very high specific gravity change the flow by more than % from that of air. Figure 5 shows how the effect of specific gravity on gas flow is reduced by use of the square root. Effects of Temperature Temperature usually is ignored in liquid flow calculations because its effect is too small. Temperature has a greater effect on gas flow calculations, because gas volume expands with higher temperature and

5 Valve Sizing 5 Temperature, C Percent change 0 Change in flow rate Fig. 6. Many systems operate in the range F ( C) to +212 F (+ C). Within this range, temperature changes affect flow by little more than % Temperature, F Numerical Constants for Flow Equations Constant contracts with lower temperature. But similar to specific gravity temperature affects flow by only a square-root factor. For systems that operate between F ( C) and +212 F (+ C), the correction factor is only +12 to 11 %. Figure 6 shows the effect of temperature on volumetric flow over a broad range of temperatures. The plus-or-minus % range covers the usual operating temperatures of most common applications. Other Services Units Used in Equations N q p T 1 N U.S. gal/min psia Imperial gal/min psia L/min bar L/min kg/cm 2 N std ft 3 /min psia R 69 std L/min bar K 6816 std L/min kg/cm 2 K As noted above, this technical bulletin covers valve sizing for many common applications and services. What about viscous liquids, slurries, or boiling and flashing liquids? Suppose vapors, steam, and liquefied gases are used? How are valves sized for these other services? Such applications are beyond the scope of this document, but the ISA standards S75.01 and S75.02 contain a complete set of formulas for sizing valves that will be used in a variety of special services, along with a description of flow capacity test principles and procedures. These and other ISA publications are listed in the references. Also, most standard engineering handbooks have sections on fluid mechanics. Several of these are given in the references, as well. Cited References 1. ISA S75.01, Flow Equations for Sizing Control Valves, Standards and Recommended Practices for Instrumentation and Control, th ed., Vol. 2, ISA S75.02, Control Valve Capacity Test Procedure, Standards and Recommended Practices for Instrumentation and Control, th ed., Vol. 2, Other References L. Driskell, Control-Valve Selection and Sizing, ISA, J.W. Hutchinson, ISA Handbook of Control Valves, 2nd ed., ISA, Chemical Engineers Handbook, 4th ed., Robert H. Perry, Cecil H. Chilton, and Sidney D. Kirkpatrick, Ed., McGraw-Hill, New York. Instrument Engineers Handbook, revised ed., Béla G. Lipták and Kriszta Venczel, Ed., Chilton, Radnor, PA. Piping Handbook, 5th ed., Reno C. King, Ed., McGraw-Hill, New York. Standard Handbook for Mechanical Engineers, 7th ed., Theodore Baumeister and Lionel S. Marks, Ed., McGraw-Hill, New York.

6 6 Valve Sizing Water Flow U.S. Units Water flow, U.S. gallons per minute C v = Pressure Drop, psi Flow, U.S. gal/min Example: Enter the vertical scale with the pressure drop across the valve (Dp = psi). Read across to the desired flow rate (q = 4 U.S. gal/min). The diagonal line is the desired C v value (C v = 0.).

7 Water Flow Metric Units Water flow, liters per minute Valve Sizing C v = Pressure Drop, bar Flow, L/min Example: Enter the vertical scale with the pressure drop across the valve (Dp = bar). Read across to the desired flow rate (q = 0.2 L/min). The diagonal line is the desired C v value (C v = ).

8 8 Valve Sizing Low Pressure Drop Air Flow U.S. Units Low pressure air drop flow, standard cubic feet per minute psi 0 psi 0 psi 0 psi 0 25 psi 0 Inlet Pressure, psig 0 0 p = 5 psi psi High pressure drop flow Flow, std ft 3 /min Example: Enter the vertical scale with the inlet pressure at the valve (p 1 = 0 psig). Read across to the diagonal line for the pressure drop across the valve (Dp = 25 psi). Read down to the horizontal scale for the flow rate through a valve with a C v of 1.0 (q = 65 std ft 3 /min). Multiply that flow rate by the valve C v to determine the actual flow rate.

9 Low Pressure Drop Air Flow Metric Units Low pressure air drop flow, standard liters per minute Valve Sizing bar bar 5 bar 2.5 bar 1.0 bar 0. bar Inlet Pressure, bar p = bar High pressure drop flow Flow, std L/min Example: Enter the vertical scale with the inlet pressure at the valve (p 1 = bar). Read across to the diagonal line for the pressure drop across the valve (Dp = 1 bar). Read down to the horizontal scale for the flow rate through a valve with a C v of 1.0 (q = 00 std L/min). Multiply that flow rate by the valve C v to determine the actual flow rate.

10 Valve Sizing High Pressure Drop Air Flow U.S. Units High pressure drop air flow, standard cubic feet per minute C v C= v Inlet Pressure, psig Flow, std ft 3 /min Example: Enter the vertical scale with the inlet pressure at the valve (p 1 = 0 psig). Read across to the desired flow rate (q = std ft 3 /min). The diagonal line is the desired C v value (C v = 0.).

11 Valve Sizing 11 High Pressure Drop Air Flow Metric Units High pressure drop air flow, standard liters per minute 0 C v = Inlet Pressure, bar Flow, std L/min Example: Enter the vertical scale with the inlet pressure at the valve (p 1 = bar). Read across to the desired flow rate (q = 00 std L/min). The diagonal line is the desired C v value (C v = 1.0).

12 Safe Product Selection When selecting a product, the total system design must be considered to ensure safe, trouble-free performance. Function, material compatibility, adequate ratings, proper installation, operation, and maintenance are the responsibilities of the system designer and user. Swagelok TM Swagelok Company 1994, 1995, 00, 02 Swagelok Company December 07, R4 MS E

### BASIC UNDERSTANDING OF FLOW CALCULATIONS AND ESTIMATES MAKES SIZING VALVES SIMPLER

BASIC UNDERSTANDING OF FLOW CALCULATIONS AND ESTIMATES MAKES SIZING VALVES SIMPLER Valve size often is described by the nominal size of the end connections but a more important measure is the flow that

### HOW TO SIZE A PRESSURE REGULATOR

CHOOSING THE CORRECT REGULATOR HOW TO SIZE A PRESSURE REGULATOR In order to choose the correct regulator the following information is needed: - Function: Pressure reducing or backpressure control? - Pressure:

### Pressure-Reducing Regulator Flow Curves

www.swagelok.com Pressure-educing egulator low Curves Technical Bulletin Scope Selecting a regulator for an application first requires review of its performance capabilities and their alignment with the

### Equivalents & Conversion Factors 406 Capacity Formulas for Steam Loads 407 Formulas for Control Valve Sizing 408-409

Engineering Data Table of Contents Page No. I II Formulas, Conversions & Guidelines Equivalents & Conversion Factors 406 Capacity Formulas for Steam Loads 407 Formulas for Control Sizing 408-409 Steam

### Technical Bulletin TB8102 Rupture Disc Sizing

Technical Bulletin TB8102 Rupture Disc Sizing The objective of this bulletin is to provide detailed guidance for sizing rupture discs using standard methodologies found in ASME Section VIII Div. 1, API

### Engineering Information For PDC Butterfly Valves

Engineering Information For PDC Butterfly Valves Valve Sizing: Cv sizing is the most widely used method for valve sizing, today. By using the Cv method, the proper valve size can be accurately determined

### Extending Orifice Flow Data

46 Extending Flow Data EXTRAPOLATION 1. Specific Gravity Other Gases To convert air flow from chart to another gas flow. Flow (gas) = Flow (air) / S.G. (gas) To obtain flow rate for helium when air flow

### Valve Pressure Loss & Flow

Valve Pressure Loss & Flow The valve coefficient, Cv, is a number which represents the capability of a valve (or any flow component) to flow a fluid. The larger the Cv, the larger the flow at a given pressure

### Flow Curves and Calculations Technical Information

Flow Curves and Calculations Technical Information debul2007x012 Flow Curves Tescom flow charts are the graphic representation of test results which show the change in outlet pressure (P 2 ) with a varying

COMMONLY ASKED QUESTIONS ITEM QUESTION 1 What is CV? 2 What is the difference between actual, standard and normal flow rates for gases? 3 What is Cavitation? 4 What is flashing? 5 What is choked flow?

### V-Control Ball Valve Selection Guide Technical Bulletin No Date: September 2008 / Pg.1 of 6

Date: September 2008 / Pg.1 of 6 V-Control Ball valve Selection The control valve is the most important single element in any fluid handling system. This is because it regulates the flow of a fluid in

### MR98 Series Backpressure Regulators, Relief and Differential Relief Valves

MR98 Series Backpressure Regulators, Relief and Differential Relief Valves May 2016 P1753 Type MR98H P1757 TYPE MR98L Figure 1. Typical MR98 Series Backpressure Regulators, Relief and Differential Relief

### Physical Science Refresher. Self Study Physical Science Refresher

Self Study Physical Science Refresher Table of Contents 1. Three phases of matter: Solids, Liquids and Gases 2. The effect of heat and pressure on the phases of matter a) expanding and contracting 3. Changing

### 3-1 Copyright Richard M. Felder, Lisa G. Bullard, and Michael D. Dickey (2014)

EQUATIONS OF STATE FOR GASES Questions A gas enters a reactor at a rate of 255 SCMH. What does that mean? An orifice meter mounted in a process gas line indicates a flow rate of 24 ft 3 /min. The gas temperature

### Vogt Valves The Connection Bulletin for Forged Steel Flow Control Valves CB 15

The Connection Bulletin for Forged Steel Flow Control Valves CB 15 Flow Control Division Forged Steel Flow Control Valves GRADUATED DIAL AND INDICATOR FULLY GUIDED V-PORT THROTTLING DISC AND INTEGRAL HARD

### Regulator Performance Definitions

Technical data regulator technical data Regulator Performance Definitions What information can be determined from a flow curve? The following sketch explains how to interpret the flow curves presented

### Specific Volume of Liquid (Column 7). The volume per unit of mass in cubic feet per pound.

Steam Tables What They Are How to Use Them The heat quantities and temperature/ pressure relationships referred to in this Handbook are taken from the Properties of Saturated Steam table. Definitions of

### Michael Montgomery Marketing Product Manager Rosemount Inc. Russ Evans Manager of Engineering and Design Rosemount Inc.

ASGMT / Averaging Pitot Tube Flow Measurement Michael Montgomery Marketing Product Manager Rosemount Inc. Russ Evans Manager of Engineering and Design Rosemount Inc. Averaging Pitot Tube Meters Introduction

### API Standard Sizing, Selection, & Installation of Pressure Relieving Devices Part I, Sizing & Selection

3.3.3.1 520-I-01/03 Question 1: Is this a correct interpretation of Section 3.3.3.1.3 in that the backpressure was specified to not exceed the allowable overpressure? Question 2: If my interpretation of

### THE HUMIDITY/MOISTURE HANDBOOK

THE HUMIDITY/MOISTURE HANDBOOK Table of Contents Introduction... 3 Relative Humidity... 3 Partial Pressure... 4 Saturation Pressure (Ps)... 5 Other Absolute Moisture Scales... 8 % Moisture by Volume (%M

### pumping liquids JET PUMP TECHNICAL DATA

Section 000 Bulletin 00 Issued 5/87 Replaces /8 JET PUMP TECHNICAL DATA pumping liquids This technical bulletin includes general information about Penberthy Jet Pumps plus specific details for selecting

### 5.3.2 The container marking shall contain the following information:

1 of 5 2/4/2013 3:19 PM Committee Input No. 57-NFPA 59-2012 [ Section No. 5.3.2 ] 5.3.2 The container marking shall contain the following information: (1) Name and address of the container supplier or

### Air Eliminators and Combination Air Eliminators Strainers

Description Air Eliminators and Combination Air Eliminator Strainers are designed to provide separation, elimination and prevention of air in piping systems for a variety of installations and conditions.

### Chapter 3 Process Variables. Mass and Volume

Chapter 3 Process Variables Process: to a chemical engineer, the set of tasks or operations that accomplish a chemical or material transformation to produce a product Feed or inputs: raw materials and

### R = 1545 ft-lbs/lb mole ºR R = 1.986 BTU/lb mole ºR R = 1.986 cal/gm mole ºK

Flow Through the Regulator The SCUBA tank regulator arrangement can be idealized with the diagram shown below. This idealization is useful for computing pressures and gas flow rates through the system.

### SIZING AND CAPACITIES OF GAS PIPING

APPENDIX A (IFGS) SIZING AND CAPACITIES OF GAS PIPING (This appendix is informative and is not part of the code.) A.1 General. To determine the size of piping used in a gas piping system, the following

### Technical Information

Determining Energy Requirements - & Gas Heating & Gas Heating and gas heating applications can be divided into two conditions, air or gas at normal atmospheric pressure and air or gas under low to high

### A practical guide to restrictive flow orifices

Safetygram 46 A practical guide to restrictive flow orifices Restrictive flow orifices (RFOs) installed in cylinder valve outlets provide a significant safety benefit for users of hazardous gases, especially

### CONTROL VALVE PRESSURE DROP AND SIZING

CONTENT Chapter Description Page I Purpose of Control Valve II Type and Main Components of Control Valve 3 III Power 5 IV. Pressure Drop Across Control Valve 7 V. Symbols and Units 10 VI. Unit Conversion

### INTERNATIONAL FIRE TRAINING CENTRE

INTERNATIONAL FIRE TRAINING CENTRE FIREFIGHTER INITIAL HYDRAULICS Throughout this note he means he/she and his means his/hers. Areas In bold type are considered to be of prime importance. INTRODUCTION

### Chapter 19 Purging Air from Piping and Vessels in Hydrocarbon Service

BP Lower 48 Onshore Operations Safety Manual Page 4.19 1 Chapter 19 Purging Air from Piping and Vessels in Hydrocarbon Service I. General Requirements A. After motor vehicle accidents and underground excavation

### 7.2.2 Changing State. 43 minutes. 56 marks. Page 1 of 17

7.2.2 Changing State 43 minutes 56 marks Page 1 of 17 Q1. Air is a gas at room temperature. The chemical formulae below show some of the substances in the air. Ar CO 2 H 2 O N 2 Ne O 2 (a) Put these formulae

### Self-operated Pressure Regulators for special applications

Self-operated Pressure Regulators for special applications Type 235-11 Pressure Regulator Pressure build-up regulator Valve opens when the upstream pressure drops Pressure reducing valve Valve closes when

### VALVE SIZING REFERENCE GUIDE

VALVE SIZING REFERENCE GUIDE //data/public/pdf/valve-sizing-maual.doc 1 of 43 10/10/2008 TABLE OF CONTENTS Introduction... 4 Valve Flow Terminology... 4 The Sizing Process... 5 Operating Conditions...

### CHAPTER 12. Gases and the Kinetic-Molecular Theory

CHAPTER 12 Gases and the Kinetic-Molecular Theory 1 Gases vs. Liquids & Solids Gases Weak interactions between molecules Molecules move rapidly Fast diffusion rates Low densities Easy to compress Liquids

### Pump Formulas Imperial and SI Units

Pump Formulas Imperial and Pressure to Head H = head, ft P = pressure, psi H = head, m P = pressure, bar Mass Flow to Volumetric Flow ṁ = mass flow, lbm/h ρ = fluid density, lbm/ft 3 ṁ = mass flow, kg/h

### CONNECTION BULLETIN. Vogt Valves. Experience In Motion. Forged Steel Flow Control Valves. FCD VVABR /05 (Replaces CB-15)

CONNECTION BULLETIN ogt alves Forged Steel Flow Control alves FCD ABR1015-00 01/05 (Replaces CB-15) Experience In Motion ogt alves Forged Steel Flow Control alves FCD ABR1015-00 01/05 Forged Steel Flow

### = 800 kg/m 3 (note that old units cancel out) 4.184 J 1000 g = 4184 J/kg o C

Units and Dimensions Basic properties such as length, mass, time and temperature that can be measured are called dimensions. Any quantity that can be measured has a value and a unit associated with it.

### T U R B I N E G A S M E T E R

TURBINE GAS METER TURBINE GAS METER CGT 1 2 3 4 5 6 7 Design and function page 2 General technical data page 3 Measurement outputs page 4 Dimensions and weights page 5 Performance page 7 Pressure loss

### 1301 Series High-Pressure Regulators

1301 Series High-Pressure Regulators Bulletin 71.1:1301 December 2013 P10 Figure 1. Type 1301F Regulator Features Durable Stainless Steel Diaphragm For high-outlet pressure applications. Spare Valve Disk

### DIN 2403 Identification of pipelines according to the fluid conveyed. Marking of pipes according to fluid transported

DIN 2403 Identification of pipelines according to the fluid conveyed. Marking of pipes according to fluid transported 1 Field of application This standard specifies the colours for the identification of

### Wet gas compressor capacity limits

Understanding Centrifugal Compressor Performance in a Connected Process System Scott Golden, Scott A. Fulton and Daryl W. Hanson Process Consulting Services Inc., Houston, Texas Wet gas compressor capacity

### SIZING AND CAPACITIES OF GAS PIPING

CALIFORNIA RESIDENTIAL CODE MATRIX ADOPTION TABLE APPENDIX A SIZING AND CAPACITIES OF GAS PIPING (Matrix Adoption Tables are non-regulatory, intended only as an aid to the user. See Chapter 1 for state

### Gas sensors need to be calibrated and periodically

Chapter 11 Gas sensors need to be calibrated and periodically checked to ensure sensor accuracy and system integrity. It is important to install stationary sensors in locations where the calibration can

### Compressed Air Distribution Systems

The below article deals with the link between the demand side and the supply side and deals with how to get the treated compressed air to the points of use at the right rate of flow and at the right pressure.

### SIZING AND CAPACITIES OF GAS PIPING (Not Adopted by the State of Oregon)

(IFGS) SIZING AND CAPACITIES OF GAS PIPING (Not Adopted by the State of Oregon) (This appendix is informative and is not part of the code. This appendix is an excerpt from the 2006 International Fuel Gas

### CO 2 41.2 MPa (abs) 20 C

comp_02 A CO 2 cartridge is used to propel a small rocket cart. Compressed CO 2, stored at a pressure of 41.2 MPa (abs) and a temperature of 20 C, is expanded through a smoothly contoured converging nozzle

### SAMPLE PROBLEMS FOR TEST No. 1 ANSWERS AND SOLUTIONS TO SELECTED ODD-NUMBERED PROBLEMS

SAMPLE PROBLEMS FOR TEST No. 1 ANSWERS AND SOLUTIONS TO SELECTED ODD-NUMBERED PROBLEMS 1.5 The attractive force of gravity for objects near the earth s surface increases as you get closer to the center

### Aeration Air & Digester Gas Flow Metering Using Thermal Mass Technology. HWEA 2011 Conference Craig S. Johnson

Aeration Air & Digester Gas Flow Metering Using Thermal Mass Technology HWEA 2011 Conference Craig S. Johnson Presentation Overview Introduction Aeration Air & Digester gas challenges Gas flow metering

### Section 3.1 Properties of Matter

Section 3.1 Properties of Matter In your textbook, read about physical properties and chemical properties of matter. Use each of the terms below just once to complete the passage. chemical mass physical

### Sizing Pressure Regulators & Control Valves

Sizing Pressure Regulators & Control Valves ( ( Sizing the Pressure Regulators Sizing of regulators is usually made on the basis of Cg valve and KG sizing coefficients. Flow rates at fully open position

### B34 Series Regulator Commercial and Industrial Regulator

Gas B34 Series Regulator Commercial and Industrial Regulator Applications Appropriate for many commercial and industrial uses such as gas engines, burners, furnaces and boilers. The rapid response of the

### Transient Mass Transfer

Lecture T1 Transient Mass Transfer Up to now, we have considered either processes applied to closed systems or processes involving steady-state flows. In this lecture we turn our attention to transient

### UNIVERSITY OF MINNESOTA DULUTH DEPARTMENT OF CHEMICAL ENGINEERING ChE MEASUREMENTS WITH FLOW METERS

UNIVERSITY OF MINNESOTA DULUTH DEPARTMENT OF CHEMICAL ENGINEERING ChE 3211-4211 MEASUREMENTS WITH FLOW METERS OBJECTIVE The purpose of this experiment is to calculate the coefficient of discharge from

### Generating Calibration Gas Standards

Technical Note 1001 Metronics Inc. Generating Calibration Gas Standards with Dynacal Permeation Devices Permeation devices provide an excellent method of producing known gas concentrations in the PPM and

### APPENDIX A CONTROL VALVE TESTING PROCEDURES AND EQUATIONS FOR LIQUID FLOWS

APPENDIX A CONTROL VALVE TESTING PROCEDURES AND EQUATIONS FOR LIQUID FLOWS Section A.1. Flow Coefficients Definition The flow coefficient or pressure loss coefficient is used to relate the pressure loss

### 2 1/2 Pipe. 40 = height. the gauge pressure inside the vessel from the gauge pressure at the nozzle inlet as shown:

116eering. Engineering. Engineering. Engineering. Engineerin Engineering Information SPECIFYING SPRAY NOZZLES Spray nozzles have three basic functions: meter flow distribute liquid break up a liquid stream

### ModuMath Basic Math Basic Math 1.1 - Naming Whole Numbers Basic Math 1.2 - The Number Line Basic Math 1.3 - Addition of Whole Numbers, Part I

ModuMath Basic Math Basic Math 1.1 - Naming Whole Numbers 1) Read whole numbers. 2) Write whole numbers in words. 3) Change whole numbers stated in words into decimal numeral form. 4) Write numerals in

### 1805 Series Relief Valves

October 2011 1805 Series Relief Valves P1026 1805G Type 1805-2 Type 1805-4 Figure 1. Typical 1805 Relief Valves Introduction The 1805 Series relief valves are designed for use in farm tap applications

ADVANCED LEAK TEST METHODS Before new technologies were available to directly measure very small leaks, most leak measurements were done indirectly. Direct mass leak flow measurement has many advantages.

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

### Tutorial 6 GASES. PRESSURE: atmospheres or mm Hg; 1 atm = 760 mm Hg. STP: Standard Temperature and Pressure: 273 K and 1 atm (or 760 mm Hg)

T-41 Tutorial 6 GASES Before working with gases some definitions are needed: PRESSURE: atmospheres or mm Hg; 1 atm = 760 mm Hg TEMPERATURE: Kelvin, K, which is o C + 273 STP: Standard Temperature and Pressure:

### B34 Commercial & Industrial Regulator. Advanced Metering and Regulation Technology at Work.

IMAC Systems, Inc. 90 Main Street, PO Box 1605 Tullytown, PA 19007 Tel. 1-800-955-4GAS (215) 946-2200 Fax:(215) 943-2984 www.imacsystems.com B34 Commercial & Industrial Regulator Advanced Metering and

### Steam System Best Practices Condensate System Piping

Steam System Best Practices Condensate System Piping Summary The best method for improving steam system energy efficiency, reducing chemical costs, and reducing make-up water costs is to return the maximum

### TOM WHEATLEY Piston Check Valves. Designed to safely prevent backflow, preventing damage to pumps and compressors

TOM WHEATLEY Piston Check Valves Designed to safely prevent backflow, preventing damage to pumps and compressors Table of Contents TOM WHEATLEY PISTON CHECK VALVES Features... 1 How to Order... Dimensions...

### Figure 1.6 shows a column of mercury held in place by a sealing plate. Recall from physics that at the bottom of the column of mercury

Lecture no. 7 1.6 PRESSURE Pressures, like temperatures, can be expressed by either absolute or relative scales. Pressure is defined as "normal force per unit area." Figure 1.5 shows a cylinder of water.

### CHAPTER 25 IDEAL GAS LAWS

EXERCISE 139, Page 303 CHAPTER 5 IDEAL GAS LAWS 1. The pressure of a mass of gas is increased from 150 kpa to 750 kpa at constant temperature. Determine the final volume of the gas, if its initial volume

### Steam and Condensate Piping

Steam and Condensate Piping Continuing Education from the American Society of Plumbing Engineers February 2016 ASPE.ORG/ReadLearnEarn CEU 232 READ, LEARN, EARN Note: In determining your answers to the

### Abbreviations Conversions Standard Conditions Boyle s Law

Gas Law Problems Abbreviations Conversions atm - atmosphere K = C + 273 mmhg - millimeters of mercury 1 cm 3 (cubic centimeter) = 1 ml (milliliter) torr - another name for mmhg 1 dm 3 (cubic decimeter)

### Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

### UNDERSTANDING REFRIGERANT TABLES

Refrigeration Service Engineers Society 1666 Rand Road Des Plaines, Illinois 60016 UNDERSTANDING REFRIGERANT TABLES INTRODUCTION A Mollier diagram is a graphical representation of the properties of a refrigerant,

### 15. The Kinetic Theory of Gases

5. The Kinetic Theory of Gases Introduction and Summary Previously the ideal gas law was discussed from an experimental point of view. The relationship between pressure, density, and temperature was later

### Course 2 Mathematical Tools and Unit Conversion Used in Thermodynamic Problem Solving

Course Mathematical Tools and Unit Conversion Used in Thermodynamic Problem Solving 1 Basic Algebra Computations 1st degree equations - =0 Collect numerical values on one side and unknown to the otherside

### Fluid Mechanics. Fluid Statics [3-1] Dr. Mohammad N. Almasri. [3] Fall 2010 Fluid Mechanics Dr. Mohammad N. Almasri [3-1] Fluid Statics

1 Fluid Mechanics Fluid Statics [3-1] Dr. Mohammad N. Almasri Fluid Pressure Fluid pressure is the normal force exerted by the fluid per unit area at some location within the fluid Fluid pressure has the

### To Convert To Multiply by. inches millimeters inches feet feet inches 12* feet meters feet yards

Conversion Factors To Convert To Multiply by Length inches millimeters 25.4 inches feet 0.0833 feet inches 12* feet meters 0.3048 feet yards 0.3333 feet miles (U.S. statute) 0.0001894 yards yards 3* yards

### Turbo Tech 103 (Expert)

Turbo Tech 103 (Expert) This article is a bit more involved and will describe parts of the compressor map, how to estimate pressure ratio and mass flow rate for your engine, and how to plot the points

### Pressure and Temperature Controls

Pressure and Controls Pressure Reducing Armstrong pressure reducing valves (PRVs) and temperature regulators help you manage steam, air and liquid systems safely and efficiently. And assure uninterrupted

### User s Manual Laminar Flow Elements

501:440-13 User s Manual Laminar Flow Elements 10920 Madison Avenue Cleveland, Ohio 44102 Tel: 216.281.1100 email:meriam@meriam.com Web:www.meriam.com 1 TABLE OF CONTENTS Subject Page Introduction... 3

### Booster Pump and Ejector Nozzle Selection

Introduction: Booster Pump and Ejector Nozzle Selection Hydro Instruments offers a standard nozzle for each of our ejectors. However, we also offer alternate nozzle choices for each ejector. Each nozzle

Technical Reference Table of Contents Spray Performance Considerations Basic Nozzle Characteristics... A2 Capacity.... A4 Specific Gravity........................................... A4 Spray Angle and

### c h i l l e r G l o s s a ry of Te rm s A p p r o a c h Temperature difference between the leaving fluid and the evaporating

c h i l l e r G l o s s a ry of Te rm s A p p r o a c h Temperature difference between the leaving fluid and the evaporating refrigerant ARI Standard Conditions 54 F. water inlet; 44 F. water out; 35 F.

### Proportional Relief Valves

www.swagelok.com Proportional Relief Valves R Series Liquid or gas service Set pressures from 10 to psig (0.7 to 413 bar) 1/4 and 1/2 in. and 6 to 12 mm end connections 2 Proportional Relief Valves Spring

### FLUID FLOW Introduction General Description

FLUID FLOW Introduction Fluid flow is an important part of many processes, including transporting materials from one point to another, mixing of materials, and chemical reactions. In this experiment, you

### Vacuum Control. Vacuum Applications. Vacuum Regulators. Vacuum Breakers (Relief Valves) Vacuum Control Devices. Vacuum Terminology

Vacuum Applications Vacuum regulators and breakers are widely used in process plants. Conventional regulators and relief valves might be suitable for service if applied correctly. This section provides

### Piping Hydraulic Line Design and Sizing Software KLM Technology Group

Piping Hydraulic Line Design and Sizing Software KLM Technology Group Practical Engineering Guidelines for Processing Plant Solutions #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor

### AP2 Fluids. Kinetic Energy (A) stays the same stays the same (B) increases increases (C) stays the same increases (D) increases stays the same

A cart full of water travels horizontally on a frictionless track with initial velocity v. As shown in the diagram, in the back wall of the cart there is a small opening near the bottom of the wall that

### Application of the Orifice Meter for Accurate Gas Flow Measurement page 1. Application of the Orifice Meter for Accurate Gas Flow Measurement.

Application of the Orifice Meter for Accurate Gas Flow Measurement page 1 DANIEL MEASUREMENT AND CONTROL WHITE PAPER Application of the Orifice Meter for Accurate Gas Flow Measurement www.daniel.com Summary

### Test 1: Introduction to Chemistry

Name: Sunday, October 14, 2007 Test 1: Introduction to Chemistry 1. Two substances, A and Z, are to be identified. Substance A can not be broken down by a chemical change. Substance Z can be broken down

### Fluid & Gas Properties

Fluid & Gas Properties FLUID DENSITY Density is the ratio of mass to volume. In English, units density is expressed in pounds mass/cubic foot (lbm/ft 3 ). The symbol for density is ρ. Density is usually

### GAS PIPING INSTALLATIONS

CHAPTER 4 GAS PIPING INSTALLATIONS SECTION 40 GENERAL 40. Scope. This chapter shall govern the design, installation, modification and maintenance of piping systems. The applicability of this code to piping

### Technical Publication

Technical Publication Flow Meter Selection for Improved Gas Flow Measurements: Comparison of Differential Pressure and Thermal Dispersion Technologies Art Womack, Sr. Applications Engineer Fluid Components

### Deaerator White Paper for use with Industrial/Commercial and Institutional Boilers ABMA. representing the best of the boiler industry

Deaerator White Paper for use with Industrial/Commercial and Institutional Boilers ABMA. representing the best of the boiler industry Page 1 of 7 Deaerator White Paper for use with Industrial/Commercial

### General Engineering Data

CONTENTS STEAM PIPING........................................................... 3 WATER PIPING........................................................... 3 NATURAL GAS PIPING.....................................................

### Working Math Formulas, Units, Conversions

Working Math Formulas, Units, Conversions This presentation has been adapted from Math for Subsurface Operators given at the North Carolina Subsurface Operator School Math will be used to Determine a flow

### C. starting positive displacement pumps with the discharge valve closed.

KNOWLEDGE: K1.04 [3.4/3.6] P78 The possibility of water hammer in a liquid system is minimized by... A. maintaining temperature above the saturation temperature. B. starting centrifugal pumps with the

### System. System, Boundary and surroundings: Nature of heat and work: Sign convention of heat: Unit-7 Thermodynamics

Unit-7 Thermodynamics Introduction: The term Thermo means heat and dynamics means flow or movement.. So thermodynamics is concerned with the flow of heat. The different forms of the energy are interconvertible

### Chokes. Types Reasons Basics of Operations Application

Chokes Types Reasons Basics of Operations Application Most Common Chokes Positive: Fixed orifice Disassemble to change bean Adjustable Provides variable orifice size through external adjustment Schematic

### WEEK 1. Engineering Calculations Processes Process Variables

WEEK 1 Engineering Calculations Processes Process Variables 2.1 Units and Dimensions Units and dimensions are important in science and engineering A measured quantity has a numerical value and a unit (ex: