Sheet 5:Chapter 5 5 1C Name four physical quantities that are conserved and two quantities that are not conserved during a process.

Save this PDF as:

Size: px
Start display at page:

Download "Sheet 5:Chapter 5 5 1C Name four physical quantities that are conserved and two quantities that are not conserved during a process."

Transcription

1 Thermo 1 (MEP 261) Thermodynamics An Engineering Approach Yunus A. Cengel & Michael A. Boles 7 th Edition, McGraw-Hill Companies, ISBN , 2008 Sheet 5:Chapter 5 5 1C Name four physical quantities that are conserved and two quantities that are not conserved during a process. 5-1C Mass, energy, momentum, and electric charge are conserved, and volume and entropy are not conserved during a process 5 7 Air enters a nozzle steadily at 2.21 kg/m 3 and 40 m/s and leaves at kg/m 3 and 180 m/s. If the inlet area of the nozzle is 90 cm 2, determine (a) the mass flow rate through the nozzle, and (b) the exit area of the nozzle. Answers:(a) kg/s, (b) 58 cm2

2 5 8 A hair dryer is basically a duct of constant diameter in which a few layers of electric resistors are placed. A small fan pulls the air in and forces it through the resistors where it is heated. If the density of air is 1.20 kg/m 3 at the inlet and 1.05 kg/m 3 at the exit, determine the percent increase in the velocity of air as it flows through the dryer.

3 5 10 A 1-m 3 rigid tank initially contains air whose density is 1.18 kg/m 3. The tank is connected to a high-pressure supply line through a valve. The valve is opened, and air is allowed to enter the tank until the density in the tank rises to 7.20 kg/m 3. Determine the mass of air that has entered the tank. Answer: 6.02 kg Solution 5 11 The ventilating fan of the bathroom of a building has a volume flow rate of 30 L/s and runs continuously. If the density of air inside is 1.20

4 kg/m 3, determine the mass of air vented out in one day. Solution 5 12 A desktop computer is to be cooled by a fan whose flow rate is 0.34 m 3 /min. Determine the mass flow rate of air through the fan at an elevation of 3400 m where the air density is 0.7 kg/m 3. Also, if the average velocity of air is not to exceed 110 m/min, determine the diameter of the casing of the fan. Answers: kg/min, m

5 5 13 A smoking lounge is to accommodate 15 heavy smokers. The minimum fresh air requirement for smoking lounges is specified to be 30 l/s per person (ASHRAE, Standard 62, 1989). Determine the minimum required flow rate of fresh air that needs to be supplied to the lounge, and the

6 diameter of the duct if the air velocity is not to exceed 8 m/s. Solution 5 15 Air enters a 28-cm diameter pipe steadily at 200 kpa and 20 C with a velocity of 5 m/s. Air is heated as it flows, and leaves the pipe at 180 kpa and 40 C. Determine (a) the volume flow rate of

7 air at the inlet, (b) the mass flow rate of air, and (c) the velocity and volume flow rate at the exit. Solution 5 16 Refrigerant-134a enters a 28-cm diameter pipe steadily at 200 kpa and 20 C with a velocity of 5 m/s. The refrigerant gains heat as it flows and leaves the pipe at 180 kpa and 40 C. Determine (a) the volume flow rate of the refrigerant at the

8 inlet, (b) the mass flow rate of the refrigerant, and (c) the velocity and volume flow rate at the exit. Solution 5 17 Consider a 300-L storage tank of a solar water heating system initially filled with warm water at 45 C. Warm water is withdrawn from the tank through a 2-cm diameter hose at an average velocity of 0.5 m/s while cold water enters the tank at 20 C at a rate of 5 L/min. Determine the amount of water in the tank after a 20-minute period. Assume the pressure in the tank remains constant at 1 atm. Answer: 212 kg

9 5 22 Refrigerant-134a enters the compressor of a refrigeration system as saturated vapor at 0.14 MPa, and leaves as superheated vapor at 0.8 MPa and 60 C at a rate of 0.06 kg/s. Determine the rates of energy transfers by mass into and out of the compressor. Assume the kinetic and potential energies to be negligible.

10 5 24 Air flows steadily in a pipe at 300 kpa, 77 C, and 25 m/s at a rate of 18 kg/min. Determine (a) the diameter of the pipe, (b) the rate of flow energy, (c) the rate of energy transport by mass, and (d) also determine the error involved in part (c) if the kinetic energy is neglected.

11 5 30 Air enters an adiabatic nozzle steadily at 300 kpa, 200 C, and 30 m/s and leaves at 100 kpa and 180 m/s. The inlet area of the nozzle is 80 cm 2. Determine (a) the mass flow rate through the nozzle, (b) the exit temperature of the air, and (c) the exit area of the nozzle. Answers: (a) kg/s, (b) C, (c) 38.7 cm 2

12

13 5 32 Steam at 5 MPa and 400 C enters a nozzle steadily with a velocity of 80 m/s, and it leaves at 2 MPa and 300 C. The inlet area of the nozzle is 50 cm 2, and heat is being lost at a rate of 120 kj/s. Determine (a) the mass flow rate of the steam, (b) the exit velocity of the steam, and (c) the exit area of the nozzle. Solution

14 5 34 Steam at 3 MPa and 400 C enters an adiabatic nozzle steadily with a velocity of 40 m/s and leaves at 2.5 MPa and 300 m/s. Determine (a) the exit temperature and (b) the ratio of the inlet to exit area A 1 /A 2.

15 5 35 Air at 600 kpa and 500 K enters an adiabatic nozzle that has an inlet-to-exit area ratio of 2:1 with a velocity of 120 m/s and leaves with a velocity of 380 m/s. Determine (a) the exit temperature and (b) the exit pressure of the air. Answers: (a) K, (b) kpa

16 5 38 Carbon dioxide enters an adiabatic nozzle steadily at 1 MPa and 500 C with a mass flow rate of 6000 kg/h and leaves at 100 kpa and 450 m/s. The inlet area of the nozzle is 40 cm 2. Determine (a) the inlet velocity and (b) the exit temperature. Answers: (a) 60.8 m/s, (b) K

17 5 39 Refrigerant-134a at 700 kpa and 120 C enters an adiabatic nozzle steadily with a velocity of 20 m/s and leaves at 400 kpa and 30 C. Determine (a) the exit velocity and (b) the ratio of the inlet to exit area A 1 /A 2.

18 5 40 Air at 80 kpa, 27 C, and 220 m/s enters a diffuser at a rate of 2.5 kg/s and leaves at 42 C. The exit area of the diffuser is 400 cm 2. The air is estimated to lose heat at a rate of 18 kj/s during this process. Determine (a) the exit velocity and (b) the exit pressure of the air. Answers: (a) 62.0 m/s, (b) 91.1 kpa.

19 5 41 Nitrogen gas at 60 kpa and 7 C enters an adiabatic diffuser steadily with a velocity of 200 m/s and leaves at 85 kpa and 22 C. Determine (a) the exit velocity of the nitrogen and (b) the ratio of the inlet to exit area A 1 /A 2.

20 5 43 Refrigerant-134a enters a diffuser steadily as saturated vapor at 800 kpa with a velocity of 120 m/s, and it leaves at 900 kpa and 40 C. The refrigerant is gaining heat at a rate of 2 kj/s as it passes through the diffuser. If the exit area is 80 percent greater than the inlet area, determine (a) the

21 exit velocity and (b) the mass flow rate of the refrigerant. Answers: (a) 60.8 m/s, (b) kg/s Solution 5 44 Steam enters a nozzle at 400 C and 800 kpa with a velocity of 10 m/s, and leaves at 300 C and 200 kpa while losing heat at a rate of 25 kw. For an inlet area of 800 cm 2, determine the velocity and the volume flow rate of the steam at the nozzle exit. Answers: 606 m/s, 2.74 m 3 /s

22

23 5 49 Steam flows steadily through an adiabatic turbine. The inlet conditions of the steam are 10 MPa, 450 C, and 80 m/s, and the exit conditions

24 are 10 kpa, 92 percent quality, and 50 m/s. The mass flow rate of the steam is 12 kg/s. Determine (a) the change in kinetic energy, (b) the power output, and (c) the turbine inlet area. Answers: (a) kj/kg, (b) 10.2 MW, (c) m 2

25 5 51 Steam enters an adiabatic turbine at 10 MPa and 500 C and leaves at 10 kpa with a quality of 90 percent. Neglecting the changes in kinetic and potential energies, determine the mass flow rate required for a power output of 5 MW. Answer: kg/s

26 5 53 Steam enters an adiabatic turbine at 8 MPa and 500 C at a rate of 3 kg/s and leaves at 20 kpa. If the power output of the turbine is 2.5 MW, determine the temperature of the steam at the turbine exit. Neglect kinetic energy changes. Answer: 60.1 C

27 5 54 Argon gas enters an adiabatic turbine steadily at 900 kpa and 450 C with a velocity of 80 m/s and leaves at 150 kpa with a velocity of 150 m/s. The inlet area of the turbine is 60 cm 2. If the power output of the turbine is 250 kw, determine the exit temperature of the argon.

28 5 56 Refrigerant-134a enters an adiabatic compressor as saturated vapor at -24 C and leaves at 0.8 MPa and 60 C. The mass flow rate of the refrigerant is 1.2 kg/s. Determine (a) the power input to the compressor and (b) the volume flow rate of the refrigerant at the compressor inlet.

29 5 57 Air enters the compressor of a gas-turbine plant at ambient conditions of 100 kpa and 25 C with a low velocity and exits at 1 MPa and 347 C with a velocity of 90 m/s. The compressor is cooled at a rate of 1500 kj/min, and the power input to the compressor is 250 kw. Determine the mass flow rate of air through the compressor.

30 5 60 Helium is to be compressed from 120 kpa and 310 K to 700 kpa and 430 K. A heat loss of 20 kj/kg occurs during the compression process. Neglecting kinetic energy changes, determine the power input required for a mass flow rate of 90 kg/min.

31 5 61 Carbon dioxide enters an adiabatic compressor at 100 kpa and 300 K at a rate of 0.5 kg/s and leaves at 600 kpa and 450 K. Neglecting kinetic energy changes, determine (a) the volume flow rate of the carbon dioxide at the compressor inlet and (b) the power input to the compressor.

32 5 66 Refrigerant-134a is throttled from the saturated liquid state at 700 kpa to a pressure of 160 kpa. Determine the temperature drop during this process and the final specific volume of the refrigerant. Answers: 42.3 C, m3/kg

33

34 5 67 Refrigerant-134a at 800 kpa and 25 C is throttled to a temperature of -20 C. Determine the pressure and the internal energy of the refrigerant at the final state. Answers: 133 kpa, 80.7 kj/kg Solution 5 68 A well-insulated valve is used to throttle steam from 8 MPa and 500 C to 6 MPa. Determine the final temperature of the steam. Answer: C

35 5 71 Carbon dioxide gas enters a throttling valve at 5 MPa and 100 C and leaves at 100 kpa. Determine the temperature change during this process...

36

Practice Problems on Conservation of Energy. heat loss of 50,000 kj/hr. house maintained at 22 C

COE_10 A passive solar house that is losing heat to the outdoors at an average rate of 50,000 kj/hr is maintained at 22 C at all times during a winter night for 10 hr. The house is to be heated by 50 glass

Chapter 6 Energy Equation for a Control Volume

Chapter 6 Energy Equation for a Control Volume Conservation of Mass and the Control Volume Closed systems: The mass of the system remain constant during a process. Control volumes: Mass can cross the boundaries,

Energy : ṁ (h i + ½V i 2 ) = ṁ(h e + ½V e 2 ) Due to high T take h from table A.7.1

6.33 In a jet engine a flow of air at 000 K, 00 kpa and 30 m/s enters a nozzle, as shown in Fig. P6.33, where the air exits at 850 K, 90 kpa. What is the exit velocity assuming no heat loss? C.V. nozzle.

20 m neon m propane 20

Problems with solutions:. A -m 3 tank is filled with a gas at room temperature 0 C and pressure 00 Kpa. How much mass is there if the gas is a) Air b) Neon, or c) Propane? Given: T73K; P00KPa; M air 9;

6 18 A steam power plant receives heat from a furnace at a rate of 280 GJ/h. Heat losses to the surrounding air from the steam as it passes through

Thermo 1 (MEP 261) Thermodynamics An Engineering Approach Yunus A. Cengel & Michael A. Boles 7 th Edition, McGraw-Hill Companies, ISBN-978-0-07-352932-5, 2008 Sheet 6:Chapter 6 6 17 A 600-MW steam power

- Know basic of refrigeration - Able to analyze the efficiency of refrigeration system -

Refrigeration cycle Objectives - Know basic of refrigeration - Able to analyze the efficiency of refrigeration system - contents Ideal Vapor-Compression Refrigeration Cycle Actual Vapor-Compression Refrigeration

Mass and Energy Analysis of Control Volumes

MAE 320-Chapter 5 Mass and Energy Analysis of Control Volumes Objectives Develop the conservation of mass principle. Apply the conservation of mass principle to various systems including steady- and unsteady-flow

Chapter 11. Refrigeration Cycles

Chapter 11 Refrigeration Cycles The vapor compression refrigeration cycle is a common method for transferring heat from a low temperature space to a high temperature space. The figures below show the objectives

SOLUTION MANUAL SI UNIT PROBLEMS CHAPTER 9 SONNTAG BORGNAKKE VAN WYLEN. FUNDAMENTALS of. Thermodynamics. Sixth Edition

SOLUTION MANUAL SI UNIT PROBLEMS CHAPTER 9 SONNTAG BORGNAKKE VAN WYLEN FUNDAMENTALS of Thermodynamics Sixth Edition CONTENT SUBSECTION PROB NO. Correspondence table Concept-Study Guide Problems -20 Steady

CO 2 41.2 MPa (abs) 20 C

comp_02 A CO 2 cartridge is used to propel a small rocket cart. Compressed CO 2, stored at a pressure of 41.2 MPa (abs) and a temperature of 20 C, is expanded through a smoothly contoured converging nozzle

THERMODYNAMICS NOTES - BOOK 2 OF 2

THERMODYNAMICS & FLUIDS (Thermodynamics level 1\Thermo & Fluids Module -Thermo Book 2-Contents-December 07.doc) UFMEQU-20-1 THERMODYNAMICS NOTES - BOOK 2 OF 2 Students must read through these notes and

Engineering design experience of an undergraduate thermodynamics course

World Transactions on Engineering and Technology Education Vol.10, No.1, 2012 2012 WIETE Engineering design experience of an undergraduate thermodynamics course Hosni I. Abu-Mulaweh & Abdulaziz A. Al-Arfaj

VAPOUR-COMPRESSION REFRIGERATION SYSTEM

VAPOUR-COMPRESSION REFRIGERATION SYSTEM This case study demonstrates the modeling of a vapour compression refrigeration system using R22 as refrigerant. Both a steady-state and a transient simulation will

ME 6404 THERMAL ENGINEERING. Part-B (16Marks questions)

ME 6404 THERMAL ENGINEERING Part-B (16Marks questions) 1. Drive and expression for the air standard efficiency of Otto cycle in terms of volume ratio. (16) 2. Drive an expression for the air standard efficiency

UNIT 2 REFRIGERATION CYCLE

UNIT 2 REFRIGERATION CYCLE Refrigeration Cycle Structure 2. Introduction Objectives 2.2 Vapour Compression Cycle 2.2. Simple Vapour Compression Refrigeration Cycle 2.2.2 Theoretical Vapour Compression

ME 201 Thermodynamics

ME 0 Thermodynamics Second Law Practice Problems. Ideally, which fluid can do more work: air at 600 psia and 600 F or steam at 600 psia and 600 F The maximum work a substance can do is given by its availablity.

UNIVERSITY ESSAY QUESTIONS:

UNIT I 1. What is a thermodynamic cycle? 2. What is meant by air standard cycle? 3. Name the various gas power cycles". 4. What are the assumptions made for air standard cycle analysis 5. Mention the various

Chapter 17. For the most part, we have limited our consideration so COMPRESSIBLE FLOW. Objectives

Chapter 17 COMPRESSIBLE FLOW For the most part, we have limited our consideration so far to flows for which density variations and thus compressibility effects are negligible. In this chapter we lift this

Pressure Enthalpy Explained

Pressure Enthalpy Explained Within the new F Gas course the requirement for an understanding of Pressure Enthalpy (Ph) graphs is proving to be a large learning curve for those who have not come across

CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS. Blank

CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS Blank SONNTAG/BORGNAKKE STUDY PROBLEM 7-1 7.1 A car engine and its fuel consumption A car engine produces 136 hp on the output shaft with a thermal efficiency

THERMODYNAMICS TUTORIAL 5 HEAT PUMPS AND REFRIGERATION. On completion of this tutorial you should be able to do the following.

THERMODYNAMICS TUTORIAL 5 HEAT PUMPS AND REFRIGERATION On completion of this tutorial you should be able to do the following. Discuss the merits of different refrigerants. Use thermodynamic tables for

Thermodynamics - Example Problems Problems and Solutions

Thermodynamics - Example Problems Problems and Solutions 1 Examining a Power Plant Consider a power plant. At point 1 the working gas has a temperature of T = 25 C. The pressure is 1bar and the mass flow

hose-to-hose coupling pump-to-hose coupling

pipe_02 A homeowner plans to pump water from a stream in their backyard to water their lawn. A schematic of the pipe system is shown in the figure. 3 m 1 m inlet pipe-to-pump coupling stream re-entrant

APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES

APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES INTRODUCTION This tutorial is designed for students wishing to extend their knowledge of thermodynamics to a more

ES-7A Thermodynamics HW 1: 2-30, 32, 52, 75, 121, 125; 3-18, 24, 29, 88 Spring 2003 Page 1 of 6

Spring 2003 Page 1 of 6 2-30 Steam Tables Given: Property table for H 2 O Find: Complete the table. T ( C) P (kpa) h (kj/kg) x phase description a) 120.23 200 2046.03 0.7 saturated mixture b) 140 361.3

Energy Balances and Numerical Methods Design Project. Production of Acrylic Acid

Process Description Energy Balances and Numerical Methods Design Project Production of Acrylic Acid Figure 1 is a preliminary process flow diagram (PFD) for the acrylic acid production process. The raw

ES-7A Thermodynamics HW 5: 5-62, 81, 96, 134; 7-29, 40, 42, 67, 71, 106 Spring 2003 Page 1 of 7

ES-7A hermodynamic HW 5: 5-6, 8, 96, 34; 7-9, 4, 4, 67, 7, 6 Sring 3 Page of 7 5-6 Heat Pum Given: A heat um i ued to maintain a houe at 3 C. he houe loe heat to the outide at a rate of 6, kj/h, and the

UNIT 5 REFRIGERATION SYSTEMS

UNIT REFRIGERATION SYSTEMS Refrigeration Systems Structure. Introduction Objectives. Vapour Compression Systems. Carnot Vapour Compression Systems. Limitations of Carnot Vapour Compression Systems with

Engineering Problem Solving as Model Building

Engineering Problem Solving as Model Building Part 1. How professors think about problem solving. Part 2. Mech2 and Brain-Full Crisis Part 1 How experts think about problem solving When we solve a problem

Gas diesel power plant running on shale oil retort gas

Gas diesel power plant running on shale oil retort gas Priit Heinla Wärtsilä 1 Wärtsilä February 14 WÄRTSILÄ POWER PLANTS Utilising retorn gas by gas diesel plant Plant is based on reciprocating Gas Diesel

1. A belt pulley is 3 ft. in diameter and rotates at 250 rpm. The belt which is 5 ins. wide makes an angle of contact of 190 over the pulley.

Sample Questions REVISED FIRST CLASS PARTS A1, A2, AND A3 (NOTE: these questions are intended as representations of the style of questions that may appear on examinations. They are not intended as study

Condensers & Evaporator Chapter 5

Condensers & Evaporator Chapter 5 This raises the condenser temperature and the corresponding pressure thereby reducing the COP. Page 134 of 263 Condensers & Evaporator Chapter 5 OBJECTIVE QUESTIONS (GATE,

Construction of separating calorimeter is as shown in figure:

1. Title: Measurement of dryness fraction by Separating Calorimeter, Throttling Calorimeter, Separating and Throttling Calorimeter. 2. Learning objectives: 2.1. Intellectual skills: a) Measurement of Dryness

Chapter 7 Energy and Energy Balances

CBE14, Levicky Chapter 7 Energy and Energy Balances The concept of energy conservation as expressed by an energy balance equation is central to chemical engineering calculations. Similar to mass balances

Second Law of Thermodynamics Alternative Statements

Second Law of Thermodynamics Alternative Statements There is no simple statement that captures all aspects of the second law. Several alternative formulations of the second law are found in the technical

FIGURE P8 50E FIGURE P8 62. Minor Losses

8 48 Glycerin at 40 C with r 1252 kg/m 3 and m 0.27 kg/m s is flowing through a 4-cm-diameter horizontal smooth pipe with an average velocity of 3.5 m/s. Determine the pressure drop per 10 m of the pipe.

3.4 An external water tap has the valve activated by a long spindle so the closing mechanism is located well inside the wall. Why is that?

3.4 An external water tap has the ale actiated by a long spindle so the closing mechanism is located well inside the wall. Why is that? By haing the spindle inside the wall the coldest location with water

Lesson. 11 Vapour Compression Refrigeration Systems: Performance Aspects And Cycle Modifications. Version 1 ME, IIT Kharagpur 1

Lesson Vapour Compression Refrigeration Systems: Performance Aspects And Cycle Modifications Version ME, IIT Kharagpur The objectives of this lecture are to discuss. Performance aspects of SSS cycle and

Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS

Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS Lecture slides by Hasan Hacışevki Copyright

(b) 1. Look up c p for air in Table A.6. c p = 1004 J/kg K 2. Use equation (1) and given and looked up values to find s 2 s 1.

Problem 1 Given: Air cooled where: T 1 = 858K, P 1 = P = 4.5 MPa gage, T = 15 o C = 88K Find: (a) Show process on a T-s diagram (b) Calculate change in specific entropy if air is an ideal gas (c) Evaluate

An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation

An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation R K Kapooria Department of Mechanical Engineering, BRCM College of Engineering & Technology, Bahal (Haryana)

Chapter 3.4: HVAC & Refrigeration System

Chapter 3.4: HVAC & Refrigeration System Part I: Objective type questions and answers 1. One ton of refrigeration (TR) is equal to. a) Kcal/h b) 3.51 kw c) 120oo BTU/h d) all 2. The driving force for refrigeration

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS System: Quantity of matter (constant mass) or region in space (constant volume) chosen for study. Closed system: Can exchange energy but not mass; mass is constant

Engineering Software P.O. Box 2134, Kensington, MD 20891 Phone: (301) 919-9670 Web Site:

Engineering Software P.O. Box 2134, Kensington, MD 20891 Phone: (301) 919-9670 E-Mail: info@engineering-4e.com Web Site: http://www.engineering-4e.com Brayton Cycle (Gas Turbine) for Propulsion Application

LG Electronics AE Company, Commercial Air Conditioning

www.lgeaircon.com New concept Ecofriendly Highefficiency Heating solution Total heating & Hot water Solution for MULTI V LG Electronics AE Company, Commercial Air Conditioning 2 Yeouidodong, Yeongdeungpogu,

Refrigeration Basics 101. By: Eric Nelson

Refrigeration Basics 101 By: Eric Nelson Basics Refrigeration is the removal of heat from a material or space, so that it s temperature is lower than that of it s surroundings. When refrigerant absorbs

A basic introduction to steam

A basic introduction to steam FOR HOT, COLD, MOIST AND DRY, FOUR CHAMPIONS FIERCE. STRIVE HERE FOR MASTERY Milton 1666 Steam Wonderful Steam Very high heat content Recyclable Clean, non toxic Biodegradable

HVAC SYSTEM (HEATER, VENTILATOR, AND A/C)

HVAC SYSTEM (HEATER, VENTILATOR, AND A/C) HEATER SYSTEM 1. Heater System A: GENERAL A semi-center type integrated air conditioning unit is used, where a high performance heater core and an evaporator core

Lesson 27 Psychrometry. Version 1 ME, IIT Kharagpur 1

1 Lesson 27 Psychrometry Version 1 ME, IIT Kharagpur 1 2 The specific objectives of this lecture are to: 1. Define psychrometry and the composition of moist air (Section 27.1) 2. Discuss the methods used

APPLIED THERMODYNAMICS. TUTORIAL No.3 GAS TURBINE POWER CYCLES. Revise gas expansions in turbines. Study the Joule cycle with friction.

APPLIED HERMODYNAMICS UORIAL No. GAS URBINE POWER CYCLES In this tutorial you will do the following. Revise gas expansions in turbines. Revise the Joule cycle. Study the Joule cycle with friction. Extend

CHAPTER 25 IDEAL GAS LAWS

EXERCISE 139, Page 303 CHAPTER 5 IDEAL GAS LAWS 1. The pressure of a mass of gas is increased from 150 kpa to 750 kpa at constant temperature. Determine the final volume of the gas, if its initial volume

AME 50531 Homework Solutions 1 Fall 2011

Homework 1 AME 50531 Homework Solutions 1 Fall 2011 1. CPIG air enters an isentropic nozzle at 1.30 atm and 24 Cwithavelocityof2.5m/s. The nozzle entrance diameter is 120 mm. The air exits the nozzle at

Lesson 5 Review of fundamental principles Thermodynamics : Part II

Lesson 5 Review of fundamental principles Thermodynamics : Part II Version ME, IIT Kharagpur .The specific objectives are to:. State principles of evaluating thermodynamic properties of pure substances

Boiler Calculations. Helsinki University of Technology Department of Mechanical Engineering. Sebastian Teir, Antto Kulla

Helsinki University of Technology Department of Mechanical Engineering Energy Engineering and Environmental Protection Publications Steam Boiler Technology ebook Espoo 2002 Boiler Calculations Sebastian

Chapter 4.9: HVAC System

Chapter 4.9: HVAC System Short type questions 1. Define tons of refrigeration?. One ton of refrigeration is the amount of cooling obtained by one ton of ice melting in one day. It is equivalent to kcal/h,

PG Student (Heat Power Engg.), Mechanical Engineering Department Jabalpur Engineering College, India. Jabalpur Engineering College, India.

International Journal of Emerging Trends in Engineering and Development Issue 3, Vol. (January 23) EFFECT OF SUB COOLING AND SUPERHEATING ON VAPOUR COMPRESSION REFRIGERATION SYSTEMS USING 22 ALTERNATIVE

www.inspection-for-industry.com

Quality Control Form (TEST RUNNING RECORD FOR AIR HANDLING UNIT) SUB POWER SUPPLY: MAIN POWER V, Hz, CONTROL V, Blower 1 kw, Blower 2 kw, Compressor: (1) kw (2) kw (3) kw (4) kw Heating Element: kw 1.

ChE 182 Major #1 Acrylic Acid Process

ChE 182 Major #1 Acrylic Acid Process Background The plant at which you are employed currently manufactures acrylic acid in Unit 300 by the catalytic oxidation of propylene. Plant capacity is on the order

Energy Analysis and Comparison of Advanced Vapour Compression Heat Pump Arrangements

Energy Analysis and Comparison of Advanced Vapour Compression Heat Pump Arrangements Stuart Self 1, Marc Rosen 1, and Bale Reddy 1 1 University of Ontario Institute of Technology, Oshawa, Ontario Abstract

STEAM TURBINE 1 CONTENT. Chapter Description Page. V. Steam Process in Steam Turbine 6. VI. Exhaust Steam Conditions, Extraction and Admission 7

STEAM TURBINE 1 CONTENT Chapter Description Page I Purpose 2 II Steam Turbine Types 2 2.1. Impulse Turbine 2 2.2. Reaction Turbine 2 III Steam Turbine Operating Range 2 3.1. Curtis 2 3.2. Rateau 2 3.3.

PERFORMANCE ANALYSIS OF VAPOUR COMPRESSION REFRIGERATION SYSTEM WITH R404A, R407C AND R410A

Int. J. Mech. Eng. & Rob. Res. 213 Jyoti Soni and R C Gupta, 213 Research Paper ISSN 2278 149 www.ijmerr.com Vol. 2, No. 1, January 213 213 IJMERR. All Rights Reserved PERFORMANCE ANALYSIS OF VAPOUR COMPRESSION

Development of a model for the simulation of Organic Rankine Cycles based on group contribution techniques

ASME Turbo Expo Vancouver, June 6 10 2011 Development of a model for the simulation of Organic Rankine ycles based on group contribution techniques Enrico Saverio Barbieri Engineering Department University

Chapter 8: Heat Exchangers

Chapter 8: Heat Exchangers Section 8.1: Introduction to Heat Exchangers 8.1-1 (8-1 in text) Dry air at T a,in = 30 C, and atmospheric pressure is blown at V a = 1.0 m 3 /s through a cross-flow heat exchanger

Ejector Refrigeration System

Ejector Refrigeration System Design Team Matthew Birnie, Morgan Galaznik, Scott Jensen, Scott Marchione, Darren Murphy Design Advisor Prof. Gregory Kowalski Abstract An ejector refrigeration system utilizing

SIMULATION OF THERMODYNAMIC ANALYSIS OF CASCADE REFRIGERATION SYSTEM WITH ALTERNATIVE REFRIGERANTS

INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print), ISSN 0976 6340 (Print) ISSN 0976 6359

Performance Test of Solar Assisted Solid Desiccant Dryer

Performance Test of Solar Assisted Solid Desiccant Dryer S. MISHA 1,2,*, S. MAT 1, M. H. RUSLAN 1, K. SOPIAN 1, E. SALLEH 1, M. A. M. ROSLI 1 1 Solar Energy Research Institute, Universiti Kebangsaan Malaysia,

Chapter 14. At temperatures below the critical temperature, the gas GAS VAPOR MIXTURES AND AIR-CONDITIONING. Objectives

Chapter 14 GAS VAPOR MIXTURES AND -CONDITIONING At temperatures below the critical temperature, the gas phase of a substance is frequently referred to as a vapor. The term vapor implies a gaseous state

OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE. TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS

UNIT 61: ENGINEERING THERMODYNAMICS Unit code: D/601/1410 QCF level: 5 Credit value: 15 OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS 2 Be able to evaluate

HOT & COLD. Basic Thermodynamics and Large Building Heating and Cooling

HOT & COLD Basic Thermodynamics and Large Building Heating and Cooling What is Thermodynamics? It s the study of energy conversion using heat and other forms of energy based on temperature, volume, and

Characteristics of Evaporators

Characteristics of Evaporators Roger D. Holder, CM, MSME 10-28-2003 Heat or Energy In this paper, we will discuss the characteristics of an evaporator coil. The variance of the operational condenses of

The final numerical answer given is correct but the math shown does not give that answer.

Note added to Homework set 7: The solution to Problem 16 has an error in it. The specific heat of water is listed as c 1 J/g K but should be c 4.186 J/g K The final numerical answer given is correct but

Jet Propulsion. Lecture-2. Ujjwal K Saha, Ph.D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1

Lecture-2 Prepared under QIP-CD Cell Project Jet Propulsion Ujjwal K Saha, Ph.D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1 Simple Gas Turbine Cycle A gas turbine that

New Trends in the Field of Automobile Air Conditioning

New Trends in the Field of Automobile Air Conditioning E. Janotkova and M. Pavelek Department of Thermomechanics and Environmental Engineering Brno University of Technology, 61669 Brno, Czech Republic

DET: Mechanical Engineering Thermofluids (Higher)

DET: Mechanical Engineering Thermofluids (Higher) 6485 Spring 000 HIGHER STILL DET: Mechanical Engineering Thermofluids Higher Support Materials *+,-./ CONTENTS Section : Thermofluids (Higher) Student

18 Q0 a speed of 45.0 m/s away from a moving car. If the car is 8 Q0 moving towards the ambulance with a speed of 15.0 m/s, what Q0 frequency does a

First Major T-042 1 A transverse sinusoidal wave is traveling on a string with a 17 speed of 300 m/s. If the wave has a frequency of 100 Hz, what 9 is the phase difference between two particles on the

2004 Standard For Performance Rating Of Positive Displacement Refrigerant Compressors And Compressor Units

2004 Standard For Performance Rating Of Positive Displacement Refrigerant Compressors And Compressor Units ANSI/AHRI Standard 540 (formerly ARI Standard 540) IMPORTANT SAFETY RECOMMENDATIONS ARI does not

The paper addresses the boil-off in the cryogenic industry and details the specifics of it when applied to vehicle LNG tanks.

What is Boil-off? Scope... 1 Boil-off in the cryogenic industry... 1... 1 Measures for boil-off... 2 LNG vehicle tanks... 2 Boil-off for the vehicle LNG Tank... 2 Heat management and types of fuel delivery

Open Cycle Refrigeration System

Chapter 9 Open Cycle Refrigeration System Copy Right By: Thomas T.S. Wan 温 到 祥 著 Sept. 3, 2008 All rights reserved An open cycle refrigeration system is that the system is without a traditional evaporator.

PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS

ASME ORC 2015 3rd International Seminar on ORC Power Systems 12-14 October 2015, Brussels, Belgium PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS Vittorio

C H A P T E R T W O. Fundamentals of Steam Power

35 C H A P T E R T W O Fundamentals of Steam Power 2.1 Introduction Much of the electricity used in the United States is produced in steam power plants. Despite efforts to develop alternative energy converters,

Element D Services Plumbing

Medical Vacuum and Gas PART 1 - GENERAL 1.01 OVERVIEW A. This section addresses medical vacuum, waste anesthetic gas disposal, compressed air, oxygen, nitrous oxide, nitrogen and carbon dioxide systems.

COGENERATION. This section briefly describes the main features of the cogeneration system or a Combined Heat & Power (CHP) system. 36 Units.

COGENERATION 1. INTRODUCTION... 1 2. TYPES OF COGENERATION SYSTEMS... 2 3. ASSESSMENT OF COGENERATION SYSTEMS... 10 4. ENERGY EFFICIENCY OPPORTUNITIES... 14 5. OPTION CHECKLIST... 16 6. WORKSHEETS... 17

Optimal operation of simple refrigeration cycles Part I: Degrees of freedom and optimality of sub-cooling

Computers and Chemical Engineering 31 (2007) 712 721 Optimal operation of simple refrigeration cycles Part I: Degrees of freedom and optimality of sub-cooling Jørgen Bauck Jensen, Sigurd Skogestad Department

Andrea Basti* Italian National Institute of Nuclear Physics (INFN) Gran Sasso National Laboratory (LNGS) *Research Grant Holder

Evaluation of the possibility to use waterscreen for people evacuation from the Gran Sasso National Laboratory inside the Gran Sasso highway tunnel in case of fire The case of The Gran Sasso National Laboratory

Testing methods applicable to refrigeration components and systems

Testing methods applicable to refrigeration components and systems Sylvain Quoilin (1)*, Cristian Cuevas (2), Vladut Teodorese (1), Vincent Lemort (1), Jules Hannay (1) and Jean Lebrun (1) (1) University

Comparison of Spherical and Membrane Large LNG. Carriers in Terms of Cargo Handling

GASTECH 2005 Comparison of Spherical and Membrane Large LNG Carriers in Terms of Cargo Handling Author Co-authors Kiho Moon, Chief Researcher Daejun Chang, Senior Researcher Donghun Lee, Researcher Hyundai

Rusty Walker, Corporate Trainer Hill PHOENIX

Refrigeration 101 Rusty Walker, Corporate Trainer Hill PHOENIX Compressor Basic Refrigeration Cycle Evaporator Condenser / Receiver Expansion Device Vapor Compression Cycle Cooling by the removal of heat

Air-sourced 90 Hot Water Supplying Heat Pump "HEM-90A"

Air-sourced 90 Hot Water Supplying Heat Pump "HEM-90A" Takahiro OUE *1, Kazuto OKADA *1 *1 Refrigeration System & Energy Dept., Compressor Div., Machinery Business Kobe Steel has developed an air-sourced

Design and Optimization of a Walk In Refrigeration System

Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2006 Design and Optimization of a Walk In Refrigeration System Zer Kai Yap Tecumseh

Mohan Chandrasekharan #1

International Journal of Students Research in Technology & Management Exergy Analysis of Vapor Compression Refrigeration System Using R12 and R134a as Refrigerants Mohan Chandrasekharan #1 # Department

Theoretical Study on Separate Sensible and Latent Cooling Air-Conditioning System

Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2008 Theoretical Study on Separate Sensible and Latent Cooling Air-Conditioning

Appendix I Process Flow Diagram. Jorge Aguerrevere

MEMORANDUM C Squared Consulting Associates 41 Cooper Square New York, NY 10003 Date: November 28, 2011 To: Ms. Sam K. Safobeen From: Jorge Aguerrevere Re: Plant for Separation of Styrene, Ethyl Benzene,

Abbreviations Conversions Standard Conditions Boyle s Law

Gas Law Problems Abbreviations Conversions atm - atmosphere K = C + 273 mmhg - millimeters of mercury 1 cm 3 (cubic centimeter) = 1 ml (milliliter) torr - another name for mmhg 1 dm 3 (cubic decimeter)

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 1 Introduction & Some Definitions Good afternoon everybody.

Ideal Jet Propulsion Cycle

Ideal Jet ropulsion Cycle Gas-turbine engines are widely used to power aircrafts because of their light-weight, compactness, and high power-to-weight ratio. Aircraft gas turbines operate on an open cycle

EJECTOR AIR REMOVAL SYSTEMS ENGINEERING DATA BULLETIN # PVS-80025201-ARS PAGE 1 OF 5

BULLETIN # PVS-80050-ARS PAGE OF 5 GENERAL Air Removal Systems generally consist of dual 00% (twin-element) ejecrs, single 00% surface-type inter- & aftercondensers, suction & discharge isolation valves

This chapter deals with three equations commonly used in fluid mechanics:

MASS, BERNOULLI, AND ENERGY EQUATIONS CHAPTER 5 This chapter deals with three equations commonly used in fluid mechanics: the mass, Bernoulli, and energy equations. The mass equation is an expression of