AAT4280 Slew Rate Controlled Load Switch
|
|
|
- Prosper Robinson
- 10 years ago
- Views:
Transcription
1 General Description Features SmartSwitch The AAT4280 SmartSwitch is a P-channel MOSFET power switch designed for high-side load switching applications. The P-channel MOSFET device has a typical R DS(ON) of 80mΩ, allowing increased load switch power handling capacity. This device is available in three different versions with flexible turn on and off characteristics from very fast to slew rate limited. The standard AAT4280 (-1) version has a slew rate limited turn on load switch and is functionally compatible with the AAT4250 device while offering superior R DS(ON) characteristics. The AAT4280 (-2) version features fast load switch turn on capabilities, typically less than 500ns turn on and 3µs turn off times. The AAT4280 (-3) variation offers a shutdown load discharge circuit to rapidly turn off a load circuit when the switch is disabled. All AAT4280 load switch versions operate with an input voltage ranging from 1.8V to 5.5V, making them ideal for both 3V and 5V systems. The AAT4280 also features an under-voltage lockout which turns the switch off when an input under-voltage condition exists. Input logic levels are TTL and 2.5V to 5V CMOS compatible. The quiescent supply current is very low, typically 2.5µA. In shutdown mode, the supply current decreases to less than 1µA. The AAT4280 is available in a Pb-free, 6-pin SOT23 or 8-pin SC70JW package and is specified over the -40 C to +85 C temperature range. 1.8V to 5.5V Input Voltage Range Very Low R DS(ON), Typically 80mΩ (5V) Slew Rate Limited Turn-On Time Options 1ms 0.5µs 100µs Fast Shutdown Load Discharge Option Low Quiescent Current 2.5µA Typical 1µA Max in Shutdown TTL/CMOS Input Logic Level Temperature Range: -40ºC to +85 C 4kV ESD Rating 6-Pin SOT23 or 8-Pin SC70JW Package Applications Cellular Telephones Digital Still Cameras Hot Swap Supplies Notebook Computers Personal Communication Devices Personal Digital Assistants (PDA) Typical Application V OUT V OUT AAT4280 C 1μF ON ON/OFF C OUT 0.1μF
2 Pin Descriptions Pin # SOT23-6 SC70JW-8 Symbol Function 1 2 OUT This pin is the P-channel MOSFET drain connection. Bypass to ground through a 0.1µF capacitor. 2, 5 4 Ground connection. 3 3 ON/OFF Enable input. 4, 6 1, 5, 6, 7, 8 This pin is the input to the P-channel MOSFET source. Bypass to ground through a 1.0µF capacitor. Pin Configuration SOT23-6 (Top View) OUT ON/OFF 3 4 SC70JW-8 (Top View) 1 OUT 2 ON/OFF Selector Guide Part Number Slew Rate (typ) Active Pull Down Enable AAT ms Active High AAT µs Active High AAT µs Active High
3 Absolute Maximum Ratings 1 T A = 25 C, unless otherwise noted. Symbol Description Value Units V to -0.3 to 6 V V ON ON/OFF to -0.3 to 6 V V OUT OUT to -0.3 to V V I MAX Maximum Continuous Switch Current 2.3 A I DM Maximum Pulsed Current 2.5V 6 A < 2.5V 3 A T J Operating Junction Temperature Range -40 to 150 C T S Storage Temperature Range -65 to 150 C T LEAD Maximum Soldering Temperature (at leads) 300 C V ESD ESD Rating 2 - HBM 4000 V Thermal Characteristics 3 Value Symbol Description SOT23-6 SC70JW-8 Units Θ JA Thermal Resistance C/W P D Power Dissipation mw 1. Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation at conditions other than the operating conditions specified is not implied. Only one Absolute Maximum Rating should be applied at any one time. 2. Human body model is a 100pF capacitor discharged through a 1.5kΩ resistor into each pin. 3. Mounted on an AAT4280 demo board in still 25ºC air
4 Electrical Characteristics V = 5V, T A = -40 C to +85 C, unless otherwise noted. Typical values are T A = 25 C. Symbol Description Conditions Min Typ Max Units AAT4280 All Versions V Operation Voltage V V UVLO Under-Voltage Lockout V Falling V V UVLO(hys) Under-Voltage Lockout Hysteresis 250 mv I Q Quiescent Current ON/OFF = Active µa I Q(OFF) Off Supply Current ON/OFF = Inactive, OUT = Open 1 µa I SD(OFF) Off Switch Current ON/OFF = Inactive, V OUT = 0 1 µa V = 5V, T A = 25 C R DS(ON) On Resistance V = 4.2V, T A = 25 C V = 3V, T A = 25 C mω V = 1.8V, T A = 25 C TC RDS On Resistance Temperature Coefficient 2800 ppm/ C V IL ON/OFF Input Logic Low Voltage V = 2.7V to 5.5V V V = 2.7V to 4.2V 2 V IH ON/OFF Input Logic High Voltage V = 3.3V 1.8 V V = >4.2V to 5.5V 2.4 I SK ON/OFF Input Leakage V ON/OFF = 5.5V 1 µa AAT T D(ON) Output Turn-On Delay V = 5V, R LOAD = 10Ω, T A = 25 C µs T ON Output Turn-On Rise Time V = 5V, R LOAD = 10Ω, T A = 25 C µs T D(OFF) Output Turn-Off Delay Time V = 5V, R LOAD = 10Ω, T A = 25 C 4 10 µs AAT T D(ON) Output Turn-On Delay V = 5V, R LOAD = 10Ω, T A = 25 C µs T ON Output Turn-On Rise Time V = 5V, R LOAD = 10Ω, T A = 25 C µs T D(OFF) Output Turn-Off Delay Time V = 5V, R LOAD = 10Ω, T A = 25 C 4 10 µs AAT T D(ON) Output Turn-On Delay V = 5V, R LOAD = 10Ω, T A = 25 C µs T ON Output Turn-On Rise Time V = 5V, R LOAD = 10Ω, T A = 25 C µs T D(OFF) Output Turn-Off Delay Time V = 5V, R LOAD = 10Ω, T A = 25 C 4 10 µs R PD Output Pull-Down Resistance During OFF ON/OFF = Inactive, T A = 25 C Ω 1. Part requires minimum start-up of V 2.0V to ensure operation down to 1.8V. 2. For V outside this range, consult typical ON/OFF threshold curve
5 Typical Characteristics Unless otherwise noted, V = 5V, T A = 25 C. Quiescent Current vs. Temperature Quiescent Current vs. Input Voltage Quiescent Current (μa) 4 V = 5V 3 2 V = 3V Temperature ( C) Quiescent Current (μa) Input Voltage (V) R DS(ON) vs. Input Voltage R DS(ON) vs. Temperature R DS(ON) (mω) mA 2A 1A 500mA Input Voltage (V) R DS(ON) (mω) V = 3V V = 5V Temperature ( C) ON/OFF Threshold vs. Input Voltage Off-Switch Current vs. Temperature ON/OFF Threshold (V) V IH V IL Input Voltage (V) I OFFSW (μa) Temperature ( C)
6 Typical Characteristics AAT Unless otherwise noted, V = 5V, T A = 25 C. AAT Turn-On (V = 3V; R L = 6Ω) AAT Turn-On (V = 5V; R L = 10Ω) Time (500μs/div) Time (500μs/div) AAT Turn-Off (V = 3V; R L = 6Ω) AAT Turn-Off (V = 5V; R L = 10Ω) Time (10μs/div) Time (10μs/div)
7 Typical Characteristics AAT Unless otherwise noted, V = 5V, T A = 25 C. AAT Turn-On (V = 3V; R L = 6Ω) AAT Turn-On (V = 5V; R L = 10Ω) Time (5μs/div) Time (5μs/div) AAT Turn-Off (V = 3V; R L = 6Ω) AAT Turn-Off (V = 5V; R L = 10Ω) Time (5μs/div) Time (5μs/div)
8 Typical Characteristics AAT Unless otherwise noted, V = 5V, T A = 25 C. AAT Turn-On (V = 3V; R L = 6Ω) AAT Turn-On (V = 5V; R L = 10Ω) Time (50μs/div) Time (50μs/div) AAT Turn-Off (V = 3V; R L = 6Ω) AAT Turn-Off (V = 5V; R L = 10Ω) Time (5μs/div) Time (5μs/div)
9 Functional Block Diagram OUT Under- Voltage Lockout Level Shift Turn-On Slew Rate Control ON/OFF * *AAT only Functional Description The AAT4280 is a family of flexible P-channel MOS- FET power switches designed for high-side load switching applications. There are three versions of the AAT4280 with different turn-on and turn-off characteristics to choose from, depending upon the specific requirements of an application. The first version, the AAT4280-1, has a moderate turn-on slew rate feature, which reduces inrush current when the MOSFET is turned on. This function allows the load switch to be implemented with either a small input capacitor or no input capacitor at all. During turn-on slewing, the current ramps linearly until it reaches the level required for the output load condition. The proprietary turn-on current control method works by careful control and monitoring of the MOSFET gate voltage. When the device is switched ON, the gate voltage is quickly increased to the threshold level of the MOSFET. Once at this level, the current begins to slew as the gate voltage is slowly increased until the MOSFET becomes fully enhanced. Once it has reached this point, the gate is quickly increased to the full input voltage and R DS(ON) is minimized. The second version, the AAT4280-2, is a very fast switch intended for high-speed switching applications. This version has no turn-on slew rate control and no special output discharge features. The final version, the AAT4280-3, has the addition of a minimized slew rate limited turn-on function and a shutdown output discharge circuit to rapidly turn off a load when the load switch is disabled through the ON/OFF pin. All versions of the AAT4280 operate with input voltages ranging from 1.8V to 5.5V. All versions of this device have extremely low operating current, making them ideal for battery-powered applications. In cases where the input voltage drops below 1.8V, the AAT4280 MOSFET device is protected from entering into the saturation region of operation by automatically shutting down through an under-voltage lockout control circuit. The ON/OFF control pin is TTL compatible and will also function with 2.5V to 5V logic systems, making the AAT4280 an ideal level-shifting load switch
10 Applications Information Input Capacitor A 1µF or larger capacitor is typically recommended for C in most applications. A C capacitor is not required for basic operation. However, C is useful in preventing load transients from affecting upstream circuits. C should be located as close to the device V pin as practically possible. Ceramic, tantalum, or aluminum electrolytic capacitors may be selected for C. There is no specific capacitor ESR requirement for C. However, for higher current operation, ceramic capacitors are recommended for C due to their inherent capability over tantalum capacitors to withstand input current surges from low impedance sources, such as batteries in portable devices. Output Capacitor For proper slew operation, a 0.1µF capacitor or greater between V OUT and is recommended. The output capacitor has no specific capacitor type or ESR requirement. If desired, C OUT may be increased without limit to accommodate any load transient condition without adversely affecting the device turn-on slew rate time. Enable Function The AAT4280 features an enable / disable function. This pin (ON/OFF) is compatible with both TTL or CMOS logic. Reverse Output-to-Input Voltage Conditions and Protection Under normal operating conditions, a parasitic diode exists between the output and input of the load switch. The input voltage should always remain greater than the output load voltage, maintaining a reverse bias on the internal parasitic diode. Conditions where V OUT might exceed V should be avoided since this would forward bias the internal parasitic diode and allow excessive current flow into the V OUT pin and possibly damage the load switch. In applications where there is a possibility of V OUT exceeding V for brief periods of time during normal operation, the use of a larger value C capacitor is highly recommended. A larger value of C with respect to C OUT will effect a slower C decay rate during shutdown, thus preventing V OUT from exceeding V. In applications where there is a greater danger of V OUT exceeding V for extended periods of time, it is recommended to place a Schottky diode from V to V OUT (connecting the cathode to V and anode to V OUT ). The Schottky diode forward voltage should be less than 0.45V. Thermal Considerations and High Output Current Applications The AAT4280 is designed to deliver a continuous output load current. The limiting characteristic for maximum safe operating output load current is package power dissipation. In order to obtain high operating currents, careful device layout and circuit operating conditions need to be taken into account. The following discussions will assume the load switch is mounted on a printed circuit board utilizing the minimum recommended footprint, as stated in the Layout Considerations section of this datasheet. At any given ambient temperature (T A ), the maximum package power dissipation can be determined by the following equation: P D(MAX) = [T J(MAX) - T A ] / Θ JA Constants for the AAT4280 are maximum junction temperature, T J(MAX) = 125 C, and package thermal resistance, Θ JA = 120 C/W. Worst case conditions are calculated at the maximum operating temperature where T A = 85 C. Typical conditions are calculated under normal ambient conditions where T A = 25 C. At T A = 85 C, P D(MAX) = 333mW. At T A = 25 C, P D(MAX) = 833mW. The maximum continuous output current for the AAT4280 is a function of the package power dissipation and the R DS of the MOSFET at T J(MAX). The maximum R DS of the MOSFET at T J(MAX) is calculated by increasing the maximum room temperature R DS by the R DS temperature coefficient. The temperature coefficient (T C ) is 2800ppm/ C. Therefore, MAX R DS 125 C = R DS 25 C (1 + T C ΔT) MAX R DS 125 C = 120mΩ ( (125 C - 25 C)) = 154mΩ
11 For maximum current, refer to the following equation: I OUT(MAX) < ( P D(MAX) / R DS ) 1/2 For example, if V = 5V, R DS(MAX) = 154mΩ and T A = 25 C, I OUT(MAX) = 2.3A. If the output load current were to exceed 2.3A or if the ambient temperature were to increase, the internal die temperature would increase, and the device would be damaged. Higher peak currents can be obtained with the AAT4280. To accomplish this, the device thermal resistance must be reduced by increasing the heat sink area or by operating the load switch in a dutycycle manner. High Peak Output Current Applications Some applications require the load switch to operate at a continuous nominal current level with short duration, high-current peaks. The duty cycle for both output current levels must be taken into account. To do so, first calculate the power dissipation at the nominal continuous current level, and then add in the additional power dissipation due to the short duration, high-current peak scaled by the duty factor. For example, a 4V system using an AAT4280 operates at a continuous 100mA load current level and has short 2A current peaks, as in a GSM application. The current peak occurs for 576µs out of a 4.61ms period. First, the current duty cycle is calculated: % Peak Duty Cycle: X/100 = 576µs/4.61ms % Peak Duty Cycle = 12.5% The load current is 100mA for 87.5% of the 4.61ms period and 2A for 12.5% of the period. Since the Electrical Characteristics do not report R DS(MAX) for 4V operation, it must be calculated approximately by consulting the chart of R DS(ON) vs. V. The R DS reported for 5V can be scaled by the ratio seen in the chart to derive the R DS for a 4V V : 120mΩ 87mΩ /80mΩ = 130mΩ. De-rated for temperature: 130mΩ x ( (125 C -25 C)) = 166mΩ. The power dissipation for a 100mA load is calculated as follows: P D(MAX) = I OUT2 R DS P D(100mA) = (100mA) 2 166mΩ P D(100mA) = 1.66mW P D(87.5%D/C) = %DC P D(100mA) P D(87.5%D/C) = mW P D(87.5%D/C) = 1.45mW The power dissipation for 100mA load at 87.5% duty cycle is 1.45mW. Now the power dissipation for the remaining 12.5% of the duty cycle at 2A is calculated: P D(MAX) = I OUT2 R DS P D(2A) = (2A) 2 166mΩ P D(2A) = 664mW P D(12.5%D/C) = %DC P D(2A) P D(12.5%D/C) = mW P D(12.5%D/C) = 83mW The power dissipation for 2A load at 12.5% duty cycle is 83mW. Finally, the two power figures are summed to determine the total true power dissipation under the varied load. P D(total) = P D(100mA) + P D(2A) P D(total) = 1.45mW + 83mW P D(total) = 84.5mW The maximum power dissipation for the AAT4280 operating at an ambient temperature of 85 C is 333mW. The device in this example will have a total power dissipation of 84.5mW. This is well within the thermal limits for safe operation of the device; in fact, at 85 C, the AAT4280 will handle a 2A pulse for up to 50% duty cycle. At lower ambient temperatures, the duty cycle can be further increased
12 Printed Circuit Board Layout Recommendations For proper thermal management and to take advantage of the low R DS(ON) of the AAT4280, a few circuit board layout rules should be followed: V and V OUT should be routed using wider than normal traces, and should be connected to a ground plane. To maximize package thermal dispation and power handling capacity of the AAT4280 SOT23-6/ SC70JW-8 package, the ground plane area connected to the ground pins should be made as large as possible. For best performance, C and C OUT should be placed close to the package pins. Evaluation Board Layout The AAT4280 evaluation layout follows the printed circuit board layout recommendations, and can be used for good applications layout. Refer to Figures 1 through 3. Note: Board layout shown is not to scale. Figure 1: Evaluation Board Figure 2: Evaluation Board Figure 3: Evaluation Board Top Side Silk Screen Layout / Component Side Layout. Solder Side Layout. Assembly Drawing
13 Ordering Information Device Option Package Marking 1 Part Number (Tape and Reel) 2 AAT SOT23-6 COXYY AAT4280IGU-1-T1 AAT SOT23-6 BZXYY AAT4280IGU-2-T1 AAT SOT23-6 CJXYY AAT4280IGU-3-T1 AAT SC70JW-8 COXYY AAT4280IJS-1-T1 AAT SC70JW-8 BZXYY AAT4280IJS-2-T1 AAT SC70JW-8 CJXYY AAT4280IJS-3-T1 All AnalogicTech products are offered in Pb-free packaging. The term Pb-free means semiconductor products that are in compliance with current RoHS standards, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. For more information, please visit our website at Package Information SOT ± BSC 1.90 BSC ± ± ± ± ± ± ± ± REF 0.15 ± ± BSC GAUGE PLANE All dimensions in millimeters. 1. XYY = assembly and date code. 2. Sample stock is generally held on all part numbers listed in BOLD
14 SC70JW BSC 0.50 BSC 0.50 BSC 1.75 ± ± ± ± ± MAX 0.15 ± ± ± 3 4 ± REF 0.05 ± ± 0.30 All dimensions in millimeters. Advanced Analogic Technologies, Inc. AnalogicTech cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AnalogicTech product. No circuit patent licenses, copyrights, mask work rights, or other intellectual property rights are implied. AnalogicTech reserves the right to make changes to their products or specifications or to discontinue any product or service without notice. Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. AnalogicTech warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with AnalogicTech s standard warranty. Testing and other quality control techniques are utilized to the extent AnalogicTech deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed. AnalogicTech and the AnalogicTech logo are trademarks of Advanced Analogic Technologies Incorporated. All other brand and product names appearing in this document are registered trademarks or trademarks of their respective holders. Advanced Analogic Technologies, Inc. 830 E. Arques Avenue, Sunnyvale, CA Phone (408) Fax (408)
AAT3520/2/4 MicroPower Microprocessor Reset Circuit
General Description Features PowerManager The AAT3520 series of PowerManager products is part of AnalogicTech's Total Power Management IC (TPMIC ) product family. These microprocessor reset circuits are
AAT3238 DATA SHEET. 300mA MicroPower TM High Performance LDO Linear Regulator. Applications. Features. General Description. Typical Application
General Description The MicroPower low dropout (LDO) linear regulator is ideally suited for portable applications where very fast transient response, extended battery life, and small size are critical.
LM2704 Micropower Step-up DC/DC Converter with 550mA Peak Current Limit
Micropower Step-up DC/DC Converter with 550mA Peak Current Limit General Description The LM2704 is a micropower step-up DC/DC in a small 5-lead SOT-23 package. A current limited, fixed off-time control
TSM2N7002K 60V N-Channel MOSFET
SOT-23 SOT-323 Pin Definition: 1. Gate 2. Source 3. Drain PRODUCT SUMMARY V DS (V) R DS(on) (Ω) I D (ma) 5 @ V GS = 10V 100 60 5.5 @ V GS = 5V 100 Features Low On-Resistance ESD Protection High Speed Switching
Understanding the Terms and Definitions of LDO Voltage Regulators
Application Report SLVA79 - October 1999 Understanding the Terms and Definitions of ltage Regulators Bang S. Lee Mixed Signal Products ABSTRACT This report provides an understanding of the terms and definitions
28 V, 56 m, Load Switch with Programmable Current Limit and Slew Rate Control
28 V, 56 m, Load Switch with Programmable Current Limit and Slew Rate Control OPERATION DESCRIPTION SiP32419 and SiP32429 are load switches that integrate multiple control features that simplify the design
LM1084 5A Low Dropout Positive Regulators
5A Low Dropout Positive Regulators General Description The LM1084 is a series of low dropout voltage positive regulators with a maximum dropout of 1.5 at 5A of load current. It has the same pin-out as
SC728/SC729. 2A Low Vin, Very Low Ron Load Switch. POWER MANAGEMENT Features. Description. Applications. Typical Application Circuit SC728 / SC729
POWER MANAGEMT Features Input Voltage Range 1.1V to 2A Continuous Output Current Ultra-Low Ron 36mΩ Automatic Output Discharge Circuit Fast Turn-on Option With No Output Discharge Circuit SC728 Extended
Features. Symbol JEDEC TO-220AB
Data Sheet June 1999 File Number 2253.2 3A, 5V,.4 Ohm, N-Channel Power MOSFET This is an N-Channel enhancement mode silicon gate power field effect transistor designed for applications such as switching
VN03. ISO high side smart power solid state relay PENTAWATT. Features. Description. www.tvsat.com.pl
ISO high side smart power solid state relay Features Type V DSS R DS(on) I n (1) Maximum continuous output current (a) : 4A @ Tc= 25 C 5V logic level compatible input Thermal shutdown Under voltage protection
TYPICAL APPLICATION CIRCUIT. ORDER INFORMATION SOP-EP 8 pin A703EFT (Lead Free) A703EGT (Green)
www.addmtek.com 2 CHANNELS 150mA HIGH VOLTAGE ADJUSTABLE CURRENT REGULATOR DESCRIPTION A703 is a high voltage, adjustable constant current driver for LED applications. Two regulated current ports are designed
P-Channel 20 V (D-S) MOSFET
Si30CDS P-Channel 0 V (D-S) MOSFET MOSFET PRODUCT SUMMARY V DS (V) R DS(on) ( ) I D (A) a Q g (Typ.) - 0 0. at V GS = - 4.5 V - 3. 0.4 at V GS = -.5 V -.7 3.3 nc TO-36 (SOT-3) FEATURES Halogen-free According
TSM020N03PQ56 30V N-Channel MOSFET
PDFN56 Pin Definition: 1. Source 8. Drain 2. Source 7. Drain 3. Source 6. Drain 4. Gate 5. Drain Key Parameter Performance Parameter Value Unit V DS 30 V R DS(on) (max) V GS = 10V 2 V GS = 4.5V 3 mω Q
CAT4101TV. 1 A Constant-Current LED Driver with PWM Dimming
A Constant-Current LED Driver with PWM Dimming Description The CAT4 is a constant current sink driving a string of high brightness LEDs up to A with very low dropout of.5 V at full load. It requires no
NTMS4920NR2G. Power MOSFET 30 V, 17 A, N Channel, SO 8 Features
NTMS9N Power MOSFET 3 V, 7 A, N Channel, SO Features Low R DS(on) to Minimize Conduction Losses Low Capacitance to Minimize Driver Losses Optimized Gate Charge to Minimize Switching Losses These Devices
P-Channel 60 V (D-S) MOSFET
TP6K P-Channel 6 V (D-S) MOSFET G S PRODUCT SUMMARY V DS (V) R DS(on) ( ) V GS(th) (V) I D (ma) - 6 6 at V GS = - V - to - - 85 TO-6 (SOT-) Top View D Marking Code: 6Kwll 6K = Part Number Code for TP6K
400KHz 60V 4A Switching Current Boost / Buck-Boost / Inverting DC/DC Converter
Features Wide 5V to 32V Input Voltage Range Positive or Negative Output Voltage Programming with a Single Feedback Pin Current Mode Control Provides Excellent Transient Response 1.25V reference adjustable
CA723, CA723C. Voltage Regulators Adjustable from 2V to 37V at Output Currents Up to 150mA without External Pass Transistors. Features.
CA73, CA73C Data Sheet April 1999 File Number 788. Voltage Regulators Adjustable from V to 37V at Output Currents Up to 1mA without External Pass Transistors The CA73 and CA73C are silicon monolithic integrated
LM78XX Series Voltage Regulators
LM78XX Series Voltage Regulators General Description Connection Diagrams The LM78XX series of three terminal regulators is available with several fixed output voltages making them useful in a wide range
PAM2804. Pin Assignments. Description. Applications. Features. Typical Applications Circuit 1A STEP-DOWN CONSTANT CURRENT, HIGH EFFICIENCY LED DRIVER
1A STEP-DOWN CONSTANT CURRENT, HIGH EFFICIENCY LED DRIER Description Pin Assignments The is a step-down constant current LED driver. When the input voltage is down to lower than LED forward voltage, then
INTEGRATED CIRCUITS. 74LVC08A Quad 2-input AND gate. Product specification IC24 Data Handbook. 1997 Jun 30
INTEGRATED CIRCUITS IC24 Data Handbook 1997 Jun 30 FEATURES Wide supply voltage range of 1.2 V to 3.6 V In accordance with JEDEC standard no. 8-1A Inputs accept voltages up to 5.5 V CMOS low power consumption
CURRENT LIMITING SINGLE CHANNEL DRIVER V OFFSET. Packages
Features Floating channel designed for bootstrap operation Fully operational to +5V Tolerant to negative transient voltage dv/dt immune Gate drive supply range from 12 to 18V Undervoltage lockout Current
TL783C, TL783Y HIGH-VOLTAGE ADJUSTABLE REGULATOR
HIGH-VOLTAGE USTABLE REGULATOR SLVS36C SEPTEMBER 1981 REVISED APRIL 1997 Output Adjustable From 1.25 V to 125 V When Used With an External Resistor Divider 7-mA Output Current Full Short-Circuit, Safe-Operating-Area,
1 TO 4 CLOCK BUFFER ICS551. Description. Features. Block Diagram DATASHEET
DATASHEET 1 TO 4 CLOCK BUFFER ICS551 Description The ICS551 is a low cost, high-speed single input to four output clock buffer. Part of IDT s ClockBlocks TM family, this is our lowest cost, small clock
NJW4841-T1. 1-channel Switching Gate Driver
NJW8-T -channel Switching Gate Driver GENERAL DESCRIPTION The NJW8 is a High Speed Switching Gate Driver that is applicable A peak current. The NJW8 features are Withstand voltage of, recommended operating
IR2117(S)/IR2118(S) & (PbF)
Data Sheet No. PD14 Rev N IR2117(S)/IR211(S) & (PbF) Features Floating channel designed for bootstrap operation Fully operational to +V Tolerant to negative transient voltage dv/dt immune Gate drive supply
P-Channel 20-V (D-S) MOSFET
Si33DS P-Channel -V (D-S) MOSFET PRODUCT SUMMARY V DS (V) R DS(on) (Ω) I D (A).39 at V GS = -.5 V -.7 -.5 at V GS = -.5 V -..68 at V GS = -.8 V - 3.5 FEATURES Halogen-free According to IEC 69-- Available
1.5A Ultra Low Dropout Linear Regulator TJ3965
FEATURES Ultra Low Dropout Voltage Low Ground Pin Current Excellent Line and Load Regulation Guaranteed Output Current of 1.5A Available in MSOP8, SOP8, SOP8PP, SOT223, TO252, TO263, TO220, and SOT89 Packages
High and Low Side Driver
High and Low Side Driver Features Product Summary Floating channel designed for bootstrap operation Fully operational to 200V Tolerant to negative transient voltage, dv/dt immune Gate drive supply range
Load Switch with Level-Shift
Load Switch with Level-Shift PRODUCT SUMMARY V IN (V DS2 ) (V) R DS(on) (Ω) I D (A).5 to 2 DESCRIPTION.54 at V IN = 4.5 V 3.9.77 at V IN = 2.5 V 3.2.6 at V IN =.8 V 2.8.65 at V IN =.5 V 2.2 The includes
On/Off Controller with Debounce and
19-4128; Rev ; 5/8 On/Off Controller with Debounce and General Description The is a pushbutton on/off controller with a single switch debouncer and built-in latch. It accepts a noisy input from a mechanical
ICS650-44 SPREAD SPECTRUM CLOCK SYNTHESIZER. Description. Features. Block Diagram DATASHEET
DATASHEET ICS650-44 Description The ICS650-44 is a spread spectrum clock synthesizer intended for video projector and digital TV applications. It generates three copies of an EMI optimized 50 MHz clock
STP62NS04Z N-CHANNEL CLAMPED 12.5mΩ - 62A TO-220 FULLY PROTECTED MESH OVERLAY MOSFET
N-CHANNEL CLAMPED 12.5mΩ - 62A TO-220 FULLY PROTECTED MESH OVERLAY MOSFET TYPE V DSS R DS(on) I D STP62NS04Z CLAMPED
1.5A Very L.D.O Voltage Regulator LM29150/29151/29152
FEATURES High Current Capability 1.5A Low Dropout Voltage 350mV Low Ground Current Accurate 1% Guaranteed Initial Tolerance Extremely Fast Transient Response Reverse-Battery and "Load Dump" Protection
Preliminary Datasheet
Features Macroblock Preliminary Datasheet 1.2A Constant Output Current 93% Efficiency @ input voltage 13V, 350mA, 9~36V Input Voltage Range Hysteretic PFM Improves Efficiency at Light Loads Settable Output
Supply voltage Supervisor TL77xx Series. Author: Eilhard Haseloff
Supply voltage Supervisor TL77xx Series Author: Eilhard Haseloff Literature Number: SLVAE04 March 1997 i IMPORTANT NOTICE Texas Instruments (TI) reserves the right to make changes to its products or to
STLQ015. 150 ma, ultra low quiescent current linear voltage regulator. Description. Features. Application
150 ma, ultra low quiescent current linear voltage regulator Description Datasheet - production data Features SOT23-5L Input voltage from 1.5 to 5.5 V Very low quiescent current: 1.0 µa (typ.) at no load
IS31LT3360 40V/1.2A LED DRIVER WITH INTERNAL SWITCH. January 2014
40V/1.2A LED DRIVER WITH INTERNAL SWITCH January 2014 GENERAL DESCRIPTION The IS31LT3360 is a continuous mode inductive step-down converter, designed for driving a single LED or multiple series connected
SC339. Ultra Low Output Voltage Linear FET Controller POWER MANAGEMENT. Applications. Typical Application Circuit
Description The SC339 is an ultra-low output voltage, linear power supply controller designed to simplify power management for notebook PCs. It is part of Semtech s Smart LDO TM family of products. The
LDS8720. 184 WLED Matrix Driver with Boost Converter FEATURES APPLICATION DESCRIPTION TYPICAL APPLICATION CIRCUIT
184 WLED Matrix Driver with Boost Converter FEATURES High efficiency boost converter with the input voltage range from 2.7 to 5.5 V No external Schottky Required (Internal synchronous rectifier) 250 mv
AP1509. 150KHz, 2A PWM BUCK DC/DC CONVERTER. Description. Pin Assignments V IN. Applications. Features. (Top View) GND GND. Output AP1509 GND GND
Description Pin Assignments The series are monolithic IC designed for a stepdown DC/DC converter, and own the ability of driving a 2A load without additional transistor. It saves board space. The external
N-Channel 100 V (D-S) MOSFET
Si4DS N-Channel V (D-S) MOSFET MOSFET PRODUCT SUMMARY V DS (V) R DS(on) ( ) I D (A) a Q g (Typ.).4 at V GS = V..67 at V GS = 6 V..9 nc.78 at V GS = 4.5 V.7 FEATURES TrenchFET Power MOSFET % R g Tested
LM2941/LM2941C 1A Low Dropout Adjustable Regulator
LM2941/LM2941C 1A Low Dropout Adjustable Regulator General Description The LM2941 positive voltage regulator features the ability to source 1A of output current with a typical dropout voltage of 0.5V and
www.jameco.com 1-800-831-4242
Distributed by: www.jameco.com 1-800-831-4242 The content and copyrights of the attached material are the property of its owner. LF411 Low Offset, Low Drift JFET Input Operational Amplifier General Description
MP2365 3A, 28V, 1.4MHz Step-Down Converter
The Future of Analog IC Technology MP365 3A, 8,.MHz Step-Down Converter DESCRIPTION The MP365 is a.mhz step-down regulator with a built-in Power MOSFET. It achieves 3A continuous output current over a
Power MOSFET FEATURES. IRF520PbF SiHF520-E3 IRF520 SiHF520. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 100 V Gate-Source Voltage V GS ± 20
Power MOSFET PRODUCT SUMMARY (V) 100 R DS(on) ( ) = 0.7 Q g (Max.) (nc) 16 Q gs (nc) 4.4 Q gd (nc) 7.7 Configuration Single TO0AB G DS ORDERING INFORMATION Package Lead (Pb)free SnPb G D S NChannel MOSFET
LM118/LM218/LM318 Operational Amplifiers
LM118/LM218/LM318 Operational Amplifiers General Description The LM118 series are precision high speed operational amplifiers designed for applications requiring wide bandwidth and high slew rate. They
NUD4011. Low Current LED Driver
NUD0 Low LED Driver This device is designed to replace discrete solutions for driving LEDs in AC/DC high voltage applications (up to 00 V). An external resistor allows the circuit designer to set the drive
UNISONIC TECHNOLOGIES CO., LTD 50N06 Power MOSFET
UNISONIC TECHNOLOGIES CO., LTD 50N06 50 Amps, 60 Volts N-CHANNEL POWER MOSFET DESCRIPTION TO-263 TO-25 The UTC 50N06 is three-terminal silicon device with current conduction capability of about 50A, fast
MM74HC14 Hex Inverting Schmitt Trigger
MM74HC14 Hex Inverting Schmitt Trigger General Description The MM74HC14 utilizes advanced silicon-gate CMOS technology to achieve the low power dissipation and high noise immunity of standard CMOS, as
NCP707. 200 ma, Very-Low Quiescent Current, I Q 25 A, Low Noise, Low Dropout Regulator
NCP77 2 ma, Very-Low Quiescent Current, I Q 25 A, Low Noise, Low Dropout Regulator The NCP77 is 2 ma LDO that provides the engineer with a very stable, accurate voltage with very low noise suitable for
Power MOSFET. IRF9520PbF SiHF9520-E3 IRF9520 SiHF9520. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS - 100 V Gate-Source Voltage V GS ± 20
Power MOSFET PRODUCT SUMMARY (V) 100 R DS(on) ( ) = 10 V 0.60 Q g (Max.) (nc) 18 Q gs (nc) 3.0 Q gd (nc) 9.0 Configuration Single TO220AB G DS ORDERING INFORMATION Package Lead (Pb)free SnPb G S D PChannel
1 Form A Solid State Relay
Form A Solid State Relay VOAT, VOAABTR FEATURES 9 S S DC S' 3 S' High speed SSR - t on /t off < 8 μs Maximum R ON. Isolation test voltage 3 V RMS Load voltage V Load current A DC configuration DIP- package
Quad, Rail-to-Rail, Fault-Protected, SPST Analog Switches
19-2418; Rev ; 4/2 Quad, Rail-to-Rail, Fault-Protected, General Description The are quad, single-pole/single-throw (SPST), fault-protected analog switches. They are pin compatible with the industry-standard
LM138 LM338 5-Amp Adjustable Regulators
LM138 LM338 5-Amp Adjustable Regulators General Description The LM138 series of adjustable 3-terminal positive voltage regulators is capable of supplying in excess of 5A over a 1 2V to 32V output range
PS323. Precision, Single-Supply SPST Analog Switch. Features. Description. Block Diagram, Pin Configuration, and Truth Table. Applications PS323 PS323
Features ÎÎLow On-Resistance (33-ohm typ.) Minimizes Distortion and Error Voltages ÎÎLow Glitching Reduces Step Errors in Sample-and-Holds. Charge Injection, 2pC typ. ÎÎSingle-Supply Operation (+2.5V to
STB4NK60Z, STB4NK60Z-1, STD4NK60Z STD4NK60Z-1, STP4NK60Z,STP4NK60ZFP
STB4NK60Z, STB4NK60Z-1, STD4NK60Z STD4NK60Z-1, STP4NK60Z,STP4NK60ZFP N-channel 600 V - 1.76 Ω - 4 A SuperMESH Power MOSFET DPAK - D 2 PAK - IPAK - I 2 PAK - TO-220 - TO-220FP Features Type V DSS R DS(on)
L6384E. High voltage half-bridge driver. Description. Features. Applications
High voltage half-bridge driver Description Datasheet - production data Features High voltage rail up to 600 V dv/dt immunity ± 50 V/nsec in full temperature range Driver current capability 400 ma source
FAN5346 Series Boost LED Driver with PWM Dimming Interface
FAN5346 Series Boost LED Driver with PWM Dimming Interface Features Asynchronous Boost Converter Drives LEDs in Series: FAN5346S20X: 20V Output FAN5346S30X: 30V Output 2.5V to 5.5V Input Voltage Range
NCT3941S/S-A Nuvoton 4 Times Linear Fan Driver NCT3941S/S-A
Nuvoton 4 Times Linear Fan Driver NCT3941S/S-A -I- Revision A4 Table of Content- 1. GENERAL DESCRIPTION...1 2. FEATURES...1 3. APPLICATION...1 4. BLOCK DIAGRAM...2 5. PIN CONFIGURATION AND TYPICAL APPLICATION
ULN2801A, ULN2802A, ULN2803A, ULN2804A
ULN2801A, ULN2802A, ULN2803A, ULN2804A Eight Darlington array Datasheet production data Features Eight Darlington transistors with common emitters Output current to 500 ma Output voltage to 50 V Integral
MP1541 1.3MHz Boost Converter
MP5.3MHz Boost Converter The Future of Analog IC Technology DESCRIPTION The MP5 is a 5-pin thin SOT3 current mode step up converter intended for small, low power applications. The MP5 switches at.3mhz
WHITE LED STEP-UP CONVERTER. Features
General Description The is an inductor-based DC/DC converter designed to drive up to eight white LEDs in series for backlight. Only one feedback resistor is needed to control the LED current and obtain
3-Channel Supervisor IC for Power Supply
3-Channel Supervisor IC for Power Supply Features Over-voltage protection and lockout Under-voltage protection and lockout Open drain power good output signal Built-in 300mS delay for power good 38mS de-bounce
CAT4109, CAV4109. 3-Channel Constant-Current RGB LED Driver with Individual PWM Dimming
3-Channel Constant-Current RGB LED Driver with Individual PWM Dimming Description The CAT419/CAV419 is a 3 channel constant current LED driver, requiring no inductor. LED channel currents up to 175 ma
LM3940 1A Low Dropout Regulator for 5V to 3.3V Conversion
1A Low Dropout Regulator for 5V to 3.3V Conversion General Description The LM3940 is a 1A low dropout regulator designed to provide 3.3V from a 5V supply. The LM3940 is ideally suited for systems which
LD7550-B. Green-Mode PWM Controller. General Description. Features. Applications. Typical Application. REV: 01a 12/22/2006 LD7550-B
12/22/2006 REV: 01a Green-Mode PWM Controller General Description The LD7550-B is a low cost, low startup current, current mode PWM controller with green-mode power-saving operation. The integrated functions
Last Time Buy. Deadline for receipt of LAST TIME BUY orders: April 30, 2011
Last Time Buy This part is in production but has been determined to be LAST TIME BUY. This classification indicates that the product is obsolete and notice has been given. Sale of this device is currently
SPREAD SPECTRUM CLOCK GENERATOR. Features
DATASHEET ICS7152 Description The ICS7152-01, -02, -11, and -12 are clock generators for EMI (Electro Magnetic Interference) reduction (see below for frequency ranges and multiplier ratios). Spectral peaks
IRLR8729PbF IRLU8729PbF
Applications l High Frequency Synchronous Buck Converters for Computer Processor Power l High Frequency Isolated DC-DC Converters with Synchronous Rectification for Telecom and Industrial Use Benefits
Features. Modulation Frequency (khz) VDD. PLL Clock Synthesizer with Spread Spectrum Circuitry GND
DATASHEET IDT5P50901/2/3/4 Description The IDT5P50901/2/3/4 is a family of 1.8V low power, spread spectrum clock generators capable of reducing EMI radiation from an input clock. Spread spectrum technique
TLI4946. Datasheet TLI4946K, TLI4946-2K, TLI4946-2L. Sense and Control. May 2009
May 2009 TLI4946 High Precision Hall Effect Latches for Industrial and Consumer Applications TLI4946K, TLI4946-2K, TLI4946-2L Datasheet Rev. 1.0 Sense and Control Edition 2009-05-04 Published by Infineon
How To Make A Field Effect Transistor (Field Effect Transistor) From Silicon P Channel (Mos) To P Channel Power (Mos) (M2) (Mm2)
TPC811 TOSHIBA Field Effect Transistor Silicon P Channel MOS Type (U-MOS III) TPC811 Lithium Ion Battery Applications Notebook PC Applications Portable Equipment Applications Unit: mm Small footprint due
700 MHz, -3 db Bandwidth; Dual SPDT Analog Switch
7 MHz, -3 db Bandwidth; Dual SPDT Analog Switch DESCRIPTION is a low R ON, high bandwidth analog switch configured in dual SPDT. It achieves 5.5 Ω switch on resistance, greater than 7 MHz -3 db bandwidth
A I DM. W/ C V GS Gate-to-Source Voltage ± 12. Thermal Resistance Symbol Parameter Typ. Max. Units
V DS 2 V V GS Max ±2 V * PD - 973A HEXFET Power MOSFET R DSon) max @V GS = 4.V) 2. m R DSon) max @V GS = 2.V) 27. m 6 Micro3 TM SOT-23) Applications) Load System Switch Features and Benefits Features Benefits
ICS650-01 SYSTEM PERIPHERAL CLOCK SOURCE. Description. Features. Block Diagram DATASHEET
DATASHEET ICS650-01 Description The ICS650-01 is a low-cost, low-jitter, high-performance clock synthesizer for system peripheral applications. Using analog/digital Phase-Locked Loop (PLL) techniques,
NCP1529. 1.7MHz, 1A, High Efficiency, Low Ripple, Adjustable Output Voltage Step-down Converter
.7MHz, A, High Efficiency, Low Ripple, Adjustable Output Voltage Step-down Converter The NCP529 stepdown DCDC converter is a monolithic integrated circuit for portable applications powered from one cell
CS8481. 3.3 V/250 ma, 5.0 V/100 ma Micropower Low Dropout Regulator with ENABLE
3.3 /250 ma, 5.0 /100 ma Micropower Low Dropout Regulator with The CS8481 is a precision, dual Micropower linear voltage regulator. The switched 3.3 primary output ( OUT1 ) supplies up to 250 ma while
IRS2004(S)PbF HALF-BRIDGE DRIVER. Features. Product Summary. Packages
Features Floating channel designed for bootstrap operation Fully operational to + V Tolerant to negative transient voltage, dv/dt immune Gate drive supply range from V to V Undervoltage lockout. V, V,
IR1168S DUAL SMART RECTIFIER DRIVER IC
Datasheet No PD97382 September 26, 2011 IR1168S DUAL SMART RECTIFIER DRIVER IC Features Secondary-side high speed controller for synchronous rectification in resonant half bridge topologies 200V proprietary
STP10NK60Z/FP, STB10NK60Z/-1 STW10NK60Z N-CHANNEL 600V-0.65Ω-10A TO-220/FP/D 2 PAK/I 2 PAK/TO-247 Zener-Protected SuperMESH Power MOSFET
STP10NK60Z/FP, STB10NK60Z/-1 STW10NK60Z N-CHANNEL 600V-0.65Ω-10A TO-220/FP/D 2 PAK/I 2 PAK/TO-247 Zener-Protected SuperMESH Power MOSFET TYPE V DSS R DS(on) I D Pw STP10NK60Z STP10NK60ZFP STB10NK60Z STB10NK60Z-1
MP2259 1A, 16V, 1.4MHz Step-Down Converter
MP59 1A, 1V, 1.MHz Step-Down Converter TM The Future of Analog IC Technology DESCRIPTION The MP59 is a monolithic integrated stepdown switch mode converter with an internal power MOSFET. It achieves 1A
IR2109(4) (S) HALF-BRIDGE DRIVER. Features. Product Summary. Packages. Description. Typical Connection
Data Sheet No. PD66-T Features Floating channel designed for bootstrap operation Fully operational to +6V Tolerant to negative transient voltage dv/dt immune Gate drive supply range from to V Undervoltage
UNISONIC TECHNOLOGIES CO., LTD
UPS61 UNISONIC TECHNOLOGIES CO., LTD HIGH PERFORMANCE CURRENT MODE POWER SWITCH DESCRIPTION The UTC UPS61 is designed to provide several special enhancements to satisfy the needs, for example, Power-Saving
Supertex inc. HV256. 32-Channel High Voltage Amplifier Array HV256. Features. General Description. Applications. Typical Application Circuit
32-Channel High Voltage Amplifier Array Features 32 independent high voltage amplifiers 3V operating voltage 295V output voltage 2.2V/µs typical output slew rate Adjustable output current source limit
.OPERATING SUPPLY VOLTAGE UP TO 46 V
L298 DUAL FULL-BRIDGE DRIVER.OPERATING SUPPLY VOLTAGE UP TO 46 V TOTAL DC CURRENT UP TO 4 A. LOW SATURATION VOLTAGE OVERTEMPERATURE PROTECTION LOGICAL "0" INPUT VOLTAGE UP TO 1.5 V (HIGH NOISE IMMUNITY)
Discontinued Product For Reference Only
Data Sheet 29319.12A 2962 DUAL PULSE-WIDTH MODULATED CURRENT CONTROL GROUND IN A SENSE A SINK A SOURCE A THS A V CC SOURCE B SINKB SENSEB IN B THS B 1 2 3 4 5 6 7 8 9 1 11 12 LOGIC LOGIC Dwg. No. D-11
Push-Pull FET Driver with Integrated Oscillator and Clock Output
19-3662; Rev 1; 5/7 Push-Pull FET Driver with Integrated Oscillator General Description The is a +4.5V to +15V push-pull, current-fed topology driver subsystem with an integrated oscillator for use in
A I DM. W/ C V GS Gate-to-Source Voltage ± 20. Thermal Resistance Symbol Parameter Typ. Max. Units
V DS 2 V V GS Max ± 2 V R DSon) max @V GS = V) 24 m * PD - 9787A HEXFET Power MOSFET R DSon) max @V GS = 4.V) 4 m 6 Micro3 TM SOT-23) Applications) Load System Switch Features and Benefits Features Benefits
SSM3K335R SSM3K335R. 1. Applications. 2. Features. 3. Packaging and Pin Configuration. 2012-07-19 Rev.3.0. Silicon N-Channel MOS (U-MOS -H)
MOSFETs Silicon N-Channel MOS (U-MOS-H) SSM3K335R SSM3K335R 1. Applications Power Management Switches DC-DC Converters 2. Features (1) 4.5-V gate drive voltage. (2) Low drain-source on-resistance : R DS(ON)
MM74C150 MM82C19 16-Line to 1-Line Multiplexer 3-STATE 16-Line to 1-Line Multiplexer
MM74C150 MM82C19 16-Line to 1-Line Multiplexer 3-STATE 16-Line to 1-Line Multiplexer General Description The MM74C150 and MM82C19 multiplex 16 digital lines to 1 output. A 4-bit address code determines
TDA4605 CONTROL CIRCUIT FOR SWITCH MODE POWER SUPPLIES USING MOS TRANSISTORS
CONTROL CIRCUIT FOR SWITCH MODE POWER SUPPLIES USING MOS TRANSISTORS Fold-Back Characteristic provides Overload Protection for External Diodes Burst Operation under Short-Circuit and no Load Conditions
Features. TA=25 o C unless otherwise noted
NDSAN N-Channel, Logic Level, PowerTrench MOSFET June NDSAN General Description These N-Channel Logic Level MOSFETs are produced using Fairchild Semiconductor s advanced PowerTrench process that has been
GSM Power Management System ADP3404
a FEATURES Handles all GSM Baseband Power Management Functions Four LDOs Optimized for Specific GSM Subsystems Charges Back-Up Capacitor for Real-Time Clock Charge Pump and Logic Level Translators for
BUZ11. 30A, 50V, 0.040 Ohm, N-Channel Power MOSFET. Features. [ /Title (BUZ1 1) /Subject. (30A, 50V, 0.040 Ohm, N- Channel. Ordering Information
Data Sheet June 1999 File Number 2253.2 [ /Title (BUZ1 1) /Subject (3A, 5V,.4 Ohm, N- Channel Power MOS- FET) /Autho r () /Keywords (Intersil Corporation, N- Channel Power MOS- FET, TO- 22AB ) /Creator
STN3NF06L. N-channel 60 V, 0.07 Ω, 4 A, SOT-223 STripFET II Power MOSFET. Features. Application. Description
N-channel 60 V, 0.07 Ω, 4 A, SOT-223 STripFET II Power MOSFET Features Type V DSS (@Tjmax) Exceptional dv/dt capability Avalanche rugged technology 100% avalanche tested R DS(on) max STN3NF06L 60 V < 0.1
Features AAT4901-1 ENA ENB GND. Skyworks Solutions, Inc. Phone [781] 376-3000 Fax [781] 376-3100 [email protected] www.skyworksinc.
AAT90 General Description The AAT90 FastSwitch is a member of Skyworks' Application Specific Power MOSFET (ASPM ) product family. It is a full-bridge buffered power stage operating with an input voltage
Advanced Monolithic Systems
Advanced Monolithic Systems FEATURES Three Terminal Adjustable or Fixed oltages* 1.5, 1.8, 2.5, 2.85, 3.3 and 5. Output Current of 1A Operates Down to 1 Dropout Line Regulation:.2% Max. Load Regulation:.4%
1.5A ASYNCHRONOUS DC-DC BUCK CONV
General Description The is a 1.4MHz fixed frequency, current mode, PWM buck (step-down) DC-DC converter, capable of driving a 1.5A load with high efficiency, excellent line and load regulation. The device
