Fundamentals of Pulse Detonation Engine (PDE) and Related Propulsion Technology

Size: px
Start display at page:

Download "Fundamentals of Pulse Detonation Engine (PDE) and Related Propulsion Technology"

Transcription

1 Fundamentals of Pulse Detonation Engine (PDE) and Related Propulsion Technology Dora E. Musielak, Ph.D. Aerospace Engineering Consulting Arlington, TX All rights reserved. No part of this publication may be reproduced, distributed, or transmitted, unless for course participation, in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the Author. Contact D. E. Musielak, dmusielak@uta.edu

2 Pure PDE Cycle Pulse Detonation Engine (PDE) : type of propulsion system that utilizes detonation waves to combust fuel and oxidizer mixture. Engine is pulsed because mixture must be renewed from combustion chamber between each detonation wave initiated. 1: Fuel-Oxidizer Injected and Mixed 2: Detonation Initiated by ignition source 3: Detonation wave moves through gas mixture 4: High pressure gas fills detonation chamber 5: Detonation wave exits chamber and air is drawn in by reduced pressure FILL DETONATE EXHAUST Repeat Thrust is directly proportional to detonation frequency

3 Why PDEs? Advantages Increased Thermodynamic Efficiency Higher Isp Reduced SFC Design Simplicity Increased Thrust-to-Weight Ratio Increased Thrust-to-Volume Ratio Lower Cost Mach Range 0 4 Easy Vehicle Integration Applications Cruise Missiles Supersonic Aircraft Hypersonic Missiles Hybrid Turbine-PDE UAV UCAV SSTO Launch Vehicles Precision Guided Munitions Drones Increased cycle efficiency results from quasi-constant volume process PDEs potential for easier scaling extrapolates to substantial reductions in development time, when compared to conventional turbine engines. 3

4 Why PDEs? Is it possible to augment gas turbine performance with PDEs to extend supersonic flight regime? 4

5 Why PDEs? Is a PDE/SCRAM/PDRE a viable propulsion system for Spaceplanes? PDRE = Pulse Detonation Rocket Engine SCRAM = Scramjet supersonic combustion ramjet engine for M > 5 5

6 Preface Revolutionary propulsion is required to achieve high-speed cruise capability within atmosphere, and for low cost reliable Earth-to-orbit vehicles. Pulse detonation engines (PDEs) have potential performance advantages over air breathing and rocket propulsion, bypassing limitations of existing concepts. Proposed applications for detonation combustion include cruise missiles, UAV,... supersonic aircraft, and SSTO launchers. This course highlights fundamentals of pulse detonation engines and other related propulsion concepts, addressing performance characteristics, enabling technologies, and current R&D initiatives to develop new propulsion systems. 6

7 Nomenclature and Terminology A list of common terms and basic definitions is provided in a separate handout to facilitate communicating the concepts introduced in the course. In 2002, Kaemming, Lidstone, and Sammann proposed a component nomenclature, station (spatial) designation, process and event (temporal) designation and terminology for the unique PDE scheduling characteristics. Ref. AIAA Nomenclature proposal is based on several years of PDE analysis and testing by Boeing and Pratt & Whitney and is based on accepted practices, such as SAE Standard AS7551. To date, no standard has been formally issued for PDEs, and so we will follow the recommendations in AIAA paper

8 Nomenclature and Terminology See Appendix 1 8

9 Introduction to PDEs Propulsion Comparison A Vision for the Future Limits of Turbo-Engines Ideal Cycles Combustion Modes Pure Pulse Detonation Engine Detonation for Propulsion Modeling a Single Cycle PDE Thermodynamic Cycle 9

10 Seeking Revolutionary Propulsion Ideas Propulsion Comparison I sp F g m o f SFC m F f Need improved SFC performance 10

11 Highest Supersonic Speed: M = 3.2 Turbofan engines in high performance aircraft such as F-15 Eagle fighter can achieve Mach 2.5 F-16 Fighting Falcon jet fighter and F-22 Raptor are limited to Mach 2. SR-71 11

12 A Vision for the Future Air Breathing Propulsion Requirements Reduced SFC Higher Thermodynamic Efficiency Higher Isp Design Simplicity Increased Thrust-to-Weight Ratio Increased Thrust-to-Volume Ratio Lower Cost Mach range 0 10 Manufacturing Simplicity Easy Vehicle Integration Develop air-breathing engine capable of propelling aircraft beyond Mach

13 Turbine Engine Limits At Mach > 3, compressed air reaches such extreme temperatures that compressor stage fan blades begin to fail. Compressor exit temperature limits pressure ratio. Turbine inlet temperature limits thrust. Inlet Efficiency Static pressure balance P&W F100 AB Turbofan Rotational speed Compressor exit temperature limits pressure ratio F ma o 2 Tt ( 4 1) 1 T o 13

14 Turbofan with Afterburner Efficient with continuous afterburner at ~ Mach 3. Afterburner provides temporary increase in thrust, for supersonic flight and take off Slower bypass airflow produces thrust more efficiently than high-speed air from core, reducing specific fuel consumption. 14

15 P&W F-100- Performance Maximum thrust: 17,800 lbf (79.1 kn) military thrust 29,160 lbf (129.6 kn) with afterburner Overall pressure ratio: 32:1 F-16 Specific fuel consumption: Military thrust: 0.76 lb/(lbf h) (77.5 kg/(kn h)) Full afterburner: 1.94 lb/(lbf h) (197.8 kg/(kn h)) Thrust-to-weight ratio: 7.8:1 (76.0 N/kg) 15

16 Ideal Thermodynamic Cycle Brayton cycle: heat addition at constant pressure Q in netw mc out p W t ( T ) 4 T3 W c mc p [ T4 T5 ( T3 T2 )] Q in th netw Q in out = rate of thermal energy released netw out = net power out of engine th = thermal efficiency of engine B ( T T ) ( T T ) ( T T ) ( T ( T 4 T ) T ) 3 T T B 1 ( 1) / ( p3 / p2) 16

17 Burner Exit Temperature T4 Increasing T4 enlarges useful work output (isobars diverge ) However, distance between stations 3 and 4 increases also more heat has to be added and thus more fuel is needed. Thermal efficiency is only dependant on compressor pressure ratio P3/P2 and does not change with T4 17

18 Higher T4, Lower Efficiency However, isentropic exponent is not constant but decreases when temperature increases thermodynamic efficiency decreases with T4! 18

19 Heat Addition and Pressure 4 Can we improve thermodynamic cycle efficiency with a pressure-gain process? 19

20 Ideal Thermodynamic Cycle 3* Constant volume heat addition Q in 3 4 Humphrey cycle: heat addition at constant volume 2 5 H T 1 T T 4 1 T3 T4 1 T Thermal efficiency improves by more than 15% and as much as 10 to 40% improvement in Isp (Ref. Bussing (1996); Heiser & Pratt (2002); Povinelli (2002)) 20

21 Pulse Detonation Engine (PDE) Ideal PDE thermodynamic efficiency higher than turboengine because a detonation wave rapidly compresses mixture and adds heat at ~ constant volume. 21

22 Propulsion Performance 22

23 Combustion Modes F Deflagration Subsonic Combustion Detonation Supersonic Combustion Unsteady Pulsed or Intermittent Steady or Continuous Unsteady Pulsed or Intermittent Steady or Continuous Combustion Pulse Jets Turbojets Ramjets Scramjets Deflagration subsonic spread of combustion by thermal conductivity PDEs PDREs Scramjets? RDE Detonation supersonic spread of combustion by shock compression. 23

24 u 1 u 2 Combustion Modes: Detonation and Deflagration Deflagrations are subsonic combustion waves: M 1 < 1 Typical deflagrations propagate at speeds on the order of m/s Across a deflagration, the pressure decreases while the volume increases, P 2 < P 1 and V 2 > V 1 Detonations are supersonic waves: M 1 >1 Typical detonation waves propagate at a velocity on the order of 2000 m/s (4 < M 1 < 8) Pressure increase across a detonation, while the volume decreases: P 2 > P 1, V 2 < V 1 Detonations in HC fuel: P 2 /P 1 ~ 20 P 1 P 2 24

25 Deflagration and Detonation Combustion or burning is sequence of exothermic chemical reactions between fuel and an oxidant accompanied by production of heat and conversion of chemical species. Flame propagates from right Reactants u 1 P 1, T 1, 1, M 1 Products u 2 P 2, T 2, 2, M 2 25

26 Detonation vs Deflagration: Qualitative Differences Qualitative differences between upstream and downstream properties across detonation wave are similar to property differences across normal shock Main differences: Normal shock wave: downstream velocity always subsonic Detonation wave: downstream velocity always local speed of sound Note that detonation waves can fall into strong and weak classes Strong detonation: subsonic burned gas velocity Weak detonation: supersonic burned gas velocity 26

27 Wave Properties Normal shock property ratios are qualitatively similar to those of detonations and of same magnitude Except that for detonation downstream velocity is sonic Mach number increases across flame for deflagrations Mach number is very small and thus is not a very useful parameter to characterize a deflagration Velocity increases substantially and density drops substantially across a deflagration Effects are opposite in direction as compared with detonations or shock waves Pressure is essentially constant across a deflagration (actually it decreases slightly), while detonation has high pressure downstream of propagating wave Characteristic shared by shock, detonation, and deflagration is large temperature increase across wave 27

28 Detonation wave (DW) propagation to create thrust Detonation for Propulsion Oblique Detonation Wave Engine (ODWE) Combustible gas mixture velocity equals or exceeds detonation Chapman- Jouguet (CJ) velocity. Detonation waves (DWs) or oblique detonation waves (ODWs) are positioned to combust injected combustible mixture. Pulse Detonation Engine (PDE) Cyclically detonates fuel and atmospheric air mixtures to generate thrust. A shock wave compresses gas and this is followed by rapid release of heat and a sudden rise in pressure. PDE generates thrust intermittently, and it produces a significant pressure rise in combustor. Detonation-generated pressure rise represents primary benefits of a PDE in that it may reduce engine compression requirements. Continuous Detonation Engine (CDE) Combustible gas mixture is injected along axial direction, and DWs propagate in azimuthal direction. Two directions are independent, DWs can continuously propagate with range of combustible gas injection velocities and do not require multi-time ignition. 28

29 Pure PDE Cycle 1: Fuel-Oxidizer Injected and Mixed 2: High pressure detonation Initiated 3: Detonation wave moves through gas mixture at supersonic speed 4: High pressure gas fills detonation chamber 5: Detonation wave exits chamber and air is drawn in by reduced pressure FILL DETONATE Repeat EXHAUST Thrust is directly proportional to detonation frequency

30 Detonation Initiation A detonation may form via direct initiation or via deflagration-todetonation transition (DDT). Direct initiation is dependent upon an ignition source driving a blast wave of sufficient strength such that igniter is directly responsible for initiating detonation. It requires extremely large energy. DDT begins with a deflagration initiated by relatively weak energy source which accelerates through interactions with its surroundings into a coupled shock wave-reaction zone structure characteristic of a detonation. After spark creates a deflagration, transition process can take several meters or longer and a large amount of time. Key to detonation initiation schemes for PDEs is to shorten distance and time required for deflagration-to-detonation transition (DDT). 30

31 PDE Requirements Ignition and mixing must occur quickly to minimize cycle time and maximize thrust. DDT must occur quickly and in a short distance. Shortening DDT time decreases the detonate part of the cycle, allowing a frequency increase that is accompanied by a thrust increase. Shortening DDT distance decreases necessary thrust tube length, resulting in weight savings, a great advantage for propulsion

32 PDE Cycle (Basic Cycle Process) 1. Initially, chamber at ambient conditions 2. Propellant injected from closed end * Sidewall injection also works and may improve mixing 3. Ignition from closed end 4. Wave propagation and transition in chamber 5. Wave exits chamber 6. Exhaust and purge 32

33 Rankine-Hugoniot Combustion Map Conservation equations for mass, momentum, and energy for combustion waves in steady, inviscid, and constant-area flow. P 1v1 2v v1 P2 2v2 M 1 M 2 P1, v1, P 1 2, v2, 2 Combustion wave h v1 h2 2 v2 Hugoniot is locus of possible solutions for state 2 from a given state 1 and a given energy release Rayleigh line relates states 1 and 2. Solution state is at intersection of Hugoniot and Rayleigh line. 33

34 Chapman-Jouguet C-J Condition Solution to conservation equations is determined considering: For deflagrations, wave structure, and turbulent and diffusive processes determine propagation speed. For detonations, gas dynamic considerations are sufficient to determine solution. Chapman (1899) and Jouguet (1905) proposed that detonations travel at one particular velocity, which is minimum velocity for all solutions on detonation branch. At solution point (Chapman-Jouguet detonation point), Hugoniot, Rayleigh line, and isentrope are tangent. Flow behind a C-J detonation is sonic relative to wave: M 2 =1. C-J points divide Hugoniot into 4 regions: Weak deflagrations (subsonic to subsonic) Strong deflagrations (subsonic to supersonic) Weak detonations (supersonic to supersonic) Strong detonations (supersonic to subsonic) 34

35 C-J Velocity Chapman-Jouguet (C-J) condition: for an infinitesimal thin detonation, detonation wave proceeds at a velocity at which reacting gases just reach sonic velocity (in frame of lead shock) as reaction ceases. Assumes chemical reaction takes place at moment when shock compresses material Chapman-Jouguet velocity: velocity of an ideal detonation as determined by C-J condition: burned gas at end of reaction zone travels at sound speed relative to detonation wave front. C-J velocities can be computed numerically by solving for thermodynamic equilibrium and satisfying mass, momentum, and energy conservation for a steadily-propagating wave terminating in a sonic point. C-J velocities in typical fuel-air mixtures between 1400 and 1800 m/s. Speed of sound: 331 m/s in air. 35

36 PDE Thermodynamic Cycle (Heiser & Pratt, 2002 Process 3 4 models normal detonation wave in a PDE (ZND wave model) Entropy generated in detonation wave heat addition process is sum of that generated in process from 3 to 3a (adiabatic normal shock wave) and that generated in process from 3a to 4 (constant-area heat addition process) that follows. Thermal efficiency of ideal Humphrey cycle is close to, but always somewhat less than, that of ideal PDE cycle H&P 36

37 Summary of Chapter 1 Revolutionary propulsion is required to achieve high-speed cruise capability within atmosphere, and for low cost reliable earth-to-orbit vehicles. Pulse detonation engines (PDEs) have potential performance advantages over air breathing and rocket propulsion, bypassing limitations of existing concepts. Propulsion architectures that use pulsed and continuous detonation combustion offer more efficient thermodynamic properties, and thus are expected to exhibit a higher level of performance than more conventional propulsion that rely simply on deflagration combustion process. Chapter 2 will provide an overview of detonation-based propulsion, including hybrid turbine-pde and Continuous Detonation Wave Engine (CDWE) concepts. 37

38 J58 R-R/Snecma Olympus 593 P&W F100 GE F110 P&W F119 GE F414 P&W F Next Generation Supersonic Air Breathing Engine 38

39 Detonation Detonation is a shock wave sustained by energy released by combustion Combustion process, in turn, is initiated by shock wave compression and resulting high temperatures Detonations involve interaction between fluid mechanic processes (shock waves) and thermochemical processes (combustion) 39

Detonation Waves and Pulse Detonation Engines

Detonation Waves and Pulse Detonation Engines Detonation Waves and Pulse Detonation Engines E. Wintenberger and J.E. Shepherd Explosion Dynamics Laboratory, Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, CA 95 Ae03,

More information

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 20 Conservation Equations in Fluid Flow Part VIII Good morning. I welcome you all

More information

Jet Propulsion. Lecture-2. Ujjwal K Saha, Ph.D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1

Jet Propulsion. Lecture-2. Ujjwal K Saha, Ph.D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1 Lecture-2 Prepared under QIP-CD Cell Project Jet Propulsion Ujjwal K Saha, Ph.D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1 Simple Gas Turbine Cycle A gas turbine that

More information

ME 239: Rocket Propulsion. Over- and Under-expanded Nozzles and Nozzle Configurations. J. M. Meyers, PhD

ME 239: Rocket Propulsion. Over- and Under-expanded Nozzles and Nozzle Configurations. J. M. Meyers, PhD ME 239: Rocket Propulsion Over- and Under-expanded Nozzles and Nozzle Configurations J. M. Meyers, PhD 1 Over- and Underexpanded Nozzles Underexpanded Nozzle Discharges fluid at an exit pressure greater

More information

High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur

High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 06 One-dimensional Gas Dynamics (Contd.) We

More information

Airbreathing Rotating Detonation Wave Engine Cycle Analysis

Airbreathing Rotating Detonation Wave Engine Cycle Analysis 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 5-8 July 010, Nashville, TN AIAA 010-7039 Airbreathing Rotating Detonation Wave Engine Cycle Analysis Eric M. Braun, Frank K. Lu, Donald R.

More information

The Aircraft Engine Design Project Fundamentals of Engine Cycles

The Aircraft Engine Design Project Fundamentals of Engine Cycles GE Aviation The Aircraft Engine Design Project Fundamentals of Engine Cycles Spring 2009 Ken Gould Phil Weed 1 GE Aviation Technical History I-A - First U.S. jet engine (Developed in Lynn, MA, 1941) U.S.

More information

Tangential Impulse Detonation Engine

Tangential Impulse Detonation Engine Tangential Impulse Detonation Engine Ionut Porumbel, Ph.D. Aerodays 2015 21.10.2015, London, UK Overview Ongoing FP 7 project breakthrough propulsion system technology a step change in air transportation;

More information

CO 2 41.2 MPa (abs) 20 C

CO 2 41.2 MPa (abs) 20 C comp_02 A CO 2 cartridge is used to propel a small rocket cart. Compressed CO 2, stored at a pressure of 41.2 MPa (abs) and a temperature of 20 C, is expanded through a smoothly contoured converging nozzle

More information

Explosion Hazards of Hydrogen-Air Mixtures. Professor John H.S. Lee McGill University, Montreal, Canada

Explosion Hazards of Hydrogen-Air Mixtures. Professor John H.S. Lee McGill University, Montreal, Canada Explosion Hazards of Hydrogen-Air Mixtures Professor John H.S. Lee McGill University, Montreal, Canada Hydrogen Safety Issues Wide spread use of hydrogen requires significant efforts to resolve safety

More information

Chapter 17. For the most part, we have limited our consideration so COMPRESSIBLE FLOW. Objectives

Chapter 17. For the most part, we have limited our consideration so COMPRESSIBLE FLOW. Objectives Chapter 17 COMPRESSIBLE FLOW For the most part, we have limited our consideration so far to flows for which density variations and thus compressibility effects are negligible. In this chapter we lift this

More information

Forces on the Rocket. Rocket Dynamics. Equation of Motion: F = Ma

Forces on the Rocket. Rocket Dynamics. Equation of Motion: F = Ma Rocket Dynamics orces on the Rockets - Drag Rocket Stability Rocket Equation Specific Impulse Rocket otors Thrust orces on the Rocket Equation of otion: = a orces at through the Center of ass Center of

More information

MONTEREY, CALIFORNIA THESIS TRANSMISSION OF A DETONATION WAVE ACROSS A SUDDEN EXPANSION WITH VARYING MIXTURE COMPOSITION. Elizabeth J.

MONTEREY, CALIFORNIA THESIS TRANSMISSION OF A DETONATION WAVE ACROSS A SUDDEN EXPANSION WITH VARYING MIXTURE COMPOSITION. Elizabeth J. MONTEREY, CALIFORNIA THESIS TRANSMISSION OF A DETONATION WAVE ACROSS A SUDDEN EXPANSION WITH VARYING MIXTURE COMPOSITION by Elizabeth J. Touse December 2003 Thesis Advisor: Co-Advisor: Christopher M. Brophy

More information

3D Numerical Simulation on Rotating Detonation Engine : Effects of Converging-Diverging-Nozzle on Thrust Performance

3D Numerical Simulation on Rotating Detonation Engine : Effects of Converging-Diverging-Nozzle on Thrust Performance 25 th ICDERS August 2 7, 2015 Leeds, UK 3D Numerical Simulation on Rotating Detonation Engine : Effects of Converging-Diverging-Nozzle on Thrust Performance Seiichiro ETO 1, Yusuke WATANABE 1, Nobuyuki

More information

1 Foundations of Pyrodynamics

1 Foundations of Pyrodynamics 1 1 Foundations of Pyrodynamics Pyrodynamics describes the process of energy conversion from chemical energy to mechanical energy through combustion phenomena, including thermodynamic and fluid dynamic

More information

g GEAE The Aircraft Engine Design Project- Engine Cycles Design Problem Overview Spring 2009 Ken Gould Phil Weed GE Aircraft Engines

g GEAE The Aircraft Engine Design Project- Engine Cycles Design Problem Overview Spring 2009 Ken Gould Phil Weed GE Aircraft Engines GEAE The Aircraft Engine Design Project- Engine Cycles Design Problem Overview Spring 2009 Ken Gould Phil Weed 1 Background The Aircraft Engine Design Project- Engine Cycles A new aircraft application

More information

An insight into some innovative cycles for aircraft propulsion

An insight into some innovative cycles for aircraft propulsion 731 An insight into some innovative cycles for aircraft propulsion G Corchero 1, J L Montañés 1, D Pascovici 2, and S Ogaji 2 1 Universidad Politécnica de Madrid (UPM), E. T. S. Ingenieros Aeronáuticos,

More information

JET ENGINE PERFORMANCE. Charles Robert O Neill. School of Mechanical and Aerospace Engineering. Oklahoma State University. Stillwater, OK 74078

JET ENGINE PERFORMANCE. Charles Robert O Neill. School of Mechanical and Aerospace Engineering. Oklahoma State University. Stillwater, OK 74078 JET ENGINE PERFORMANCE Charles Robert O Neill School of Mechanical and Aerospace Engineering Oklahoma State University Stillwater, OK 74078 Honors Project in ENGSC 3233 Fluid Mechanics December 1998 JET

More information

Graduate Certificate Program in Energy Conversion & Transport Offered by the Department of Mechanical and Aerospace Engineering

Graduate Certificate Program in Energy Conversion & Transport Offered by the Department of Mechanical and Aerospace Engineering Graduate Certificate Program in Energy Conversion & Transport Offered by the Department of Mechanical and Aerospace Engineering Intended Audience: Main Campus Students Distance (online students) Both Purpose:

More information

CFD Analysis of Supersonic Exhaust Diffuser System for Higher Altitude Simulation

CFD Analysis of Supersonic Exhaust Diffuser System for Higher Altitude Simulation Page1 CFD Analysis of Supersonic Exhaust Diffuser System for Higher Altitude Simulation ABSTRACT Alan Vincent E V P G Scholar, Nehru Institute of Engineering and Technology, Coimbatore Tamil Nadu A high

More information

INTRODUCTION TO FLUID MECHANICS

INTRODUCTION TO FLUID MECHANICS INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION

More information

INLET AND EXAUST NOZZLES Chap. 10 AIAA AIRCRAFT ENGINE DESIGN R01-07/11/2011

INLET AND EXAUST NOZZLES Chap. 10 AIAA AIRCRAFT ENGINE DESIGN R01-07/11/2011 MASTER OF SCIENCE IN AEROSPACE ENGINEERING PROPULSION AND COMBUSTION INLET AND EXAUST NOZZLES Chap. 10 AIAA AIRCRAFT ENGINE DESIGN R01-07/11/2011 LECTURE NOTES AVAILABLE ON https://www.ingegneriaindustriale.unisalento.it/scheda_docente/-/people/antonio.ficarella/materiale

More information

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS FUNDAMENTALS OF ENGINEERING THERMODYNAMICS System: Quantity of matter (constant mass) or region in space (constant volume) chosen for study. Closed system: Can exchange energy but not mass; mass is constant

More information

WEEKLY SCHEDULE. GROUPS (mark X) SPECIAL ROOM FOR SESSION (Computer class room, audio-visual class room)

WEEKLY SCHEDULE. GROUPS (mark X) SPECIAL ROOM FOR SESSION (Computer class room, audio-visual class room) SESSION WEEK COURSE: THERMAL ENGINEERING DEGREE: Aerospace Engineering YEAR: 2nd TERM: 2nd The course has 29 sessions distributed in 14 weeks. The laboratory sessions are included in these sessions. The

More information

SR-71 PROPULSION SYSTEM P&W J58 ENGINE (JT11D-20) ONE OF THE BEST JET ENGINES EVER BUILT

SR-71 PROPULSION SYSTEM P&W J58 ENGINE (JT11D-20) ONE OF THE BEST JET ENGINES EVER BUILT SR-71 PROPULSION SYSTEM P&W J58 ENGINE (JT11D-20) PETER LAW ONE OF THE BEST JET ENGINES EVER BUILT Rolls-Royce Milestone Engines Merlin Conway W2B Welland Derwent Trent SR-71 GENERAL CHARACTERISTICS

More information

C H A P T E R F I V E GAS TURBINES AND JET ENGINES

C H A P T E R F I V E GAS TURBINES AND JET ENGINES 169 C H A P T E R F I V E GAS TURBINES AND JET ENGINES 5.1 Introduction History records over a century and a half of interest in and work on the gas turbine. However, the history of the gas turbine as

More information

Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics

Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics Lecture 6 - Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.

More information

Deconstructing the defense budget. A conversation with William H. Gerstenmaier Fast track to truly fast flight. June 2012

Deconstructing the defense budget. A conversation with William H. Gerstenmaier Fast track to truly fast flight. June 2012 6 AEROSPACE AMERICA JUNE 2012 June 2012 Deconstructing the defense budget A conversation with William H. Gerstenmaier Fast track to truly fast flight A PUBLICATION OF THE AMERICAN INSTITUTE OF AERONAUTICS

More information

Chapters 7. Performance Comparison of CI and SI Engines. Performance Comparison of CI and SI Engines con t. SI vs CI Performance Comparison

Chapters 7. Performance Comparison of CI and SI Engines. Performance Comparison of CI and SI Engines con t. SI vs CI Performance Comparison Chapters 7 SI vs CI Performance Comparison Performance Comparison of CI and SI Engines The CI engine cycle can be carried out in either 2 or 4 strokes of the piston, with the 4-cycle CI engine being more

More information

Part IV. Conclusions

Part IV. Conclusions Part IV Conclusions 189 Chapter 9 Conclusions and Future Work CFD studies of premixed laminar and turbulent combustion dynamics have been conducted. These studies were aimed at explaining physical phenomena

More information

IV. Rocket Propulsion Systems. A. Overview

IV. Rocket Propulsion Systems. A. Overview IV. Rocket Propulsion Systems A. Overview by J. M. Seitzman for AE 4451 Jet and Rocket Propulsion Seitzman Rocket Overview-1 Rocket Definition Rocket Device that provides thrust to a vehicle by accelerating

More information

OUTLINE SHEET 5-1-1 PRINCIPLES OF GAS TURBINE OPERATION

OUTLINE SHEET 5-1-1 PRINCIPLES OF GAS TURBINE OPERATION Sheet 1 of 2 OUTLINE SHEET 5-1-1 PRINCIPLES OF GAS TURBINE OPERATION A. INTRODUCTION This lesson topic introduces some basic propulsion theory as it applies to the gas turbine engine and explains some

More information

Numerical Simulation of Pulse Detonation Engine Phenomena

Numerical Simulation of Pulse Detonation Engine Phenomena Numerical Simulation of Pulse Detonation Engine Phenomena. He and A. R. Karagozian Department of Mechanical and Aerospace Engineering University of California, Los Angeles, CA 995-597 Abstract This paper

More information

HYBRID ROCKET TECHNOLOGY IN THE FRAME OF THE ITALIAN HYPROB PROGRAM

HYBRID ROCKET TECHNOLOGY IN THE FRAME OF THE ITALIAN HYPROB PROGRAM 8 th European Symposium on Aerothermodynamics for space vehicles HYBRID ROCKET TECHNOLOGY IN THE FRAME OF THE ITALIAN HYPROB PROGRAM M. Di Clemente, R. Votta, G. Ranuzzi, F. Ferrigno March 4, 2015 Outline

More information

Mechanical Design of Turbojet Engines. An Introduction

Mechanical Design of Turbojet Engines. An Introduction Mechanical Design of Turbomachinery Mechanical Design of Turbojet Engines An Introduction Reference: AERO0015-1 - MECHANICAL DESIGN OF TURBOMACHINERY - 5 ECTS - J.-C. GOLINVAL University of Liege (Belgium)

More information

APPLIED THERMODYNAMICS. TUTORIAL No.3 GAS TURBINE POWER CYCLES. Revise gas expansions in turbines. Study the Joule cycle with friction.

APPLIED THERMODYNAMICS. TUTORIAL No.3 GAS TURBINE POWER CYCLES. Revise gas expansions in turbines. Study the Joule cycle with friction. APPLIED HERMODYNAMICS UORIAL No. GAS URBINE POWER CYCLES In this tutorial you will do the following. Revise gas expansions in turbines. Revise the Joule cycle. Study the Joule cycle with friction. Extend

More information

Department of Aeronautics and Astronautics School of Engineering Massachusetts Institute of Technology. Graduate Program (S.M., Ph.D., Sc.D.

Department of Aeronautics and Astronautics School of Engineering Massachusetts Institute of Technology. Graduate Program (S.M., Ph.D., Sc.D. Department of Aeronautics and Astronautics School of Engineering Massachusetts Institute of Technology Graduate Program (S.M., Ph.D., Sc.D.) Field: Air-Breathing Propulsion Date: September 4, 2007 Introduction

More information

Pulse detonation propulsion: challenges, current status, and future perspective

Pulse detonation propulsion: challenges, current status, and future perspective Progress in Energy and Combustion Science 30 (2004) 545 672 www.elsevier.com/locate/pecs Pulse detonation propulsion: challenges, current status, and future perspective G.D. Roy a, *, S.M. Frolov b, A.A.

More information

Isentropic flow. Wikepedia

Isentropic flow. Wikepedia Isentropic flow Wikepedia In thermodynamics, an isentropic process or isoentropic process (ισον = "equal" (Greek); εντροπία entropy = "disorder"(greek)) is one in which for purposes of engineering analysis

More information

CC RH A STUDY ON THE OPTIMIZATION OF JET ENGINES FOR COMBAT AIRCRAFTS. C. SSnchez Tarifa* E. Mera Diaz**

CC RH A STUDY ON THE OPTIMIZATION OF JET ENGINES FOR COMBAT AIRCRAFTS. C. SSnchez Tarifa* E. Mera Diaz** A STUDY ON THE OPTIMIZATION OF JET ENGINES FOR COMBAT AIRCRAFTS C. SSnchez Tarifa* E. Mera Diaz** Abstract In the paper the optimization of jet engines for combat aircrafts is discussed. This optimization

More information

Summary of Recent Research on Detonation Wave Engines at UTA

Summary of Recent Research on Detonation Wave Engines at UTA 2011 International Workshop on Detonation for Propulsion November 14-15, 2011 Paradise Hotel, Busan, Korea Summary of Recent Research on Detonation Wave Engines at UTA Donald R. Wilson,* Frank K. Lu University

More information

Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS

Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS Lecture slides by Hasan Hacışevki Copyright

More information

INTERNAL COMBUSTION (IC) ENGINES

INTERNAL COMBUSTION (IC) ENGINES INTERNAL COMBUSTION (IC) ENGINES An IC engine is one in which the heat transfer to the working fluid occurs within the engine itself, usually by the combustion of fuel with the oxygen of air. In external

More information

Fundamentals of Fluid Mechanics

Fundamentals of Fluid Mechanics Sixth Edition. Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department

More information

COMPUTATIONS IN TURBULENT FLOWS AND OFF-DESIGN PERFORMANCE PREDICTIONS FOR AIRFRAME-INTEGRATED SCRAMJETS

COMPUTATIONS IN TURBULENT FLOWS AND OFF-DESIGN PERFORMANCE PREDICTIONS FOR AIRFRAME-INTEGRATED SCRAMJETS o DEPARTMENT OF MECHANICAL ENGINEERING AND MECHANICS SCHOOL OF ENGINEERING OLD DOMINION UNIVERSITY NORFOLK, VIRGINIA o o COMPUTATIONS IN TURBULENT FLOWS AND OFF-DESIGN CO PERFORMANCE PREDICTIONS FOR AIRFRAME-INTEGRATED

More information

Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows

Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows 3.- 1 Basics: equations of continuum mechanics - balance equations for mass and momentum - balance equations for the energy and the chemical

More information

Performance. Power Plant Output in Terms of Thrust - General - Arbitrary Drag Polar

Performance. Power Plant Output in Terms of Thrust - General - Arbitrary Drag Polar Performance 11. Level Flight Performance and Level flight Envelope We are interested in determining the maximum and minimum speeds that an aircraft can fly in level flight. If we do this for all altitudes,

More information

Memo WFC 423 DA. Water Fuel Injector System processes and converts water into a useful hydrogen fuel on demand at the point of gas ignition.

Memo WFC 423 DA. Water Fuel Injector System processes and converts water into a useful hydrogen fuel on demand at the point of gas ignition. Memo Water Fuel Cell Water Fuel Injection System Water Fuel Injector System processes and converts water into a useful hydrogen fuel on demand at the point of gas ignition. The Water Injector System is

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

Calculation of Combustion, Explosion and Detonation Characteristics of Energetic Materials

Calculation of Combustion, Explosion and Detonation Characteristics of Energetic Materials Calculation of Combustion, Explosion and Detonation Characteristics... 97 Central European Journal of Energetic Materials, 2010, 7(2), 97-113 ISSN 1733-7178 Calculation of Combustion, Explosion and Detonation

More information

Thermodynamics - Example Problems Problems and Solutions

Thermodynamics - Example Problems Problems and Solutions Thermodynamics - Example Problems Problems and Solutions 1 Examining a Power Plant Consider a power plant. At point 1 the working gas has a temperature of T = 25 C. The pressure is 1bar and the mass flow

More information

Optimisation of Energy and Exergy of Two-Spool Turbofan Engines using Genetic Algorithms

Optimisation of Energy and Exergy of Two-Spool Turbofan Engines using Genetic Algorithms Optimisation of Energy and Exergy of Two-Spool Turbofan Engines using Genetic Algorithms Vin Cent Tai 1, Phen Chiak See 1, Cristinel Mares 2, and Kjetil Uhlen 1 1 Norwegian University of Science and Technology,

More information

Modelling and Simulation of Supersonic Nozzle Using Computational Fluid Dynamics

Modelling and Simulation of Supersonic Nozzle Using Computational Fluid Dynamics Modelling and Simulation of Supersonic Nozzle Using Computational Fluid Dynamics 1 Venkatesh.V, 2 C Jaya pal Reddy Department of Aeronautical Engineering, MLR Institute of Technology and Management, Hyderabad

More information

Propulsion (1): Jet Engine Basics

Propulsion (1): Jet Engine Basics FLIGHT OPERATIONS ENGINEERING Propulsion (1): Jet Engine Basics P1, Page 1 Propulsion (1): Jet Engine Basics Jet Engine Fundamentals (Videos) Types of Jet Engines Propulsive Efficiency and the Thrust Equation

More information

FUNDAMENTALS OF GAS TURBINE ENGINES

FUNDAMENTALS OF GAS TURBINE ENGINES FUNDAMENTALS OF GAS TURBINE ENGINES INTRODUCTION The gas turbine is an internal combustion engine that uses air as the working fluid. The engine extracts chemical energy from fuel and converts it to mechanical

More information

Fan Performance By: Mark Stevens AMCA International Deputy Executive Director Technical Affairs

Fan Performance By: Mark Stevens AMCA International Deputy Executive Director Technical Affairs Fan Performance By: Mark Stevens AMCA International Deputy Executive Director Technical Affairs Fan Performance (Paper I.D. 021) Mark Stevens Air Movement and Control Association International Abstract

More information

Gas Dynamics Prof. T. M. Muruganandam Department of Aerospace Engineering Indian Institute of Technology, Madras. Module No - 12 Lecture No - 25

Gas Dynamics Prof. T. M. Muruganandam Department of Aerospace Engineering Indian Institute of Technology, Madras. Module No - 12 Lecture No - 25 (Refer Slide Time: 00:22) Gas Dynamics Prof. T. M. Muruganandam Department of Aerospace Engineering Indian Institute of Technology, Madras Module No - 12 Lecture No - 25 Prandtl-Meyer Function, Numerical

More information

Cold Cavity Flow with a

Cold Cavity Flow with a 31' Natioml Conference on Fluid MecI&n&s &Fluid Power 16-18 Dec 2004, Jadavpur UniversiLjr, E- India Computation of High S@ Commercial CFD Code Cold Cavity Flow with a Ashfaque A. Khan and T. R. Shembharkar

More information

Toward Zero Sonic-Boom and High Efficiency. Supersonic Bi-Directional Flying Wing

Toward Zero Sonic-Boom and High Efficiency. Supersonic Bi-Directional Flying Wing AIAA Paper 2010-1013 Toward Zero Sonic-Boom and High Efficiency Supersonic Flight: A Novel Concept of Supersonic Bi-Directional Flying Wing Gecheng Zha, Hongsik Im, Daniel Espinal University of Miami Dept.

More information

Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels

Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels 1 P age Module 5: Combustion Technology Lecture 34: Calculation of calorific value of fuels 2 P age Keywords : Gross calorific value, Net calorific value, enthalpy change, bomb calorimeter 5.3 Calculation

More information

Exergy: the quality of energy N. Woudstra

Exergy: the quality of energy N. Woudstra Exergy: the quality of energy N. Woudstra Introduction Characteristic for our society is a massive consumption of goods and energy. Continuation of this way of life in the long term is only possible if

More information

Technical Solutions for Emissions Reduction

Technical Solutions for Emissions Reduction Genera 2015 Technical Solutions for Emissions Reduction Juan Nogales GE Power & Water Madrid, February 24, 2015 2015 General Electric Company. All rights reserved. This material may not be copied or distributed

More information

OMICS Group International is an amalgamation of Open Access publications

OMICS Group International is an amalgamation of Open Access publications About OMICS Group OMICS Group International is an amalgamation of Open Access publications and worldwide international science conferences and events. Established in the year 2007 with the sole aim of

More information

Safety issues of hydrogen in vehicles Frano Barbir Energy Partners 1501 Northpoint Pkwy, #102 West Palm Beach, FL 33407, U.S.A.

Safety issues of hydrogen in vehicles Frano Barbir Energy Partners 1501 Northpoint Pkwy, #102 West Palm Beach, FL 33407, U.S.A. Safety issues of hydrogen in vehicles Frano Barbir Energy Partners 1501 Northpoint Pkwy, #102 West Palm Beach, FL 33407, U.S.A. Properties of hydrogen Hydrogen is an odorless, colorless gas. With molecular

More information

COMPARISON OF COUNTER ROTATING AND TRADITIONAL AXIAL AIRCRAFT LOW-PRESSURE TURBINES INTEGRAL AND DETAILED PERFORMANCES

COMPARISON OF COUNTER ROTATING AND TRADITIONAL AXIAL AIRCRAFT LOW-PRESSURE TURBINES INTEGRAL AND DETAILED PERFORMANCES COMPARISON OF COUNTER ROTATING AND TRADITIONAL AXIAL AIRCRAFT LOW-PRESSURE TURBINES INTEGRAL AND DETAILED PERFORMANCES Leonid Moroz, Petr Pagur, Yuri Govorushchenko, Kirill Grebennik SoftInWay Inc. 35

More information

DEVELOPMENT OF HIGH SPEED RESPONSE LAMINAR FLOW METER FOR AIR CONDITIONING

DEVELOPMENT OF HIGH SPEED RESPONSE LAMINAR FLOW METER FOR AIR CONDITIONING DEVELOPMENT OF HIGH SPEED RESPONSE LAMINAR FLOW METER FOR AIR CONDITIONING Toshiharu Kagawa 1, Yukako Saisu 2, Riki Nishimura 3 and Chongho Youn 4 ABSTRACT In this paper, we developed a new laminar flow

More information

Chapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any

Chapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any Chapter 10 Flow Measurements Material from Theory and Design for Mechanical Measurements; Figliola, Third Edition Flow Rate Flow rate can be expressed in terms of volume flow rate (volume/time) or mass

More information

Fault codes DM1. Industrial engines DC09, DC13, DC16. Marine engines DI09, DI13, DI16 INSTALLATION MANUAL. 03:10 Issue 5.0 en-gb 1

Fault codes DM1. Industrial engines DC09, DC13, DC16. Marine engines DI09, DI13, DI16 INSTALLATION MANUAL. 03:10 Issue 5.0 en-gb 1 Fault codes DM1 Industrial engines DC09, DC13, DC16 Marine engines DI09, DI13, DI16 03:10 Issue 5.0 en-gb 1 DM1...3 Abbreviations...3 Fault type identifier...3...4 03:10 Issue 5.0 en-gb 2 DM1 DM1 Fault

More information

EXPERIMENTAL INVESTIGATION OF A 2-D AIR AUGMENTED ROCKET: EFFECTS OF NOZZLE LIP THICKNESS ON ROCKET MIXING AND ENTRAINMENT

EXPERIMENTAL INVESTIGATION OF A 2-D AIR AUGMENTED ROCKET: EFFECTS OF NOZZLE LIP THICKNESS ON ROCKET MIXING AND ENTRAINMENT EXPERIMENTAL INVESTIGATION OF A 2-D AIR AUGMENTED ROCKET: EFFECTS OF NOZZLE LIP THICKNESS ON ROCKET MIXING AND ENTRAINMENT A Thesis Presented to The Faculty of California Polytechnic State University,

More information

Micro-Jet Test Facility for Aerospace Propulsión Engineering Education*

Micro-Jet Test Facility for Aerospace Propulsión Engineering Education* Micro-Jet Test Facility for Aerospace Propulsión Engineering Education* G. L. JUSTE, J. L. MONTAÑÉS and A. VELAZQUEZ Universidad Politécnica de Madrid, School of Aeronautics, Aerospace Propulsión and Fluid

More information

Perspective on R&D Needs for Gas Turbine Power Generation

Perspective on R&D Needs for Gas Turbine Power Generation Perspective on R&D Needs for Gas Turbine Power Generation Eli Razinsky Solar Turbine Incorporated 2010 UTSR Workshop October 26, 2011 1 Research Requirements Overview Specific Requirements 2 Society Requirements

More information

GT2011 46090 ANALYSIS OF A MICROGASTURBINE FED BY NATURAL GAS AND SYNTHESIS GAS: MGT TEST BENCH AND COMBUSTOR CFD ANALYSIS

GT2011 46090 ANALYSIS OF A MICROGASTURBINE FED BY NATURAL GAS AND SYNTHESIS GAS: MGT TEST BENCH AND COMBUSTOR CFD ANALYSIS ASME Turbo Expo 2011 June 6 10, 2011 Vancouver, Canada GT 2011 46090 ANALYSIS OF A MICROGASTURBINE FED BY NATURAL GAS AND SYNTHESIS GAS: MGT TEST BENCH AND COMBUSTOR CFD ANALYSIS M. Cadorin 1,M. Pinelli

More information

Air Flow Optimization via a Venturi Type Air Restrictor

Air Flow Optimization via a Venturi Type Air Restrictor , July 3-5, 013, London, U.K. Air Flow Optimization via a Venturi Type Air Restrictor Anshul Singhal, Mallika Parveen, Member, IAENG Abstract The aim of this project is to create a flow restriction device

More information

AOE 3104 Aircraft Performance Problem Sheet 2 (ans) Find the Pressure ratio in a constant temperature atmosphere:

AOE 3104 Aircraft Performance Problem Sheet 2 (ans) Find the Pressure ratio in a constant temperature atmosphere: AOE 3104 Aircraft Performance Problem Sheet 2 (ans) 6. The atmosphere of Jupiter is essentially made up of hydrogen, H 2. For Hydrogen, the specific gas constant is 4157 Joules/(kg)(K). The acceleration

More information

INITIAL ASSESSMENT OF THE IMPACT OF JET FLAME HAZARD FROM HYDROGEN CARS IN ROAD TUNNELS AND THE IMPLICATION ON HYDROGEN CAR DESIGN

INITIAL ASSESSMENT OF THE IMPACT OF JET FLAME HAZARD FROM HYDROGEN CARS IN ROAD TUNNELS AND THE IMPLICATION ON HYDROGEN CAR DESIGN INITIAL ASSESSMENT OF THE IMPACT OF JET FLAME HAZARD FROM HYDROGEN CARS IN ROAD TUNNELS AND THE IMPLICATION ON HYDROGEN CAR DESIGN Wu, Y Department of Chemical and Process Engineering, University of Sheffield,

More information

CFD Simulation of HSDI Engine Combustion Using VECTIS

CFD Simulation of HSDI Engine Combustion Using VECTIS CFD Simulation of HSDI Engine Combustion Using VECTIS G. Li, S.M. Sapsford Ricardo Consulting Engineer s Ltd., Shoreham-by-Sea, UK ABSTRACT As part of the VECTIS code validation programme, CFD simulations

More information

PERFORMANCE EVALUATION OF A MICRO GAS TURBINE BASED ON AUTOMOTIVE TURBOCHARGER FUELLED WITH LPG

PERFORMANCE EVALUATION OF A MICRO GAS TURBINE BASED ON AUTOMOTIVE TURBOCHARGER FUELLED WITH LPG PERFORMANCE EVALUATION OF A MICRO GAS TURBINE BASED ON AUTOMOTIVE TURBOCHARGER FUELLED WITH LPG Guenther Carlos Krieger Filho, guenther@usp.br José Rigoni Junior Rafael Cavalcanti de Souza, rafael.cavalcanti.souza@gmail.com

More information

COMBUSTION SYSTEMS - EXAMPLE Cap. 9 AIAA AIRCRAFT ENGINE DESIGN www.amazon.com

COMBUSTION SYSTEMS - EXAMPLE Cap. 9 AIAA AIRCRAFT ENGINE DESIGN www.amazon.com CORSO DI LAUREA MAGISTRALE IN Ingegneria Aerospaziale PROPULSION AND COMBUSTION COMBUSTION SYSTEMS - EXAMPLE Cap. 9 AIAA AIRCRAFT ENGINE DESIGN www.amazon.com LA DISPENSA E DISPONIBILE SU www.ingindustriale.unisalento.it

More information

RITTER Multiple Sonic Nozzle Calibration System

RITTER Multiple Sonic Nozzle Calibration System RITTER Multiple Sonic Nozzle Calibration System »Wouldn t it be great to eliminate doubtful measurement results by using proven measurement technology? Providing the most precise results ensures and increases

More information

Textbook: Introduction to Fluid Mechanics by Philip J. Pritchard. John Wiley & Sons, 8th Edition, ISBN-13 9780470547557, -10 0470547553

Textbook: Introduction to Fluid Mechanics by Philip J. Pritchard. John Wiley & Sons, 8th Edition, ISBN-13 9780470547557, -10 0470547553 Semester: Spring 2016 Course: MEC 393, Advanced Fluid Mechanics Instructor: Professor Juldeh Sesay, 226 Heavy Engineering Bldg., (631)632-8493 Email: Juldeh.sessay@stonybrook.edu Office hours: Mondays

More information

Condensers & Evaporator Chapter 5

Condensers & Evaporator Chapter 5 Condensers & Evaporator Chapter 5 This raises the condenser temperature and the corresponding pressure thereby reducing the COP. Page 134 of 263 Condensers & Evaporator Chapter 5 OBJECTIVE QUESTIONS (GATE,

More information

Dynamic Process Modeling. Process Dynamics and Control

Dynamic Process Modeling. Process Dynamics and Control Dynamic Process Modeling Process Dynamics and Control 1 Description of process dynamics Classes of models What do we need for control? Modeling for control Mechanical Systems Modeling Electrical circuits

More information

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

More information

A SILICON-BASED MICRO GAS TURBINE ENGINE FOR POWER GENERATION. Singapore Institute of Manufacturing Technology, Singapore 658075

A SILICON-BASED MICRO GAS TURBINE ENGINE FOR POWER GENERATION. Singapore Institute of Manufacturing Technology, Singapore 658075 Stresa, Italy, 26-28 April 2006 A SILICON-BASED MICRO GAS TURBINE ENGINE FOR POWER GENERATION X. C. Shan 1, Z. F. Wang 1, R. Maeda 2, Y. F. Sun 1 M. Wu 3 and J. S. Hua 3 1 Singapore Institute of Manufacturing

More information

How To Test A Scramjet

How To Test A Scramjet For permission to copy or republish, contact the 1801 Alexander Bell Drive, Suite 500, Reston, VA 22091 AIAA-98-2506 Experimental Supersonic Combustion Research at NASA Langley R.C. Rogers, D.P. Capriotti,

More information

Department of Aerospace Engineering Indian Institute of Science Bangalore

Department of Aerospace Engineering Indian Institute of Science Bangalore Department of Aerospace Engineering Indian Institute of Science Bangalore Brief Outline of Department The department of Aerospace Engineering is one of the oldest departments in the country encompassing

More information

Soaring at Hypersonic Speeds

Soaring at Hypersonic Speeds Soaring at Hypersonic Speeds 2015 Status of High Speed Air Breathing Propulsion by Dora E. Musielak, Ph.D. 1 and Bayindir H. Saracoglu, Ph.D. 2 1 University of Texas at Arlington, Arlington, Texas, USA

More information

FEASIBILITY OF A BRAYTON CYCLE AUTOMOTIVE AIR CONDITIONING SYSTEM

FEASIBILITY OF A BRAYTON CYCLE AUTOMOTIVE AIR CONDITIONING SYSTEM FEASIBILITY OF A BRAYTON CYCLE AUTOMOTIVE AIR CONDITIONING SYSTEM L. H. M. Beatrice a, and F. A. S. Fiorelli a a Universidade de São Paulo Escola Politécnica Departamento de Engenharia Mecânica Av. Prof.

More information

NUMERICAL INVESTIGATION OF WAVERIDER-DERIVED HYPERSONIC TRANSPORT CONFIGURATIONS

NUMERICAL INVESTIGATION OF WAVERIDER-DERIVED HYPERSONIC TRANSPORT CONFIGURATIONS NUMERICAL INVESTIGATION OF WAVERIDER-DERIVED HYPERSONIC TRANSPORT CONFIGURATIONS Marcus Lobbia* and Kojiro Suzuki Department of Aeronautics and Astronautics, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku,

More information

European Aviation Safety Agency

European Aviation Safety Agency European Aviation Safety Agency EASA TYPE CERTIFICATE DATA SHEET Number : IM.E.026 Issue : 04 Date : 04 April 2014 Type : Engine Alliance LLC GP7200 series engines Models: GP7270 GP7272 GP7277 List of

More information

NUMERICAL ANALYSIS OF AERO-SPIKE NOZZLE FOR SPIKE LENGTH OPTIMIZATION

NUMERICAL ANALYSIS OF AERO-SPIKE NOZZLE FOR SPIKE LENGTH OPTIMIZATION IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET) ISSN(E): 2321-8843; ISSN(P): 2347-4599 Vol. 1, Issue 6, Nov 2013, 1-14 Impact Journals NUMERICAL ANALYSIS OF AERO-SPIKE

More information

Cycle Optimization of a Turbine Engine: an Approach Based on Genetic Algotithms

Cycle Optimization of a Turbine Engine: an Approach Based on Genetic Algotithms Cycle Optimization of a Turbine Engine: an Approach Based on Genetic Algotithms S. Borguet 1, V. Kelner 2, O. Léonard 1 University of Liège, Aerospace and Mechanical Engineering Department Chemin des chevreuils

More information

Genetic Algorithm Optimization of a Cost Competitive Hybrid Rocket Booster

Genetic Algorithm Optimization of a Cost Competitive Hybrid Rocket Booster Genetic Algorithm Optimization of a Cost Competitive Rocket Booster George Story NASA MSFC Huntsville, Al www.nasa.gov Overview attributes are typically touted as to why hybrids should be pursued. Handling,

More information

CFD Analysis of Swept and Leaned Transonic Compressor Rotor

CFD Analysis of Swept and Leaned Transonic Compressor Rotor CFD Analysis of Swept and Leaned Transonic Compressor Nivin Francis #1, J. Bruce Ralphin Rose *2 #1 Student, Department of Aeronautical Engineering& Regional Centre of Anna University Tirunelveli India

More information

A.L. Sivkov, E.V. Belov REDUCTION OF NOISE OF A HELICOPTER ENGINE BASED ON RESEARCHES OF ACOUSTIC FIELDS OF LIGHT AND MEDIUM HELICOPTERS

A.L. Sivkov, E.V. Belov REDUCTION OF NOISE OF A HELICOPTER ENGINE BASED ON RESEARCHES OF ACOUSTIC FIELDS OF LIGHT AND MEDIUM HELICOPTERS A.L. Sivkov, E.V. Belov REDUCTION OF NOISE OF A HELICOPTER ENGINE BASED ON RESEARCHES OF ACOUSTIC FIELDS OF LIGHT AND MEDIUM HELICOPTERS The Kazan State Power Engineering Institute The Kazan Branch of

More information

EXPERIMENTAL RESEARCH ON FLOW IN A 5-STAGE HIGH PRESSURE ROTOR OF 1000 MW STEAM TURBINE

EXPERIMENTAL RESEARCH ON FLOW IN A 5-STAGE HIGH PRESSURE ROTOR OF 1000 MW STEAM TURBINE Proceedings of 11 th European Conference on Turbomachinery Fluid dynamics & Thermodynamics ETC11, March 23-27, 2015, Madrid, Spain EXPERIMENTAL RESEARCH ON FLOW IN A 5-STAGE HIGH PRESSURE ROTOR OF 1000

More information

Introduction to Flight

Introduction to Flight Introduction to Flight Sixth Edition John D. Anderson, Jr. Curator for Aerodynamics, National Air and Space Museum Smithsonian Institution Professor Emeritus University of Maryland Boston Burr Ridge, IL

More information

O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012

O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012 O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM Darmstadt, 27.06.2012 Michael Ehlen IB Fischer CFD+engineering GmbH Lipowskystr. 12 81373 München Tel. 089/74118743 Fax 089/74118749

More information

E - THEORY/OPERATION

E - THEORY/OPERATION E - THEORY/OPERATION 1995 Volvo 850 1995 ENGINE PERFORMANCE Volvo - Theory & Operation 850 INTRODUCTION This article covers basic description and operation of engine performance-related systems and components.

More information