APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES

 To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Save this PDF as:

Size: px
Start display at page:

Transcription

1 APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES INTRODUCTION This tutorial is designed for students wishing to extend their knowledge of thermodynamics to a more advanced level with practical applications. Before you start this tutorial you should be familiar with the following. The basic principles of thermodynamics equivalent to level 2. Basic steam cycles, mainly the Rankine and Carnot cycles. Fluid property tables and charts mainly a set of standard thermodynamic tables and a h - s chart for steam which you must have in your possession. The use of entropy. On completion of the tutorial you should be able to understand isentropic efficiency for turbines and compressors. describe the use of process steam. describe the use of back pressure turbines. describe the use of pass out turbines. solve steam cycles involving pass out and back pressure turbines. describe the use of feed heating and superheating in steam cycles. solve problems involving feed heating and re-heating. You may be very familiar with all these studies in which case you should proceed directly to section 2. For those who wish to revise the basics, section 1 should be completed. This covers entropy. isentropic processes. property diagrams. isentropic efficiency. D.J.Dunn 1

2 1. REVISION OF ENTROPY 1.1 DEFINITION Entropy is a property which measures the usefulness of energy. It is defined most simply as ds= dq/dt where S is entropy T is temperature Q is heat transfer The units of entropy is hence J/k. The units of specific entropy are J/kg K ISENTROPIC PROCESS ISENTROPIC means constant entropy. Usually (but not always) this means a process with no heat transfer. This follows since if dq is zero so must be ds. A process with no heat transfer is called ADIABATIC. An adiabatic process with no friction is hence also ISENTROPIC PROPERTY DIAGRAMS The two most commonly used property diagrams are i. Enthalpy - Entropy (h - s) diagrams and ii. Temperature - Entropy (T - s) diagrams. h-s diagrams are commonly used for steam work. The diagram will hence show the saturation curve. You should familiarise yourself with the h-s diagram for steam and ensure that you can use it to find values of h and s for any pressure, temperature or dryness fraction. T-s diagrams are commonly used for gas ISENTROPIC EFFICIENCY Real expansion and compression processes have a degree of friction and this will generate heat which is in effect a heat transfer. increase the entropy. make the final enthalpy bigger than it would otherwise be. make the final temperature bigger than it would otherwise be if it is a gas or superheated vapour. D.J.Dunn 2

3 An adiabatic process with friction has no external heat transfer (ΦWatts or Q Joules) but the internal heat generated causes an increase in entropy. Consider the expansion and compression processes on fig.1 and 2. fig.1 fig.2 The ideal change in enthalpy is h 2 ' - h 1 The actual change is h 2 - h 1 The isentropic efficiency is defined as h (actual) h 2 h1 η is = = for an expansion. h (ideal) h h 2' 1 h (ideal) h 2' h1 η is = = for a compression. h (actual) h h 2 1 In the case of a perfect gas h = c p T hence T2 T1 η is = for an expansion T T 2' 1 T2' T1 η is = for a compression T T 2 1 Note that for an expansion this produces a negative number on the top and bottom lines that cancels out. D.J.Dunn 3

4 WORKED EXAMPLE No.1 A steam turbine takes steam at 70 bar and 500 o C and expands it to 0.1 bar with an isentropic efficiency 0.9. The process is adiabatic. The power output of the turbine is 35 MW. Determine the enthalpy at exit and calculate the flow rate of steam in kg/s. Note you need the tables and h-s chart for steam. SOLUTION h 1 = 3410 kj/kg (tables) s 1 = kj/kg K for an ideal expansion s 1 =s 2 ' Assuming that the steam becomes wet during the expansion, then s 2 '= s f +x' sfg. at 0.1 bar = x' (tables) x' = Note if x' is larger than 1 then the steam is still superheated and the solution does not involve x. Now find h 2 '. h 2 ' = h f + x' hfg. at 0.1 bar h 2 '= (0.8196)(2392) = kj/kg. Ideal change in enthalpy actual change in enthalpy h' = = kj/kg h = 0.9( ) = kj/kg actual change in enthalpy h = (h 2 - h 1 ) = h = h 2 = kj/kg From the steady flow energy equation (with which you should already be familiar) we have Φ + P = H/s Since there is no heat transfer then this becomes P = H/s = m (h 2 - h 1 ) P = m( ) = kw hence m = kg/s (Note the sign convention used here is negative for energy leaving the system) D.J.Dunn 4

5 WORKED EXAMPLE No.2 A gas turbine expands gas from 1 MPa pressure and 600 o C to 100 kpa pressure. The isentropic efficiency The mass flow rate is 12 kg/s. Calculate the exit temperature and the power output. Take c v = 718 J/kg K and c p = 1005 J/kg K SOLUTION The process is adiabatic so the ideal temperature T 2 ' is given by T 2 '=T 1 (r p ) 1-1/γ r p is the pressure ratio r p = p 2 /p 1 = 0.1 γ = c p /c v = 1.005/0.718 = 1.4 T 2 '=873(0.1) 1-1/1.4 = K Now we use the isentropic efficiency to find the actual final temperature. η is =( T 2 - T 1 )/(T 2 ' - T 1 ) 0.92 = (T2-873)/( ) T 2 = K Now we use the SFEE to find the power output. Φ + P = m c p (T2 - T1) The process is adiabatic Φ = 0. P = 12(1.005)( ) = kw (out of system) D.J.Dunn 5

6 SELF ASSESSMENT EXERCISE No.1 1. Steam is expanded adiabatically in a turbine from 100 bar and 600 o C to 0.09 bar with an isentropic efficiency of The mass flow rate is 40 kg/s. Calculate the enthalpy at exit and the power output. (Ans. 51 MW) 2. A gas compressor compresses gas adiabatically from 1 bar and 15 o C to 10 bar with an isentropic efficiency of The gas flow rate is 5 kg/s. Calculate the temperature after compression and the power input. (Ans MW) Take c v = 718 J/kg K and c p = 1005 J/kg K D.J.Dunn 6

7 2. BACK-PRESSURE AND PASS-OUT TURBINES It is assumed that the student is already familiar with steam cycles as this is necessary for this tutorial. If an industry needs sufficient quantities of process steam (e.g. for sugar refining), then it becomes economical to use the steam generated to produce power as well. This is done with a steam turbine and generator and the process steam is obtained in two ways as follows. By exhausting the steam at the required pressure (typically 2 bar) to the process instead of to the condenser. A turbine designed to do this is called a BACK-PRESSURE TURBINE. By bleeding steam from an intermediate stage in the expansion process. A turbine designed to do this is called a PASS-OUT TURBINE. The steam cycle is standard except for these modifications BACK-PRESSURE TURBINES The diagram shows the basic circuit. The cycle could use reheat as well but this is not normal. Figure 3 D.J.Dunn 7

8 WORKED EXAMPLE No.3 For a steam circuit as shown previously, the boiler produces superheated steam at 50 bar and 400 o C. This is expanded to 3 bar with an isentropic efficiency of 0.9. The exhaust steam is used for a process. The returning feed water is at 1 bar and 40 o C. This is pumped to the boiler. The water leaving the pump is at 40 o C and 50 bar. The net power output of the cycle is 60 MW. Calculate the mass flow rate of steam. SOLUTION Referring to the cycle sketch previous for location points in the cycle we can find: h 2 = 3196 kj/kg s 2 = kj/kg K For an ideal expansion s 1 = s 2 = = s f +x' sfg at 3 bar = x'(5.321) x' = h 4 = h f + x' hfg at 3 bar h 4 = (2164) h 4 = kj/kg ideal change in enthalpy actual change in enthalpy = = -612 kj/kg = 0.9(-612) = kj/kg The power output of the turbine is found from the steady flow energy equation so : P = m(-550.9) kw P = m kw (output) Next we examine the enthalpy change at the pump. h 1 = 168 kj/kg at 1 bar and 40 o C h 2 = 172 kj/kg at 50 bar and 40 o C. Actual change in enthalpy = = 3 kj/kg The power input to the pump is found from the steady flow energy equation so : P = -m(3) kw P = -3 m kw(input) Net Power output of the cycle = 60 MW hence = m - 3 m m = kg/s D.J.Dunn 8

9 SELF ASSESSMENT EXERCISE No.2 A back pressure steam cycle works as follows. The boiler produces 8 kg/s of steam at 40 bar and 500 o C. This is expanded to 2 bar with an isentropic efficiency of The pump is supplied with feed water at 0.5 bar and 30 o C and delivers it to the boiler at 31 o C and 40 bar. Calculate the net power output of the cycle. (Answer 5.24 MW) D.J.Dunn 9

10 2.2. PASS-OUT TURBINES The circuit of a simple pass-out turbine plant is shown below. Steam is extracted between stages of the turbine for process use. The steam removed must be replaced by make up water at point 6. Figure 4 In order to solve problems you need to study the energy balance at the feed pumps more closely so that the enthalpy at inlet to the boiler can be determined. Consider the pumps on their own, as below. The balance of power is as follows. Figure 5 P 1 + P 2 = increase in enthalpy per second. =m C h C - m A h A -m B h B From this the value of h C or the mass m C may be determined. This is best shown with a worked example. D.J.Dunn 10

11 WORKED EXAMPLE No.4 The circuit below shows the information normally available for a feed pump circuit. Determine the enthalpy at entry to the boiler. SOLUTION h A = h f = 192 kj/kg at 0.1 bar Figure 6 P 1 (ideal) = (5)(0.001)(80-1)(100)= 39.5 kw P 1 (actual)= 39.5/0.8 = kw P 2 (ideal) = (40)(0.001)(80-0.1)(100) =319.6 kw P 2 (actual) = 319.6/0.8 = kw Total power input = = kw h B = 84 kj/kg (from water tables or approximately h f at 20 o C) hence = 45 h C - 40 h A - 5h B = 45 h C - 40(192) - 5(84) h C = 190 kj/kg D.J.Dunn 11

12 WORKED EXAMPLE No.5 The following worked example will show you to solve these problems. A passout turbine plant works as shown in fig. 4. The boiler produces steam at 60 bar and 500 o C which is expanded through two stages of turbines. The first stage expands to 3 bar where 4 kg/s of steam is removed. The second stage expands to 0.09 bar. The isentropic efficiency is 0.9 for the overall expansion. Assume that the expansion is a straight line on the h - s chart. The condenser produces saturated water. The make up water is supplied at 1bar and 20 o C. The isentropic efficiency of the pumps is 0.8. The net power output of the cycle is 40 MW. Calculate: 1. the flow rate of steam from the boiler. 2. the heat input to the boiler. 3. the thermal efficiency of the cycle. SOLUTION TURBINE EXPANSION h 3 = 3421 kj/kg from tables. h 5 ' = 2165 kj/kg using isentropic expansion and entropy. 0.9 = ( h 5 ) / ( ) hence h 5 = 2291 kj/kg Sketching the process on the h - s chart as a straight line enables h 4 to be picked off at 3 bar. h 4 = 2770 kj/kg. POWER OUTPUT P out = m(h 3 - h 4 ) + (m - 4)(h 4 - h 5 ) P out = m( ) + (m - 4)( ) P out = 651 m m Figure 7 D.J.Dunn 12

13 POWER INPUT The power input is to the two feed pumps. Figure 8 h 6 = 84 kj/kg (water at 1 bar and 20 o C) h 1 = h f at 0.09 bar = 183 kj/kg. P 1 (ideal) = change in flow energy = 4 x x (60-1) x 100 kw = 23.6 kw P 1 (actual) = 23.6 /0.8 = 29.5 kw P 2 (actual) = (m-4) x x ( ) x 100/0.8 = 7.49m kw NET POWER ENERGY BALANCE ON PUMPS kw = P out - P 1 - P = 651 m m m = m hence m = kg/s hence HEAT INPUT P 1 = 29.5 kw P 2 = kw (using the value of m just found) m h 2 = (m-4) h 1 + P 1 + P h 2 = x h 2 = 171 kj/kg Heat input = m(h 3 - h 2 ) = kw EFFICIENCY Efficiency = η = 40/121.3 = 33 % D.J.Dunn 13

14 SELF ASSESSMENT EXERCISE No.3 1. A steam turbine plant is used to supply process steam and power. The plant comprises an economiser, boiler, superheater, turbine, condenser and feed pump. The process steam is extracted between intermediate stages in the turbine at 2 bar pressure. The steam temperature and pressure at outlet from the superheater are 500 o C and 70 bar, and at outlet from the turbine the pressure is 0.1 bar. The overall isentropic efficiency of the turbine is 0.87 and that of the feed pump is 0.8. Assume that the expansion is represented by a straight line on the h-s chart. The makeup water is at 15 o C and 1 bar and it is pumped into the feed line with an isentropic efficiency 0.8 to replace the lost process steam. If due allowance is made for the feed pump-work, the net mechanical power delivered by the plant is 30 MW when the process steam load is 5 kg/s. Calculate the rate of steam flow leaving the superheater and the rate of heat transfer to the boiler including the economiser and superheater. Sketch clear T- s and h-s and flow diagrams for the plant. (29.46 kg/s 95.1 MW) 2. The demand for energy from an industrial plant is a steady load of 60 MW of process heat at 117 o C and a variable demand of up to 30 MW of power to drive electrical generators. The steam is raised in boilers at 70 bar pressure and superheated to 500 o C. The steam is expanded in a turbine and then condensed at 0.05 bar. The process heat is provided by the steam bled from the turbine at an appropriate pressure, and the steam condensed in the process heat exchanger is returned to the feed water line. Calculate the amount of steam that has to be raised in the boiler. Assume an overall isentropic efficiency of 0.88 in the turbine. The expansion is represented by a straight line on the h-s diagram. Neglect the feed pump work. (Answer 36 kg/s). D.J.Dunn 14

15 3. ADVANCED STEAM CYCLES In this section you will extend your knowledge of steam cycles in order to show that the overall efficiency of the cycle may be optimised by the use of regenerative feed heating and steam re-heating. Regenerative feed heating is a way of raising the temperature of the feed water before it reaches the boiler. It does this by using internal heat transfer within the power cycle. Steam is bled from the turbines at several points and used to heat the feed water in special heaters. In this way the temperature of the feed water is raised along with the pressure in stages so that the feed water is nearly always saturated. The heat transfers in the heaters and in the boiler are conducted approximately isothermally. Studies of the Carnot cycle should have taught you that an isothermal heat transfer is reversible and achieves maximum efficiency. The ultimate way of conducting feed heating is to pass the feed water through a heat exchanger inside the turbine casing. In this way the temperature of the steam on one side of heat exchanger tubes is equal to the temperature of the water on the other side of the tubes. Although the temperature is changing as water and steam flow through heat exchanger, at any one point, the heat transfer is isothermal. If no superheating nor undercooling is used then the heat transfers in the boiler and condenser are also isothermal and efficiencies equal to those of the Carnot cycle are theoretically possible. Figure 9 There are several reasons why this arrangement is impractical. Most of them are the same reasons why a Carnot cycle is impractical. i. The steam would be excessively wet in the turbine. ii. Placing a heat exchanger inside the turbine casing is mechanically impossible. iii. The power output would be small even though the cycle efficiency would be high. D.J.Dunn 15

16 Steam reheating is another way of improving the thermodynamic efficiency by attempting to keep the steam temperature more constant during the heat transfer process inside the boiler. Figure 10 Superheated steam is first passed through a high pressure turbine. The exhaust steam is then returned to the boiler to be reheated almost back to its original temperature. The steam is then expanded in a low pressure turbine. In theory, many stages of turbines and reheating could be done thus making the heat transfer in the boiler more isothermal and hence more reversible and efficient. If a steam cycle used many stages of regenerative feed heating and many stages of reheating, the result would be an efficiency similar to that of the Carnot cycle. Although practicalities prevent this happening, it is quite normal for an industrial steam power plant to use several stages of regenerative feed heating and one or two stages of reheating. This produces a significant improvement in the cycle efficiency. There are other features in advanced steam cycles which further improve the efficiency and are necessary for practical operation. For example air extraction at the condenser, steam recovery from turbine glands, de-superheaters, de-aerators and so on. These can be found in details in textbooks devoted to practical steam power plant. D.J.Dunn 16

17 4. FEED HEATING 4.1. PRACTICAL DESIGNS Practical feed heaters may be heat exchangers with indirect contact. The steam is condensed through giving up its energy and the hot water resulting may be inserted into the feed system at the appropriate pressure. The type which you should learn is the open or direct contact mixing type. The bled steam is mixed directly with the feed water at the appropriate pressure and condenses and mixes with the feed water. Compare a basic Rankine cycle with a similar cycle using one such feed heater. Figure 11 Figure 12 D.J.Dunn 17

18 4. 2. ENERGY BALANCE FOR MIXING FEED HEATER Consider a simple mixing type feed heater. The bled steam at (3) is mixed directly with incoming feed water (6) resulting in hotter feed water (7). Figure 13 Mass of bled steam = y kg Mass of feed water entering= 1 - y kg Doing an energy balance we find y h 3 + (1-y)h 6 = h 7 WORKED EXAMPLE No.6 A feed heater is supplied with condensate at 0.1 bar. The bled steam is taken from the turbine at 30 bar and 0.95 dry. Calculate the flow rate of bled steam needed to just produce saturated water at outlet. SOLUTION Assumptions Figure Energy input from pump is negligible. 2. No energy is lost. 3.The heater pressure is the same as the bled pressure. In this case h 6 = h f at 0.1 bar = 192 kj/kg h 7 = h f at 30 bar = 1008 kj/kg h 3 = h f + x hfg at 30 bar h 3 = (1795) = kj/kg ENERGY BALANCE y(2713.3) = (1-y)(192) hence y = kg Note that it is usual to calculate these problems initially on the basis of 1 kg coming from the boiler and returning to it. D.J.Dunn 18

19 4. 3. CYCLE WITH ONE FEED HEATER Figure 15 If only one feed heater is used, the steam is bled from the turbine at the point in the expansion where it just becomes dry saturated and the saturation temperature is estimated as follows. t s (bleed) = {t s (high pressure) + t s (low pressure)}/2 For example a cycle operating between 40 bar and bar. t s (40 bar ) = o C t s (0.035 bar ) = 26.7 o C t s (bleed ) = ( )/2 = o C The pressure corresponding to this is 3.5 bar so this is the bleed pressure. D.J.Dunn 19

20 WORKED EXAMPLE No.7 A Rankine cycle works between 40 bar, 400 o C at the boiler exit and bar at the condenser. Calculate the efficiency with no feed heating. Assume isentropic expansion. Ignore the energy term at the feed pump. SOLUTION Figure 16 h 2 = 3214 kj/kg s 2 = kj/kg K s 2 =s 3 = x x = h 3 = h f + x hfg = (2438) = kj/kg h 4 = h f at bar = 112 kj/kg Φ = h 2 - h 1 = 3102 kj/kg into boiler. P = h2 - h 3 = kj/kg (out of turbine) η= P/ Φ= 38.3 % D.J.Dunn 20

21 WORKED EXAMPLE No.8 Repeat the last example but this time there is one feed heater. SOLUTION Figure 17 The bleed pressure was calculated in an earlier example and was 3.5 bar. s 2 =s 3 = kj/kg K = x 3 x 3 = (not quite dry). h 3 = h f + x hfg = (2148) h 3 = 2661 kj/kg h 7 = h f at 3.5 bar = 584 kj/kg Neglecting pump power h 6 = h 5 = h f = 112 kj/kg h 1 = h 7 = 584 kj/kg Conducting an energy balance we have yh 3 + (1-y) h 6 = h 7 hence y =0.185 kg Φ = h 2 - h 1 = 2630 kj/kg into boiler. Rather than work out the power from the turbine data, we may do it by calculating the heat transfer rate from the condenser as follows. Φ out = (1-y)(h4 - h5) = 0.815( ) = kj/kg P = Φ in - Φ out = 1072 kj/kg (out of turbine) η= P/ Φ in = 40.8 % Note that the use of the feed heater produced an improvement of 2.5 % in the thermodynamic efficiency. D.J.Dunn 21

22 SELF ASSESSMENT EXERCISE No.4 A simple steam plant uses a Rankine cycle with one regenerative feed heater. The boiler produces steam at 70 bar and 500 o C. This is expanded to 0.1 bar isentropically. Making suitable assumptions, calculate the cycle efficiency. (41.8%) CYCLE WITH TWO FEED HEATERS When two (or more) feed heaters are used, the efficiency is further increased. the principles are the same as those already explained. The mass of bled steam for each heater must be determined in turn starting with the high pressure heater. It is usual to assume isentropic expansion that enables you to pick off the enthalpy of the bled steam from the h-s chart at the pressures stated. D.J.Dunn 22

23 WORKED EXAMPLE No.9 A steam power plant works as follows. The boiler produces steam at 100 bar and 600 o C. This is expanded isentropically to 0.04 bar and condensed. Steam is bled at 40 bar for the h.p. heater and 4 bar for the l.p. heater. Solve the thermodynamic efficiency. SOLUTION Figure 18 Figure 19 Ignoring the energy input from the pump we find: h 1 = h 10 =h f 40 bar = 1087 kj/kg h 9 = h 8 =h f 4 bar = 605 kj/kg h 7 = h 6 =h f 0.04 bar = 121 kj/kg H.P. HEATER xh 3 + (1-x)h 9 = h x + 605(1-x) = 1087 hence x = kg D.J.Dunn 23

24 L.P. HEATER (1-x)h 8 = yh 4 + (1-x-y)h (605) = 2740y + (0.822-y)(121) y = kg BOILER heat input Φ in = h 2 - h 1 = = 2537 kj/kg CONDENSER heat output Φ out = (1-x-y))(h 5 - h 6 ) Φ out = 0.67( ) = kj/kg POWER OUTPUT P = Φ in - Φ out = kj/kg η= P/ Φ in = 48.3 % D.J.Dunn 24

25 SELF ASSESSMENT EXERCISE No Explain how it is theoretically possible to arrange a regenerative steam cycle which has a cycle efficiency equal to that of a Carnot cycle. In a regenerative steam cycle steam is supplied from the boiler plant at a pressure of 60 bar and a temperature of 500 o C. Steam is extracted for feed heating purposes at pressures of 30 bar and 3.0 bar and the steam turbine exhausts into a condenser operating at bar. Calculate the appropriate quantities of steam to be bled if the feed heaters are of the open type, and find the cycle efficiency; base all calculations on unit mass leaving the boiler. Assume isentropic expansion in the turbine and neglect the feed pump work. (Answers kg/s, kg/s and 45 %) 2. The sketch shows an idealised regenerative steam cycle in which heat transfer to the feed water in the turbine from the steam is reversible and the feed pump is adiabatic and reversible. The feed water enters the pump as a saturated liquid at 0.03 bar, and enters the boiler as a saturated liquid at 100 bar, and leaves as saturated steam. Draw a T-s diagram for the cycle and determine, not necessarily in this order, the dryness fraction in state 2, the cycle efficiency and the work per unit mass. (Answers kg/s, 50% and kj/kg). Outline the practical difficulties that are involved in realising this cycle and explain how regenerative cycles are arranged in practice. Figure 20 Note point (6) is the point in the steam expansion where the feed water enters and presumably the temperatures are equal. There is further expansion from (6) to (2). D.J.Dunn 25

26 5. REHEAT CYCLES We shall only examine cycles with one stage of reheating and two turbine stages, high pressure and low pressure. You should refer to text books on practical steam turbine layouts to see how low, medium and high pressure turbines are configured and laid out in order to produced axial force balance on the rotors. The diagram below shows a basic circuit with one stage of reheating. Figure 21 You should be proficient at sketching the cycle on a T - s diagram and a h - s diagram. They are shown below for the cycle shown above. Figure 22 The calculations for this cycle are not difficult. You need only take into account the extra heat transfer in the reheater. D.J.Dunn 26

27 WORKED EXAMPLE No.10 A reheat cycle works as follows. The boiler produces 30 kg/s at 100 bar and 400 o C. This is expanded isentropically to 50 bar in the h.p. turbine and returned for reheating in the boiler. The steam is reheated to 400 o C. This is then expanded in the l.p. turbine to the condenser which operates at 0.2 bar. The condensate is returned to the boiler as feed. Calculate the net power output and the cycle efficiency. SOLUTION h 6 = h f at 0.2 bar = 251 kj/kg h 2 = 3097 kj/kg at 100 bar and 400 o C. From the h-s chart we find h 3 = 2930 kj/kg h 4 = 3196 kj/kg h 5 = 2189 kj/kg If we ignore the feed pump power then Φin at boiler = 30(h 2 -h 1 ) + 30(h 4 -h 3 ) = kw or MW Φ out at condenser = 30(h 5 -h 6 ) = 58.14kW P (net) = Φ in - Φ out =35220 kw or MW η= P (net) /Φ in = 37.7 % D.J.Dunn 27

28 SELF ASSESSMENT EXERCISE No Repeat worked example No.10 but this time do not ignore the feed pump term and assume an isentropic efficiency of 90% for each turbine and 80% for the pump. ( Answers 32.1 MW,35%) 2. A water-cooled nuclear reactor supplies dry saturated steam at a pressure of 50 bar to a two-cylinder steam turbine. In the first cylinder the steam expands with an isentropic efficiency of 0.85 to a pressure of 10 bar, the power generated in this cylinder being 100 MW. The steam then passes at a constant pressure of 10 bar through a water separator from which all the water is returned to the reactor by mixing it with the feed water. The remaining dry saturated steam then flows at constant pressure through a reheater in which its temperature is raised to 250 o C before it expands in the second cylinder with an isentropic efficiency of 0.85 to a pressure of 0.1 bar, at which it is condensed before being returned to the reactor. Calculate the cycle efficiency and draw up an energy balance for the plant. Neglect the feed pump work. (Answer 30.3%) 3. Steam is raised in a power cycle at the supercritical pressure of 350 bar and at a temperature of 600 o C. It is then expanded in a turbine to 15 bar with an overall isentropic efficiency of At that pressure some steam is bled to an open regenerative feed heater, and the remainder of the steam is, after reheating to 600 o C, expanded in a second turbine to the condenser pressure of 0.04 bar, again with an isentropic efficiency of The feed pumps each have an overall isentropic efficiency of Calculate the amount of steam to be bled into the feed heater, making the usual idealising assumptions. Also calculate the cycle efficiency. Use the h-s chart wherever possible and do not neglect feed pump work. (Answers kg/s and 47%) D.J.Dunn 28

OUTCOME 4 STEAM AND GAS TURBINE POWER PLANT. TUTORIAL No. 8 STEAM CYCLES

UNIT 61: ENGINEERING THERMODYNAMICS Unit code: D/601/1410 QCF level: 5 Credit value: 15 OUTCOME 4 STEAM AND GAS TURBINE POWER PLANT TUTORIAL No. 8 STEAM CYCLES 4 Understand the operation of steam and gas

ENGINEERING COUNCIL CERTIFICATE LEVEL THERMODYNAMIC, FLUID AND PROCESS ENGINEERING C106 TUTORIAL 5 STEAM POWER CYCLES

ENGINEERING COUNCIL CERTIFICATE LEVEL THERMODYNAMIC, FLUID AND PROCESS ENGINEERING C106 TUTORIAL 5 STEAM POWER CYCLES When you have completed this tutorial you should be able to do the following. Explain

Thermodynamics - Example Problems Problems and Solutions

Thermodynamics - Example Problems Problems and Solutions 1 Examining a Power Plant Consider a power plant. At point 1 the working gas has a temperature of T = 25 C. The pressure is 1bar and the mass flow

4.1 Introduction. 4.2 Work. Thermodynamics

Thermodynamics 4-1 Chapter 4 Thermodynamics 4.1 Introduction This chapter focusses on the turbine cycle:thermodynamics and heat engines. The objective is to provide enough understanding of the turbine

APPLIED THERMODYNAMICS. TUTORIAL No.3 GAS TURBINE POWER CYCLES. Revise gas expansions in turbines. Study the Joule cycle with friction.

APPLIED HERMODYNAMICS UORIAL No. GAS URBINE POWER CYCLES In this tutorial you will do the following. Revise gas expansions in turbines. Revise the Joule cycle. Study the Joule cycle with friction. Extend

UNIT-III PROPERTIES OF PURE SUBSTANCE AND STEAM POWER CYCLE

UNIT-III PROPERTIES OF PURE SUBSTANCE AND STEAM POWER CYCLE Pure Substance A Pure substance is defined as a homogeneous material, which retains its chemical composition even though there may be a change

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 10 Steam Power Cycle, Steam Nozzle Good afternoon everybody.

Energy : ṁ (h i + ½V i 2 ) = ṁ(h e + ½V e 2 ) Due to high T take h from table A.7.1

6.33 In a jet engine a flow of air at 000 K, 00 kpa and 30 m/s enters a nozzle, as shown in Fig. P6.33, where the air exits at 850 K, 90 kpa. What is the exit velocity assuming no heat loss? C.V. nozzle.

1. Why are the back work ratios relatively high in gas turbine engines? 2. What 4 processes make up the simple ideal Brayton cycle?

1. Why are the back work ratios relatively high in gas turbine engines? 2. What 4 processes make up the simple ideal Brayton cycle? 3. For fixed maximum and minimum temperatures, what are the effect of

UNIT 5 REFRIGERATION SYSTEMS

UNIT REFRIGERATION SYSTEMS Refrigeration Systems Structure. Introduction Objectives. Vapour Compression Systems. Carnot Vapour Compression Systems. Limitations of Carnot Vapour Compression Systems with

THERMODYNAMICS NOTES - BOOK 2 OF 2

THERMODYNAMICS & FLUIDS (Thermodynamics level 1\Thermo & Fluids Module -Thermo Book 2-Contents-December 07.doc) UFMEQU-20-1 THERMODYNAMICS NOTES - BOOK 2 OF 2 Students must read through these notes and

THERMODYNAMICS TUTORIAL 5 HEAT PUMPS AND REFRIGERATION. On completion of this tutorial you should be able to do the following.

THERMODYNAMICS TUTORIAL 5 HEAT PUMPS AND REFRIGERATION On completion of this tutorial you should be able to do the following. Discuss the merits of different refrigerants. Use thermodynamic tables for

There is no general classification of thermodynamic cycle. The following types will be discussed as those are included in the course curriculum

THERMODYNAMIC CYCLES There is no general classification of thermodynamic cycle. The following types will be discussed as those are included in the course curriculum 1. Gas power cycles a) Carnot cycle

THE UNIVERSITY OF TRINIDAD & TOBAGO

THE UNIVERSITY OF TRINIDAD & TOBAGO FINAL ASSESSMENT/EXAMINATIONS JANUARY/APRIL 2013 Course Code and Title: Programme: THRM3001 Engineering Thermodynamics II Bachelor of Applied Sciences Date and Time:

Refrigeration and Air Conditioning Prof. M. Ramgopal Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Refrigeration and Air Conditioning Prof. M. Ramgopal Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture No. # 18 Worked Out Examples - I Welcome back in this lecture.

Steam turbine power generation is a Rankine Cycle, best plotted on a temperature/entropy [T/s] diagram : Critical Point

Cogeneration Thermodynamics Revisited Dr Mike Inkson and Ben Misplon Thermal Energy Systems Abstract Whilst most engineers understand that higher HP steam conditions result in a more efficient power station,

Construction of separating calorimeter is as shown in figure:

1. Title: Measurement of dryness fraction by Separating Calorimeter, Throttling Calorimeter, Separating and Throttling Calorimeter. 2. Learning objectives: 2.1. Intellectual skills: a) Measurement of Dryness

An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation

An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation R K Kapooria Department of Mechanical Engineering, BRCM College of Engineering & Technology, Bahal (Haryana)

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS System: Quantity of matter (constant mass) or region in space (constant volume) chosen for study. Closed system: Can exchange energy but not mass; mass is constant

Boiler Calculations. Helsinki University of Technology Department of Mechanical Engineering. Sebastian Teir, Antto Kulla

Helsinki University of Technology Department of Mechanical Engineering Energy Engineering and Environmental Protection Publications Steam Boiler Technology ebook Espoo 2002 Boiler Calculations Sebastian

Lesson 10 Vapour Compression Refrigeration Systems

Lesson 0 Vapour Compression Refrigeration Systems Version ME, II Kharagpur he specific objectives of the lesson: his lesson discusses the most commonly used refrigeration system, ie Vapour compression

Chapter 11, Problem 18.

Chapter 11, Problem 18. Refrigerant-134a enters the compressor of a refrigerator as superheated vapor at 0.14 MPa and 10 C at a rate of 0.12 kg/s, and it leaves at 0.7 MPa and 50 C. The refrigerant is

- Know basic of refrigeration - Able to analyze the efficiency of refrigeration system -

Refrigeration cycle Objectives - Know basic of refrigeration - Able to analyze the efficiency of refrigeration system - contents Ideal Vapor-Compression Refrigeration Cycle Actual Vapor-Compression Refrigeration

SOLUTION MANUAL SI UNIT PROBLEMS CHAPTER 9 SONNTAG BORGNAKKE VAN WYLEN. FUNDAMENTALS of. Thermodynamics. Sixth Edition

SOLUTION MANUAL SI UNIT PROBLEMS CHAPTER 9 SONNTAG BORGNAKKE VAN WYLEN FUNDAMENTALS of Thermodynamics Sixth Edition CONTENT SUBSECTION PROB NO. Correspondence table Concept-Study Guide Problems -20 Steady

The final numerical answer given is correct but the math shown does not give that answer.

Note added to Homework set 7: The solution to Problem 16 has an error in it. The specific heat of water is listed as c 1 J/g K but should be c 4.186 J/g K The final numerical answer given is correct but

ESO 201A/202. End Sem Exam 120 Marks 3 h 19 Nov Roll No. Name Section

ESO 201A/202 End Sem Exam 120 Marks 3 h 19 Nov 2014 Roll No. Name Section Answer Questions 1 and 2 on the Question Paper itself. Answer Question 3, 4 and 5 on the Answer Booklet provided. At the end of

Lesson 12 Multi-Stage Vapour Compression Refrigeration Systems. Version 1 ME, IIT Kharagpur 1

Lesson Multi-Stage Vapour Compression Refrigeration Systems Version ME, IIT Kharagpur The objectives of this lesson are to: Discuss limitations of single stage vapour compression refrigeration systems

20 m neon m propane 20

Problems with solutions:. A -m 3 tank is filled with a gas at room temperature 0 C and pressure 00 Kpa. How much mass is there if the gas is a) Air b) Neon, or c) Propane? Given: T73K; P00KPa; M air 9;

Esystem = 0 = Ein Eout

AGENDA: I. Introduction to Thermodynamics II. First Law Efficiency III. Second Law Efficiency IV. Property Diagrams and Power Cycles V. Additional Material, Terms, and Variables VI. Practice Problems I.

Chapter 6 Energy Equation for a Control Volume

Chapter 6 Energy Equation for a Control Volume Conservation of Mass and the Control Volume Closed systems: The mass of the system remain constant during a process. Control volumes: Mass can cross the boundaries,

Lesson 5 Review of fundamental principles Thermodynamics : Part II

Lesson 5 Review of fundamental principles Thermodynamics : Part II Version ME, IIT Kharagpur .The specific objectives are to:. State principles of evaluating thermodynamic properties of pure substances

The Second Law of Thermodynamics

The Second aw of Thermodynamics The second law of thermodynamics asserts that processes occur in a certain direction and that the energy has quality as well as quantity. The first law places no restriction

OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE. TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS

UNIT 61: ENGINEERING THERMODYNAMICS Unit code: D/601/1410 QCF level: 5 Credit value: 15 OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS 2 Be able to evaluate

Esystem = 0 = Ein Eout

AGENDA: I. Introduction to Thermodynamics II. First Law Efficiency III. Second Law Efficiency IV. Property Diagrams and Power Cycles V. Additional Material, Terms, and Variables VI. Practice Problems I.

COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Sub Code/Name: ME 1353 / Power Plant Engineering

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Sub Code/Name: ME 1353 / Power Plant Engineering UNIT-I INTRODUCTION TO POWER PLANTS AND BOILERS 1. What is the purpose of

Sheet 8:Chapter C It is less than the thermal efficiency of a Carnot cycle.

Thermo 1 (MEP 261) Thermodynamics An Engineering Approach Yunus A. Cengel & Michael A. Boles 7 th Edition, McGraw-Hill Companies, ISBN-978-0-07-352932-5, 2008 Sheet 8:Chapter 9 9 2C How does the thermal

Engineering Software P.O. Box 2134, Kensington, MD 20891 Phone: (301) 919-9670 Web Site:

Engineering Software P.O. Box 2134, Kensington, MD 20891 Phone: (301) 919-9670 E-Mail: info@engineering-4e.com Web Site: http://www.engineering-4e.com Brayton Cycle (Gas Turbine) for Propulsion Application

Chapter 11. Refrigeration Cycles

Chapter 11 Refrigeration Cycles The vapor compression refrigeration cycle is a common method for transferring heat from a low temperature space to a high temperature space. The figures below show the objectives

UNIT 2 REFRIGERATION CYCLE

UNIT 2 REFRIGERATION CYCLE Refrigeration Cycle Structure 2. Introduction Objectives 2.2 Vapour Compression Cycle 2.2. Simple Vapour Compression Refrigeration Cycle 2.2.2 Theoretical Vapour Compression

Pressure Enthalpy Explained

Pressure Enthalpy Explained Within the new F Gas course the requirement for an understanding of Pressure Enthalpy (Ph) graphs is proving to be a large learning curve for those who have not come across

1 High Pressure Steam Turbine... 2 1.1 Sliding Pressure Control... 2 1.1.1 Input for the design load calculation [HD glijdruk 100]... 2 1.1.

High Pressure Steam Turbine.... Sliding Pressure Control..... Input for the design load calculation [HD glijdruk 00]..... Results of the design load calculation..... h-s diagram..... Input for the off-design

3. ENERGY PERFORMANCE ASSESSMENT OF COGENERATION AND TURBINES (GAS, STEAM)

3. ENERGY PERFORMANCE ASSESSMENT OF COGENERATION AND TURBINES (GAS, STEAM) 3.1 Introduction Cogeneration systems can be broadly classified as those using steam turbines, Gas turbines and DG sets. Steam

Engineering design experience of an undergraduate thermodynamics course

World Transactions on Engineering and Technology Education Vol.10, No.1, 2012 2012 WIETE Engineering design experience of an undergraduate thermodynamics course Hosni I. Abu-Mulaweh & Abdulaziz A. Al-Arfaj

Science and Reactor Fundamentals Heat &Thermodynamics 1 CNSC Policy Planning and Learning HEAT AND THERMODYNAMICS

Science and Reactor Fundamentals Heat &Thermodynamics 1 HEAT AND THERMODYNAMICS Science and Reactor Fundamentals Heat and Thermodynamics 2 SNCS Policy Planning and Learning TABLE OF CONTENTS 1 OBJECTIVES...4

DE-TOP User s Manual. Version 2.0 Beta

DE-TOP User s Manual Version 2.0 Beta CONTENTS 1. INTRODUCTION... 1 1.1. DE-TOP Overview... 1 1.2. Background information... 2 2. DE-TOP OPERATION... 3 2.1. Graphical interface... 3 2.2. Power plant model...

C H A P T E R T W O. Fundamentals of Steam Power

35 C H A P T E R T W O Fundamentals of Steam Power 2.1 Introduction Much of the electricity used in the United States is produced in steam power plants. Despite efforts to develop alternative energy converters,

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 7 Ideal Gas Laws, Different Processes Let us continue

Second Law of Thermodynamics Alternative Statements

Second Law of Thermodynamics Alternative Statements There is no simple statement that captures all aspects of the second law. Several alternative formulations of the second law are found in the technical

Engineering Software P.O. Box 2134, Kensington, MD 20891 Phone: (301) 919-9670 Web Site:

Engineering Software P.O. Box 2134, Kensington, MD 20891 Phone: (301) 919-9670 E-Mail: info@engineering-4e.com Web Site: http://www.engineering-4e.com Carnot Cycle Analysis Carnot Cycle Analysis by Engineering

Thermodynamical aspects of the passage to hybrid nuclear power plants

Energy Production and Management in the 21st Century, Vol. 1 273 Thermodynamical aspects of the passage to hybrid nuclear power plants A. Zaryankin, A. Rogalev & I. Komarov Moscow Power Engineering Institute,

Training programme on Energy Efficient technologies for climate change mitigation in Southeast Asia. Cogeneration

Training programme on Energy Efficient technologies for climate change mitigation in Southeast Asia Cogeneration Session Agenda: Cogeneration Introduction Types of steam turbine cogeneration system Types

CHEPTER-3 EFFECT OF OPERATING VARIABLES ON THERMAL EFFICIENCY OF COMBINED CYCLE POWER PLANT

CHEPTER-3 EFFECT OF OPERATING VARIABLES ON THERMAL EFFICIENCY OF COMBINED CYCLE POWER PLANT 3.1 THERMAL EFFICIENCY OF THE COMBINED CYCLE: - In combined cycle power plants if power in gas turbine and steam

DET: Mechanical Engineering Thermofluids (Higher)

DET: Mechanical Engineering Thermofluids (Higher) 6485 Spring 000 HIGHER STILL DET: Mechanical Engineering Thermofluids Higher Support Materials *+,-./ CONTENTS Section : Thermofluids (Higher) Student

ME 201 Thermodynamics

ME 0 Thermodynamics Second Law Practice Problems. Ideally, which fluid can do more work: air at 600 psia and 600 F or steam at 600 psia and 600 F The maximum work a substance can do is given by its availablity.

QUESTIONS THERMODYNAMICS PRACTICE PROBLEMS FOR NON-TECHNICAL MAJORS. Thermodynamic Properties

QUESTIONS THERMODYNAMICS PRACTICE PROBLEMS FOR NON-TECHNICAL MAJORS Thermodynamic Properties 1. If an object has a weight of 10 lbf on the moon, what would the same object weigh on Jupiter? ft ft -ft g

6.5 Simple Vapor Compression Refrigeration System:

6.5 Simple Vapor ompression Refrigeration System: A simple vapor compression refrigeration system consists of the following equipments: i) ompressor ii) ondenser iii) Expansion valve iv) Evaporator. B

(b) 1. Look up c p for air in Table A.6. c p = 1004 J/kg K 2. Use equation (1) and given and looked up values to find s 2 s 1.

Problem 1 Given: Air cooled where: T 1 = 858K, P 1 = P = 4.5 MPa gage, T = 15 o C = 88K Find: (a) Show process on a T-s diagram (b) Calculate change in specific entropy if air is an ideal gas (c) Evaluate

1.5. Which thermodynamic property is introduced using the zeroth law of thermodynamics?

CHAPTER INTRODUCTION AND BASIC PRINCIPLES. (Tutorial). Determine if the following properties of the system are intensive or extensive properties: Property Intensive Extensive Volume Density Conductivity

Lesson. 11 Vapour Compression Refrigeration Systems: Performance Aspects And Cycle Modifications. Version 1 ME, IIT Kharagpur 1

Lesson Vapour Compression Refrigeration Systems: Performance Aspects And Cycle Modifications Version ME, IIT Kharagpur The objectives of this lecture are to discuss. Performance aspects of SSS cycle and

Entropy and The Second Law of Thermodynamics

The Second Law of Thermodynamics (SL) Entropy and The Second Law of Thermodynamics Explain and manipulate the second law State and illustrate by example the second law of thermodynamics Write both the

REFRIGERATION (& HEAT PUMPS)

REFRIGERATION (& HEAT PUMPS) Refrigeration is the 'artificial' extraction of heat from a substance in order to lower its temperature to below that of its surroundings Primarily, heat is extracted from

Fundamentals of Refrigeration Part 5 Refrigerants

Refrigerants PH Chart Fundamentals of Refrigeration Part 5 Refrigerants This diagram shows a simplified pressure/ enthalpy chart for a non specified refrigerant. The area contained within the envelope

GAS TURBINE POWER PLANTS

GAS URBINE POWER PLANS Prof. A. Valentini INRODUCION I have written these notes for Italian speaking students in the last year of high school for the course of Applied Mechanics and Fluid Machinery. he

Process Integration Prof. Bikash Mohanty Department of Chemical Engineering Indian Institute of Technology, Roorkee

Process Integration Prof. Bikash Mohanty Department of Chemical Engineering Indian Institute of Technology, Roorkee Module - 6 Integration and placement of equipment Lecture - 4 Placement of Heat Engine,

THE SECOND LAW OF THERMODYNAMICS

1 THE SECOND LAW OF THERMODYNAMICS The FIRST LAW is a statement of the fact that ENERGY (a useful concept) is conserved. It says nothing about the WAY, or even WHETHER one form of energy can be converted

Prof. U.S.P. Shet, Prof. T. Sundararajan and Prof. J.M. Mallikarjuna. 4.7 Comparison of Otto, Diesel and Dual Cycles:

.7 Comparison of Otto, Diesel and Dual Cycles: The important variable factors which are used as the basis for comparison of the cycles are compression ratio, peak pressure, heat addition, heat rejection

GUIDANCE NOTE 16 CHP SCHEME HEAT OUTPUTS

GUIDANCE NOTE 16 CHP SCHEME HEAT OUTPUTS Qualifying Heat Outputs GN16.1 CHP Qualifying Heat Output (CHP QHO ) is the registered amount of useful heat supplied annually from a CHP Scheme (MWh th ). It is

Study the Performance of the Combined Gas Turbine-Steam Cycle for Power Generation By

B tudy the Performance of the Combined Gas Turbine-team Cycle for Power Generation By Dr.aba Yassoub Ahmed Dr.Nahla Yassoub Ahmed Mechanical Engineering Civil Engineering Babylon University Babylon University

1. A belt pulley is 3 ft. in diameter and rotates at 250 rpm. The belt which is 5 ins. wide makes an angle of contact of 190 over the pulley.

Sample Questions REVISED FIRST CLASS PARTS A1, A2, AND A3 (NOTE: these questions are intended as representations of the style of questions that may appear on examinations. They are not intended as study

Exergy: the quality of energy N. Woudstra

Exergy: the quality of energy N. Woudstra Introduction Characteristic for our society is a massive consumption of goods and energy. Continuation of this way of life in the long term is only possible if

ME 6404 THERMAL ENGINEERING UNIT I. Part-A

UNIT I Part-A 1. For a given compression ratio and heat addition explain why otto cycle is more efficient than diesel cycle? 2. Explain the effect of pressure ratio on the net output and efficiency of

An introduction to thermodynamics applied to Organic Rankine Cycles

An introduction to thermodynamics applied to Organic Rankine Cycles By : Sylvain Quoilin PhD Student at the University of Liège November 2008 1 Definition of a few thermodynamic variables 1.1 Main thermodynamics

UNIVERSITY ESSAY QUESTIONS:

UNIT I 1. What is a thermodynamic cycle? 2. What is meant by air standard cycle? 3. Name the various gas power cycles". 4. What are the assumptions made for air standard cycle analysis 5. Mention the various

Supplementary Notes on Entropy and the Second Law of Thermodynamics

ME 4- hermodynamics I Supplementary Notes on Entropy and the Second aw of hermodynamics Reversible Process A reversible process is one which, having taken place, can be reversed without leaving a change

is the stagnation (or total) pressure, constant along a streamline.

70 Incompressible flow (page 60): Bernoulli s equation (steady, inviscid, incompressible): p 0 is the stagnation (or total) pressure, constant along a streamline. Pressure tapping in a wall parallel to

Working Fluid Developments for HT Heat Pumps and ORC Systems at. Renewable Energy, Heating and Cooling Applications. Contents

Working Fluid Developments for HT Heat Pumps and ORC Systems at Renewable Energy, Heating and Cooling Applications -Created by- Chillventa 2010 July 2010 Contents Waste Heat Recovery What does it mean?

COGENERATION. This section briefly describes the main features of the cogeneration system or a Combined Heat & Power (CHP) system. 36 Units.

COGENERATION 1. INTRODUCTION... 1 2. TYPES OF COGENERATION SYSTEMS... 2 3. ASSESSMENT OF COGENERATION SYSTEMS... 10 4. ENERGY EFFICIENCY OPPORTUNITIES... 14 5. OPTION CHECKLIST... 16 6. WORKSHEETS... 17

COMPARISON CONCERNING TO THE COGENERATION SYSTEMS DEVELOPMENT

COMPARISON CONCERNING TO THE COGENERATION SYSTEMS DEVELOPMENT Radu-Cristian DINU, Ion MIRCEA, Emilia-Marinela DINU University of Craiova, Faculty of Electrotechnique, Electroputere S.A., Craiova rcdinu@elth.ucv.ro,

CO 2 41.2 MPa (abs) 20 C

comp_02 A CO 2 cartridge is used to propel a small rocket cart. Compressed CO 2, stored at a pressure of 41.2 MPa (abs) and a temperature of 20 C, is expanded through a smoothly contoured converging nozzle

The Second Law of Thermodynamics

Objectives MAE 320 - Chapter 6 The Second Law of Thermodynamics The content and the pictures are from the text book: Çengel, Y. A. and Boles, M. A., Thermodynamics: An Engineering Approach, McGraw-Hill,

Gas Turbine cycles and Propulsion system. Sarika Goel 3 rd year,chemical Engineering, IIT Delhi Guide : Prof. Gautam Biswas & Prof. S.

Gas Turbine cycles and Propulsion system Sarika Goel 3 rd year,chemical Engineering, IIT Delhi Guide : Prof. Gautam Biswas & Prof. S. Sarkar Outline Introduction- Gas turbine cycles Applications of gas

Fundamentals of Thermodynamics Applied to Thermal Power Plants

Fundamentals of Thermodynamics Applied to Thermal Power Plants José R. Simões-Moreira Abstract In this chapter it is reviewed the fundamental principles of Thermodynamics aiming at its application to power

FEASIBILITY OF A BRAYTON CYCLE AUTOMOTIVE AIR CONDITIONING SYSTEM

FEASIBILITY OF A BRAYTON CYCLE AUTOMOTIVE AIR CONDITIONING SYSTEM L. H. M. Beatrice a, and F. A. S. Fiorelli a a Universidade de São Paulo Escola Politécnica Departamento de Engenharia Mecânica Av. Prof.

Drying of Woody Biomass. Process Engineering / GEA Barr-Rosin

Drying of Woody Biomass BioPro Expo & Marketplace / Atlanta, GA / March 14-16, 2011 Drying of Woody Biomass Conventional Direct Fired Dryer Technology Proprietary work of the Copyright Owner Issues with

Sustainable Energy Utilization, Refrigeration Technology. A brief history of refrigeration. Björn Palm

Sustainable Energy Utilization, Refrigeration Technology Björn Palm bpalm@energy.kth.se This email message was generated automatically. Please do not send a reply. You are registered for the following

Entropy. Objectives. MAE 320 - Chapter 7. Definition of Entropy. Definition of Entropy. Definition of Entropy. Definition of Entropy + Δ

MAE 320 - Chapter 7 Entropy Objectives Defe a new property called entropy to quantify the second-law effects. Establish the crease of entropy prciple. Calculate the entropy changes that take place durg

THEORETICAL ANALYSIS OF THE PERFORMANCE OF DUAL PRESSURE CONDENSER IN A THERMAL POWER PLANT

INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print), ISSN 0976 6340 (Print) ISSN 0976 6359

DEVELOPMENT OF A TWIN SCREW EXPRESSOR AS A THROTTLE VALVE REPLACEMENT FOR WATER-COOLED CHILLERS

DEVELOPMENT OF A TWIN SCREW EXPRESSOR AS A THROTTLE VALVE REPLACEMENT FOR WATER-COOLED CHILLERS J J Brasz, Carrier Corporation, Syracuse, NY, 13221, USA joost.j.brasz@carrier.utc.com I K Smith and N Stosic

k is change in kinetic energy and E

Energy Balances on Closed Systems A system is closed if mass does not cross the system boundary during the period of time covered by energy balance. Energy balance for a closed system written between two

ME 6404 THERMAL ENGINEERING. Part-B (16Marks questions)

ME 6404 THERMAL ENGINEERING Part-B (16Marks questions) 1. Drive and expression for the air standard efficiency of Otto cycle in terms of volume ratio. (16) 2. Drive an expression for the air standard efficiency

Siemens Organic Rankine Cycle Waste Heat Recovery with ORC

Power Generation Siemens Organic Rankine Cycle Waste Heat Recovery with ORC Answers for energy. Table of Contents Requirements of the Future Power Supply without extra Fuel Siemens ORC-Module Typical Applications

www.universityquestions.in

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT: ME6701-POWER PLANT ENGINEERING YEAR/SEM: III/V UNIT-I COAL BASED THERMAL POWER PLANTS 1. What are the processes of rankine cycle?

ESO201A: Thermodynamics

ESO201A: Thermodynamics Instructor: Sameer Khandekar First Semester: 2015 2016 Lecture #1: Course File Introduction to Thermodynamics, Importance, Definitions Continuum, System: closed, open and isolated,

COST EFFECTIVE SMALL SCALE ORC SYSTEMS FOR POWER RECOVERY FROM LOW ENTHALPY GEOTHERMAL RESOURCES

COST EFFECTIVE SMALL SCALE ORC SYSTEMS FOR POWER RECOVERY FROM LOW ENTHALPY GEOTHERMAL RESOURCES I K Smith *, N Stosic *, A Kovacevic *, R Langson ** * City University, London, UK ** ElectraTherm Inc,

VAPOUR-COMPRESSION REFRIGERATION SYSTEM

VAPOUR-COMPRESSION REFRIGERATION SYSTEM This case study demonstrates the modeling of a vapour compression refrigeration system using R22 as refrigerant. Both a steady-state and a transient simulation will

PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS

ASME ORC 2015 3rd International Seminar on ORC Power Systems 12-14 October 2015, Brussels, Belgium PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS Vittorio

CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS. Blank

CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS Blank SONNTAG/BORGNAKKE STUDY PROBLEM 7-1 7.1 A car engine and its fuel consumption A car engine produces 136 hp on the output shaft with a thermal efficiency

Second Law of Thermodynamics

Thermodynamics T8 Second Law of Thermodynamics Learning Goal: To understand the implications of the second law of thermodynamics. The second law of thermodynamics explains the direction in which the thermodynamic