6/06 E Field Energy Storage


 Herbert Kelley
 8 months ago
 Views:
Transcription
1 Capacitor chargingdischarging setup About this lab: The volume energy density (joules/cubic meter, in mks units) stored in an electric field is proportional to E 2. (A similar relation involving B 2 holds for magnetic energy storage.) For a fixed conductor geometry the E fields, corresponding charges +/ q and corresponding voltages V are all proportional. Thus the stored energy is proportional to the square of applied voltage V, to the square of charges q on conductors, and also to the space average of E 2 (space integral). The field strength representation of stored energy is the most fundamental, as traveling electromagnetic waves are kinetic, not electrostatic, and there is no applied voltage or charge to relate them to. Voltage is an energy concept, defined reciprocally (space derivative and space integral) to the corresponding electric field:
2 E =  dv (dl = path element in direction of the max V increase), and dl V =  Edl. Apparatus: RC (ResistorCapacitor) circuit box, voltmeter, power supply, cables; additional resistors Some important field geometries Besides the fundamental single point charge (monopole) field configuration (field directed radially in out depending on charge sign), there are some important special and simple electrostatic cases: plane parallel, coaxial cylindrical and dipole (oppositely charged points). > For infinite parallel conducting plates (in approximation, plates with separation << linear dimensions), the field is uniform and perpendicular to the plates, of strength V/separation. For the dipole field (two opposite point charges) the field lines become circular close to the charges (<< separation distance) and form a distinctive pattern in general. (The simplest pattern for magnetic field lines is the dipole pattern there are no magnetic monopoles in the present cosmological epoch.) Capacitors are devices for storing electric field energy. They exist commercially in myriad forms and with varied properties. Depending on intended use, one property or another may be most desirable high voltage operation, compactness, low loss in AC operation, cost etc. They can serve to isolate one voltage level from another (an ideal capacitor does not pass DC current), as part of a timing circuit, as part of a voltage ripple filter, etc. Capacity occurs by virtue of electric field lines between the charge on two surfaces. It is sometimes undesired but unavoidable, as in electronic chips or other circuits, and designers must cope with the consequences of stray capacitance. Whether these are of major consequence or not may depend on the frequency of operation. (Similar considerations are involved in the presence of stray inductance, the analogous magnetic energy storage element.)
3 The unit of capacitance is the farad, obviously named for Michael Faraday. A farad of capacitance is a very large amount; mill, micro, nano, or pico farads are much more common as discrete commercial devices. Stray capacitances may be even smaller. Resistors are energy dissipating devices. As circuit elements, they involve a voltage drop ir, where i is the current. In series with a capacitor, they delay the charge or discharge when a switch is opened or closed., producing (for discharge) an exponential variation of the voltage across the capacitor. (See discussion below of charging and discharging.) Getting the stored energy out of (or into) a capacitor Think of the capacitor as a cubical detention pond with a valved outflow pipe. When the valve is opened, the rate of fall of the water height (voltage) depends on the size of the pipe (resistance). And if two ponds are cross connected with a very large pipe (connected in parallel by a very low resistance), with a single small outflow pipe, the common level falls more slowly capacitors in parallel add. Discharging For discharge V = V 0 e t / where is the product RC. V = 0 as t > infinity. The voltage decreases by a factor 1/e every seconds. (This exponential decay is similar to that of a radioactive sample which is not being replenished.) (Note: Graphical Analysis has a Curve Fit function of the form: exp(cx). Here, the GA x is our time t, and the GA C is our inverse : C GA = 1/τ. (GA's C is obviously not a capacitance.) So, our has dimensions of time, but GA's C has units of inverse time.) It is frequently easier to observe T 1 2, the time for the voltage to reduce by half of starting value. The relation is T 1 2 = ln2 = ( ln2 because we want the half
4 time; if we wanted the 1/3 time, ln3 would be involved, etc.) Charging For charging, the same time constant is involved V = V 0 ( 1 e  t ) V approaches V 0 as t > infinity. The larger the time constant, the slower the charging or discharging. Combinations For various combinations of circuit elements, single equivalent values may be used by following these rules: > Resistors in series (same current through all) add directly: R series = R 1 + R 2 + R > Resistors in parallel (same voltage across all) add reciprocally: 1 R = 1 R R R (Your calculator 1/x function will handle this nicely. Don't forget the final inversion to get the equivalent R) > Capacitors in parallel (same voltage across all) add directly: C parallel = C 1 + C 2 +C
5 > Capacitors in series (same charge (magnitude) on all plates) add reciprocally: 1 C series = 1 C C C The rules for resistors and capacitors thus interchange. The schematics below represent charging/discharging circuits in which a capacitor and resistor are connected in series with a battery. Voltmeter +  A S + V(b) B C R When the switch S is placed in position A, the battery charges the circuit charge flows from the battery into the capacitor, until the capacitor is fully charged. When the switch is placed in position B, the capacitor (which stores charge and energy) discharges through the resistor (which dissipates charge energy). You will investigate how quickly this charge enters and leaves the capacitor by measuring the voltage across it as a function of time and analyzing the data. You will also connect capacitors in series (end to end) and parallel to measure the equivalent capacitance. Capacitance is the capacity to store charge, measured in Farads, defined by: q = CV where q (Coulombs) is the charge on the capacitor and V (Volts) is the voltage across it. The electrical energy stored in the capacitor is given by stored energy = 1 2 CV 2 or, equivalently 1 q 2 2 C
6 How to connect the RC circuit Two capacitors and one resistor are already wired into a single box with connection jacks. You need only connect the box to A + B the power supply (which acts as the battery in the circuit) and the voltmeter. C E + D F The capacitors in the box are polarized and will only work if connected in one direction; Ground (black) on the power supply should only be connected to black on the box, red on the power supply should only be connected to red on the box. By connecting to different jacks (which are labeled A, B, C, etc) using the supplied cables, you can create various circuits as shown below: Single capacitor discharge through a resistor: Power Supply Plug into +20V to Charge Capacitor Unplug from +20V to Discharge Capacitor +20V Ground Voltmeter +  A B F E C R Parallel Capacitors discharging through a resistor:
7 Power Supply +20V Ground Plug into +20V to Charge Capacitor Unplug from +20V to Discharge Capacitor Voltmeter +  C D A B F E C R Single capacitor charging through a resistor:
8 Procedure A. Single capacitor discharge Record voltage vs. time on scrap. Enter into Graphical Analysis, decide what theoretical function should describe the data and Analyze: Curve Fit to obtain the value of. Predict the time constant from the values of the resistances and capacitances in your circuit, using equivalent values as discussed above. Save. B. Parallel capacitors discharge Proceed as above. C. Series capacitors discharge Note that there is no diagram for two capacitors in series. Design the experiment and hook up the cables according to what you think the circuit should be connected but have your instructor check the connection before performing the experiment. Then proceed as above. D. Single capacitor charge Proceed as above. (Series and parallel resistors) If so directed, apply a known voltage to series and parallel resistor combinations and observe the current through the power supply. Sketch the circuit. Calculate and record the expected current from the circuit parameters and form the ratio i calculated i measured. Report Print graphs as directed. Sketch on the graph your circuit (show parameter values) and show your calculation of the time constant. Show ratio τ fit /τ calculated.
Capacitance. Apparatus: RC (ResistorCapacitor) circuit box, voltmeter, power supply, cables
apacitance Objective: To observe the behavior of a capacitor charging and discharging through a resistor; to determine the effective capacitance when capacitors are connected in series or parallel. Apparatus:
More informationCharge and Discharge of a Capacitor
Charge and Discharge of a Capacitor INTRODUCTION Capacitors 1 are devices that can store electric charge and energy. Capacitors have several uses, such as filters in DC power supplies and as energy storage
More informationObjectives for the standardized exam
III. ELECTRICITY AND MAGNETISM A. Electrostatics 1. Charge and Coulomb s Law a) Students should understand the concept of electric charge, so they can: (1) Describe the types of charge and the attraction
More informationName: Lab Partner: Section:
Chapter 6 Capacitors and RC Circuits Name: Lab Partner: Section: 6.1 Purpose The purpose of this experiment is to investigate the physics of capacitors in circuits. The charging and discharging of a capacitor
More informationThe current that flows is determined by the potential difference across the conductor and the resistance of the conductor (Ohm s law): V = IR P = VI
PHYS1000 DC electric circuits 1 Electric circuits Electric current Charge can move freely in a conductor if an electric field is present; the moving charge is an electric current (SI unit is the ampere
More informationCapacitors. We charge a capacitor by connecting the two plates to a potential difference, such as a battery:
RC Circuits PHYS 1112L Capacitors A capacitor is an electrical component that stores charge. The simplest capacitor is just two charged metal plates separated by a nonconducting material: In the diagram
More informationLab #4 Capacitors and Inductors. Capacitor and Inductor Transient Response
Capacitor and Inductor Transient Response Capacitor Theory Like resistors, capacitors are also basic circuit elements. Capacitors come in a seemingly endless variety of shapes and sizes, and they can all
More informationDischarge of a Capacitor
Discharge of a Capacitor THEORY The charge Q on a capacitor s plate is proportional to the potential difference V across the capacitor. We express this with Q = C V (1) where C is a proportionality constant
More informationRC Circuit (Power amplifier, Voltage Sensor)
Object: RC Circuit (Power amplifier, Voltage Sensor) To investigate how the voltage across a capacitor varies as it charges and to find its capacitive time constant. Apparatus: Science Workshop, Power
More informationEDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5  ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 2  CAPACITANCE
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5  ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 2  CAPACITANCE 2 Understand the concepts of capacitance and determine capacitance values in DC circuits
More informationLecture PowerPoints. Chapter 19 Physics: Principles with Applications, 7th edition Giancoli
Lecture PowerPoints Chapter 19 Physics: Principles with Applications, 7th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching
More informationLab 4  Capacitors & RC Circuits
Lab 4 Capacitors & RC Circuits L41 Name Date Partners Lab 4 Capacitors & RC Circuits OBJECTIVES To define capacitance and to learn to measure it with a digital multimeter. To explore how the capacitance
More informationR C DMM. b a. Power Supply. b a. Power Supply DMM. Red + Black  Red + Black 
Sample Lab Report  PHYS 231 The following is an example of a wellwritten report that might be submitted by a PHYS 231 student. It begins with a short statement of what is being measured, and why. The
More informationMore Concepts. I = dq. Current is the rate of flow of charge around a circuit.
RC Circuits In this presentation, circuits with multiple batteries, resistors and capacitors will be reduced to an equivalent system with a single battery, a single resistor, and a single capacitor. Kirchoff's
More informationCapacitors and Inductors
P517/617 ec2, P1 Capacitors and Inductors 1) Capacitance: Capacitance (C) is defined as the ratio of charge (Q) to voltage () on an object. Define capacitance by: C = Q/ = Coulombs/olt = Farad. Capacitance
More informationCapacitance, Resistance, DC Circuits
This test covers capacitance, electrical current, resistance, emf, electrical power, Ohm s Law, Kirchhoff s Rules, and RC Circuits, with some problems requiring a knowledge of basic calculus. Part I. Multiple
More informationRC Circuits. 1 Introduction. 2 Capacitors
1 RC Circuits Equipment DataStudio with 750 interface, RLC circuit board, 2 voltage sensors (no alligator clips), 2x35 in. leads, 12 in. lead Reading Review operation of DataStudio oscilloscope. Review
More informationResistorCapacitor (RC) Circuits
ResistorCapacitor (RC) Circuits Introduction In this second exercise dealing with electrical circuitry, you will work mainly with capacitors, which are devices that are used to store charge for later
More informationRVRUSA LCC. Capacitance & Capacitors (Bogart, page 285)
Capacitance & Capacitors (Bogart, page 285) Capacitance is a measure of a component s ability to store charge. A capacitor is a device specially designed to have a certain amount of capacitance. This ability
More informationLAB 4: CAPACITORS AND RC CIRCUITS
1 Name Date Partner(s) OBJECTIVES LAB 4: CAPACITORS AND RC CIRCUITS! To define capacitance and to learn to measure it with a digital multimeter.! To discover how the capacitance of conducting parallel
More informationW03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören
W03 Analysis of DC Circuits Yrd. Doç. Dr. Aytaç Gören ELK 2018  Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors and
More informationEMF and Terminal Voltage Resistors in Series and Parallel Kirchhoff s Rules EMFs in Series and Parallel; Charging a Battery Circuits with Capacitors
Chapter 19 DC Electrical Circuits Topics in Chapter 19 EMF and Terminal Voltage Resistors in Series and Parallel Kirchhoff s Rules EMFs in Series and Parallel; Charging a Battery Circuits with Capacitors
More informationPreLab 7 Assignment: Capacitors and RC Circuits
Name: Lab Partners: Date: PreLab 7 Assignment: Capacitors and RC Circuits (Due at the beginning of lab) Directions: Read over the Lab Handout and then answer the following questions about the procedures.
More informationE X P E R I M E N T 7
E X P E R I M E N T 7 The RC Circuit Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics II, Exp 7: The RC Circuit Page
More informationChapter 11. Inductors. Objectives
Chapter 11 Inductors Objectives Describe the basic structure and characteristics of an inductor Discuss various types of inductors Analyze series inductors Analyze parallel inductors Analyze inductive
More informationCapacitors. Goal: To study the behavior of capacitors in different types of circuits.
Capacitors Goal: To study the behavior of capacitors in different types of circuits. Lab Preparation A capacitor stores electric charge. A simple configuration for a capacitor is two parallel metal plates.
More informationAP Physics C Chapter 23 Notes Yockers Faraday s Law, Inductance, and Maxwell s Equations
AP Physics C Chapter 3 Notes Yockers Faraday s aw, Inductance, and Maxwell s Equations Faraday s aw of Induction  induced current a metal wire moved in a uniform magnetic field  the charges (electrons)
More informationLab 5 RC Circuits. What You Need To Know: Physics 226 Lab
Lab 5 R ircuits What You Need To Know: The Physics In the previous two labs you ve dealt strictly with resistors. In today s lab you ll be using a new circuit element called a capacitor. A capacitor consists
More informationPHYSICS LAB. Capacitor. Date: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY. Revision November 2002. Capacitor 21
PHYSICS LAB Capacitor Printed Names: Signatures: Date: Lab Section: Instructor: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY Revision November 2002 Capacitor 21 Blank page Capacitor 22 CHARGING AND
More informationLAB 5  CAPACITORS AND RC CIRCUITS(TPL2)
LAB 5  CAPACITORS AND RC CIRCUITS(TPL2) Objectives To define capacitance. To discover how the charge on a capacitor and the electric current change with time when a charged capacitor is placed in a circuit
More informationExercises on Voltage, Capacitance and Circuits. A d = (8.85 10 12 ) π(0.05)2 = 6.95 10 11 F
Exercises on Voltage, Capacitance and Circuits Exercise 1.1 Instead of buying a capacitor, you decide to make one. Your capacitor consists of two circular metal plates, each with a radius of 5 cm. The
More informationPeople s Physics Book
The Big Idea When current flows through wires and resistors in a circuit as a result of an electric potential, charge does not build up significantly anywhere on the path. Capacitors are devices placed
More informationHow many laws are named after Kirchhoff?
Chapter 32. Fundamentals of Circuits Surprising as it may seem, the power of a computer is achieved simply by the controlled flow of charges through tiny wires and circuit elements. Chapter Goal: To understand
More informationTeacher s Guide  Activity P50: RC Circuit (Power Output, Voltage Sensor)
Teacher s Guide  Activity P50: RC Circuit (Power Output, Voltage Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Circuits P50 RC Circuit.DS (See end of activity) (See end of activity)
More informationKirchhoff s Voltage Law and RC Circuits
Kirchhoff s oltage Law and RC Circuits Apparatus 2 1.5 batteries 2 battery holders DC Power Supply 1 multimeter 1 capacitance meter 2 voltage probes 1 long bulb and 1 round bulb 2 sockets 1 set of alligator
More informationA MODEL OF VOLTAGE IN A RESISTOR CIRCUIT AND AN RC CIRCUIT
A MODEL OF VOLTAGE IN A RESISTOR CIRCUIT AND AN RC CIRCUIT ARJUN MOORJANI, DANIEL STRAUS, JENNIFER ZELENTY Abstract. We describe and model the workings of two simple electrical circuits. The circuits modeled
More informationCapacitors Lab. In order to investigate electric fields you will need the following equipment. Homemade parallel capacitor with wax paper in between
Capacitors Lab 1 Equipment In order to investigate electric fields you will need the following equipment Homemade parallel capacitor with wax paper in between DC voltage supply Electrometer Variable capacitor
More informationExperiment 9 ~ RC Circuits
Experiment 9 ~ RC Circuits Objective: This experiment will introduce you to the properties of circuits that contain both resistors AND capacitors. Equipment: 18 volt power supply, two capacitors (8 µf
More informationphysics 111N electric potential and capacitance
physics 111N electric potential and capacitance electric potential energy consider a uniform electric field (e.g. from parallel plates) note the analogy to gravitational force near the surface of the Earth
More informationChapter 19 DC Circuits
Lecture PowerPoints Chapter 19 Physics: Principles with Applications, 6 th edition Giancoli Chapter 19 DC Circuits 2005 Pearson Prentice Hall This work is protected by United States copyright laws and
More informationBasic Electrical Theory
Basic Electrical Theory Impedance PJM State & Member Training Dept. PJM 2014 10/24/2013 Objectives Identify the components of Impedance in AC Circuits Calculate the total Impedance in AC Circuits Identify
More information1 of 7 3/23/2010 2:45 PM
1 of 7 3/23/2010 2:45 PM Chapter 30 Homework Due: 8:00am on Tuesday, March 23, 2010 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]
More informationCAPACITANCE IN A RC CIRCUIT
5/16 Capacitance1/5 CAPACITANCE IN A RC CIRCUIT PURPOSE: To observe the behavior of resistorcapacitor circuit, to measure the RC time constant and to understand how it is related to the time dependence
More informationLab 5 RC Circuits: Charge Changing in Time Observing the way capacitors in RC circuits charge and discharge.
Print Your Name Lab 5 RC Circuits: Charge Changing in Time Observing the way capacitors in RC circuits charge and discharge. Print Your Partners' Names Instructions October 15, 2015October 13, 2015 Read
More informationThe RC Circuit. Prelab questions. Introduction. The RC Circuit
The RC Circuit Prelab questions 1. What is the meaning of the time constant, RC? 2. Show that RC has units of time. 3. Why isn t the time constant defined to be the time it takes the capacitor to become
More informationPhysics 2212 GH Quiz #4 Solutions Spring 2015
Physics 1 GH Quiz #4 Solutions Spring 15 Fundamental Charge e = 1.6 1 19 C Mass of an Electron m e = 9.19 1 31 kg Coulomb constant K = 8.988 1 9 N m /C Vacuum Permittivity ϵ = 8.854 1 1 C /N m Earth s
More informationPHY 101 Lab 7 on Electric circuits: Direct current circuits Your name: Other team members:
PHY 101 Lab 7 on Electric circuits: Direct current circuits Your name: Other team members: Goals: To explore the basic principles of electric circuits, and how to measure them. Materials: Electrical resistors
More information= V peak 2 = 0.707V peak
BASIC ELECTRONICS  RECTIFICATION AND FILTERING PURPOSE Suppose that you wanted to build a simple DC electronic power supply, which operated off of an AC input (e.g., something you might plug into a standard
More informationCAPACITIVE REACTANCE. We have already discussed the operation of a capacitor in a DC circuit, however let's just go over the main principles again.
Reading 13 Ron Bertrand VK2DQ http://www.radioelectronicschool.com CAPACITOR IN A DC CIRCUIT CAPACITIVE REACTANCE We have already discussed the operation of a capacitor in a DC circuit, however let's just
More informationCHAPTER 28 ELECTRIC CIRCUITS
CHAPTER 8 ELECTRIC CIRCUITS 1. Sketch a circuit diagram for a circuit that includes a resistor R 1 connected to the positive terminal of a battery, a pair of parallel resistors R and R connected to the
More informationPhysics 260 Calculus Physics II: E&M. RC Circuits
RC Circuits Object In this experiment you will study the exponential charging and discharging of a capacitor through a resistor. As a byproduct you will confirm the formulas for equivalent capacitance
More informationChapter 26. Capacitance and Dielectrics
Chapter 26 Capacitance and Dielectrics Capacitors Capacitors are devices that store electric charge Examples where capacitors are used: radio receivers filters in power supplies energystoring devices
More informationLab E1: Introduction to Circuits
E1.1 Lab E1: Introduction to Circuits The purpose of the this lab is to introduce you to some basic instrumentation used in electrical circuits. You will learn to use a DC power supply, a digital multimeter
More informationEquipotential and Electric Field Mapping
Experiment 1 Equipotential and Electric Field Mapping 1.1 Objectives 1. Determine the lines of constant electric potential for two simple configurations of oppositely charged conductors. 2. Determine the
More information1. Title Electrical fundamentals II (Mechanics Repair and Maintenance)
1. Title Electrical fundamentals II (Mechanics Repair and Maintenance) 2. Code EMAMBG429A 3. Range The knowledge is needed for a wide range of aircraft repair and maintenance works,e.g. applicable to aircrafts,
More information1) 10. V 2) 20. V 3) 110 V 4) 220 V
1. The diagram below represents an electric circuit consisting of a 12volt battery, a 3.0ohm resistor, R 1, and a variable resistor, R 2. 3. What is the total resistance of the circuit 1) 6.6 Ω 2) 10
More informationPHYS 2426 Engineering Physics II EXPERIMENT 5 CAPACITOR CHARGING AND DISCHARGING
PHYS 2426 Engineering Physics II EXPERIMENT 5 CAPACITOR CHARGING AND DISCHARGING I. OBJECTIVE: The objective of this experiment is the study of charging and discharging of a capacitor by measuring the
More information1. 1. Right Hand Rule Practice. Using the the right hand rule, find find the the direction of of the the missing information in in the the diagram.
1. 1. Right Hand Rule Practice Using the the right hand rule, find find the the direction of of the the missing information in in the the diagram. (A) (A) up up (C) (C) left left (B) (B) down (D) (D) right
More informationCapacitors & RC Circuits
Capacitors & C Circuits Name: EQUIPMENT NEEDED: Circuits Experiment Board One Dcell Battery Wire leads Multimeter Capacitors(100 F, 330 F) esistors(1k, 4.7k ) Logger Pro Software, ULI Purpose The purpose
More informationChapter 28. Direct Current Circuits
Chapter 28 Direct Current Circuits Direct Current When the current in a circuit has a constant direction, the current is called direct current Most of the circuits analyzed will be assumed to be in steady
More informationLast Name: First Name: Physics 102 Spring 2006: Exam #2 MultipleChoice Questions 1. A charged particle, q, is moving with speed v perpendicular to a uniform magnetic field. A second identical charged
More informationMagnetic Fields; Sources of Magnetic Field
This test covers magnetic fields, magnetic forces on charged particles and currentcarrying wires, the Hall effect, the BiotSavart Law, Ampère s Law, and the magnetic fields of currentcarrying loops
More informationUNIT 24: CAPACITORS AND RC CIRCUITS Approximate Time Two 100minute Sessions
Name St.No.  Date(YY/MM/DD) / / Section Group # UNIT 24: CAPACITORS AND RC CIRCUITS Approximate Time Two 100minute Sessions + + + +     The most universal and significant concept to come out of the
More informationPHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits
PHYSCS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits This experiment is designed to investigate the relationship between current and potential in simple series
More informationStudents will need about 30 minutes to complete these constructed response tasks.
Electric Title of Circuits Concept Constructed Response Teacher Guide Students will need about 30 minutes to complete these constructed response tasks. Objectives assessed: Understand the functions of
More informationVessel holding water. Charged capacitor. Questions. Question 1
ELEN236 Capacitors This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
More informationFaraday s Law of Induction
Faraday s Law of Induction Potential drop along the closed contour is minus the rate of change of magnetic flu. We can change the magnetic flu in several ways including changing the magnitude of the magnetic
More informationCapacitors. Evaluation copy
Capacitors Computer 24 The charge q on a capacitor s plate is proportional to the potential difference V across the capacitor. We express this relationship with q V =, C where C is a proportionality constant
More informationElectricity and Water Analogy
[ Assignment View ] [ Eðlisfræði 2, vor 2007 25. Current, Resistance, and Electromagnetic Force Assignment is due at 2:00am on Wednesday, February 14, 2007 Credit for problems submitted late will decrease
More informationELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES
ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES The purpose of this lab session is to experimentally investigate the relation between electric field lines of force and equipotential surfaces in two dimensions.
More informationCh 18 Direct Current Circuits. concept #2, 5, 10, 12, 13, 23 Problems #1, 5, 6, 11, 17, 25, 31, 32, 33, 35, 36, 37
Ch 18 Direct Current Circuits concept #2, 5, 10, 12, 13, 23 Problems #1, 5, 6, 11, 17, 25, 31, 32, 33, 35, 36, 37 currents are maintained by a source of emf (battery, generator) Sources of emf act as charge
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If the voltage at a point in space is zero, then the electric field must be A) zero. B) positive.
More informationKirchhoff's Rules and Applying Them
[ Assignment View ] [ Eðlisfræði 2, vor 2007 26. DC Circuits Assignment is due at 2:00am on Wednesday, February 21, 2007 Credit for problems submitted late will decrease to 0% after the deadline has passed.
More informationLecture 10. Resistor Circuits, Batteries and EMF
Lecture 10. Resistor Circuits, Batteries and EMF Outline: Connection of Resistors: In Parallel and In Series. Batteries. Nonideal batteries: internal resistance. Potential distribution around a complete
More informationReactance and Impedance
Reactance and Impedance Capacitance in AC Circuits Professor Andrew H. Andersen 1 Objectives Describe capacitive ac circuits Analyze inductive ac circuits Describe the relationship between current and
More informationChapter 11. Inductors ISU EE. C.Y. Lee
Chapter 11 Inductors Objectives Describe the basic structure and characteristics of an inductor Discuss various types of inductors Analyze series inductors Analyze parallel inductors Analyze inductive
More informationObjectives. Capacitors 262 CHAPTER 5 ENERGY
Objectives Describe a capacitor. Explain how a capacitor stores energy. Define capacitance. Calculate the electrical energy stored in a capacitor. Describe an inductor. Explain how an inductor stores energy.
More informationElectromagnetic Induction  A
Electromagnetic Induction  A APPARATUS 1. Two 225turn coils 2. Table Galvanometer 3. Rheostat 4. Iron and aluminum rods 5. Large circular loop mounted on board 6. AC ammeter 7. Variac 8. Search coil
More informationThe Time Constant of an RC Circuit
The Time Constant of an RC Circuit 1 Objectives 1. To determine the time constant of an RC Circuit, and 2. To determine the capacitance of an unknown capacitor. 2 Introduction What the heck is a capacitor?
More informationEpisode 126: Capacitance and the equation C =Q/V
Episode 126: Capacitance and the equation C =Q/V Having established that there is charge on each capacitor plate, the next stage is to establish the relationship between charge and potential difference
More informationUETTDRIS32A Solve electrical problems in remote community network apparatus
UETTDRIS32A Solve electrical problems in remote community network apparatus Release: 1 UETTDRIS32A Solve electrical problems in remote community network apparatus Modification History Not applicable. Unit
More informationClass #12: Experiment The Exponential Function in Circuits, Pt 1
Class #12: Experiment The Exponential Function in Circuits, Pt 1 Purpose: The objective of this experiment is to begin to become familiar with the properties and uses of the exponential function in circuits
More informationIMPEDANCE and NETWORKS. Kirchoff s laws. Charge inside metals. Skin effect. Impedance, Resistance, Capacitance, Inductance
IMPEDANCE and NETWORKS Kirchoff s laws Charge inside metals Skin effect Impedance, Resistance, Capacitance, Inductance Mutual Inductance, Transformers Stray impedance 1 ENGN4545/ENGN6545: Radiofrequency
More information3 DC Circuits, Ohm's Law and Multimeters
3 DC Circuits, Ohm's Law and Multimeters Theory: Today's lab will look at some basics of electricity and how these relate to simple circuit diagrams. Three basic terms are important to a study of electricity.
More informationFall 12 PHY 122 Homework Solutions #4
Fall 12 PHY 122 Homework Solutions #4 Chapter 23 Problem 45 Calculate the electric potential due to a tiny dipole whose dipole moment is 4.8 x 1030 C.m at a point 4.1 x 109 m away if this point is (a)
More informationWhat will we learn in this chapter?
Chapter 19: Current, resistance, circuits What will we learn in this chapter? What are currents? Resistance and Ohm s law (no, there are no 3 laws). Circuits and electric power. Resistors in series and
More informationApril 8. Physics 272. Spring Prof. Philip von Doetinchem
Physics 272 April 8 Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html Prof. Philip von Doetinchem philipvd@hawaii.edu Phys272  Spring 14  von Doetinchem  218 LC in parallel
More informationDirect versus Alternating Current Things We Can Measure
Phil Sherrod W4PHS Direct versus Alternating Current Things We Can Measure Direct Current (DC) Alternating Current (AC) Voltage Voltage (peak, RMS) Current Current (peak, effective) Power True power, Apparent
More informationECE201 Laboratory 1 Basic Electrical Equipment and Ohm s and Kirchhoff s Laws (Created by Prof. Walter Green, Edited by Prof. M. J.
ECE201 Laboratory 1 Basic Electrical Equipment and Ohm s and Kirchhoff s Laws (Created by Prof. Walter Green, Edited by Prof. M. J. Roberts) Objectives The objectives of Laboratory 1 are learn to operate
More informationDC Circuits: Ch 19. Resistors in Series 6/1/2016
DC Circuits: Ch 19 Voltage Starts out at highest point at + end of battery Voltage drops across lightbulbs and other sources of resistance. Voltage increases again at battery. I The following circuit uses
More informationLRC Circuits. Purpose. Principles PHYS 2211L LAB 7
Purpose This experiment is an introduction to alternating current (AC) circuits. Using the oscilloscope, we will examine the voltage response of inductors, resistors and capacitors in series circuits driven
More informationA wave lab inside a coaxial cable
INSTITUTE OF PHYSICS PUBLISHING Eur. J. Phys. 25 (2004) 581 591 EUROPEAN JOURNAL OF PHYSICS PII: S01430807(04)76273X A wave lab inside a coaxial cable JoãoMSerra,MiguelCBrito,JMaiaAlves and A M Vallera
More informationCurrent and resistance
Current and resistance Electrical resistance Voltage can be thought of as the pressure pushing charges along a conductor, while the electrical resistance of a conductor is a measure of how difficult it
More informationA2 Physics  Electric Fields Q&A Revision Sheet
Give the equation relating to the force between point charges in a vacuum If 'F' (the force) is negative what does that mean? If 'F' (the force) is positive what does that mean? State Coulomb's Law F is
More informationOhm s Law. 1 Object. 2 Apparatus. 3 Theory. To study resistors, Ohm s law, linear behavior, and nonlinear behavior.
Ohm s Law Object To study resistors, Ohm s law, linear behavior, and nonlinear behavior. pparatus esistors, power supply, meters, wires, and alligator clips. Theory resistor is a circuit element which
More informationCritical thinfilm processes such as deposition and etching take place in a vacuum
WHITEPAPER INTRODUCING POWER SUPPLIES AND PLASMA Critical thinfilm processes such as deposition and etching take place in a vacuum SYSTEMS chamber in the presence of a plasma. A plasma is an electrically
More informationCapacitors and RC Circuits
Chapter 6 Capacitors and RC Circuits Up until now, we have analyzed circuits that do not change with time. In other words, these circuits have no dynamic elements. When the behavior of all elements is
More informationOhm s Law and Simple DC Circuits
Ohm s Law and Simple DC Circuits 2EM Object: Apparatus: To confirm Ohm s Law, to determine the resistance of a resistor, and to study currents, potential differences, and resistances in simple direct current
More informationCircuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49
Circuits with inductors and alternating currents Chapter 20 #45, 46, 47, 49 RL circuits Ch. 20 (last section) Symbol for inductor looks like a spring. An inductor is a circuit element that has a large
More informationCourse Syllabus: AP Physics C Electricity and Magnetism
Course Syllabus: AP Physics C Electricity and Magnetism Course Description: AP Physics C is offered as a second year physics course to students who are planning to major in the physical sciences or in
More information