= (0.400 A) (4.80 V) = 1.92 W = (0.400 A) (7.20 V) = 2.88 W


 Dayna Banks
 7 years ago
 Views:
Transcription
1 Physics 2220 Module 06 Homework 0. What are the magnitude and direction of the current in the 8 Ω resister in the figure? Assume the current is moving clockwise. Then use Kirchhoff's second rule: 3.00 V I (8.0 Ω) V = 0 I (8.0 Ω) = 9.00 V I = A The result is negative. This means the assumption that the current is moving clockwise is incorrect and the current is moving clockwise and has a value of A. 02. How much power is dissipated by each resister in the figure? The equation for the power in each resistor is: The current needs to be determined. To do this, solve for the equivalent resistance of the two resistors that are in series: = R + R 2 = 2 Ω + 8 Ω = 30 Ω Use Ohm's Law to solve for the current: I = Δ V P = I Δ V P 2 = I Δ V 2 = 2.0 V 30.0 Ω = A Since the current flowing through each resister is the same, Ohm's Law can be used to find the potential drop across each resistor. Now calculate the power dissipated by each resistor: 03. What is the value of resistor R in the figure? Use Ohm's law the fact the resistors are in series to solve for R. Δ V = I Δ V = I (0.0 Ω Ω + R) Δ V = I (25.0 Ω + R) V = I R = (0.400 A) (2.0 Ω) = 4.80 V V 2 = I R 2 = (0.400 A) (8.0 Ω) = 7.20 V P = I Δ V = (0.400 A) (4.80 V) =.92 W P 2 = I Δ V 2 = (0.400 A) (7.20 V) = 2.88 W R = Δ V I 25.0 Ω = 5.00 V 25.0 Ω = 25.0 Ω 0.00 A
2 04. The battery in the figure is shortcircuited by an ideal ammeter having zero resistance. (a) What is the battery's internal resistance? Use Ohm's Law to find the internal resistance: r = ε I =.50 V 2.30 A = Ω (b) How much power is dissipated inside the battery? P r = I 2 r = (2.30 A) 2 ( Ω) = 3.45 W 05. The voltage across the terminals of a 9.0 V battery is 8.5 V when the battery is connected to a 20 Ω load. What is the battery's internal resistance? The 0.5 V drop in voltage from the battery to the terminals is due to the internal resistance. Use Ohm's Law and the fact the internal resistance and load resistor are in series to determine the current through the circuit. Now use the current to find the internal resistance: 06. What is the equivalent resistance between points a and b in the figure? Label the resistors as follows: I = ε (Ir ) R r = Δ V r I R = 0.0 Ω R 2 = 40.0 Ω = 55.0 Ω = 20.0 Ω R 5 = 0.0 Ω (bottom) Resistors R and R 2 are in series with each other: Resistors and are in series with each other: ε = Ir + IR 9.0 V 0.5 V = = A 20 Ω = 0.5 V A =.2 Ω R 6 = R + R 2 = 0.0 Ω Ω = 50.0 Ω = + = 55.0 Ω Ω = 75.0 Ω The new resistors R 6 and will now be in parallel with each other: = + = R 8 R Ω Ω R 8 = 30.0 Ω Finally, the new resistor R 8 will be in series with R 5, which will combine to be the equivalent resistance. = R 8 + R 5 = 30.0 Ω Ω = 40.0 Ω
3 07. What is the equivalent resistance between points a and b in the figure? Label the resistors as follows: Resistors R 2,, and are in parallel with each other: The new resistor R 6 and R will now be in series with each other: Finally, the new resistor will be in parallel with R 5, which will combine to be the equivalent resistance. 08. What is the time constant for the discharge of the capacitors in the figure? Each of the capacitors in series and resistors in series need to first be combined. Now determine the time constant: τ = C eq = (2 k Ω) ( μ F) = s = 2 ms 09. What value resistor will discharge a.0 μf capacitor to 0% of its initial charge in 2.0 ms? To represent the capacitor to be 0% of its initial charge: The equation to discharge a capacitor is: Solve for the resistor: R = t C ln ( Q Q 0 ) R = 42 Ω R 2 = 60 Ω (left) = 60 Ω (middle) = 45 Ω R 5 = 40 Ω = + + = R 6 R 2 60 Ω + 60 Ω + 45 Ω R 6 = 8 Ω = R 6 + R = 8 Ω + 42 Ω = 60 Ω = = + R 5 = 60 Ω + 40 Ω = 24 Ω = k Ω + k Ω = 2 k Ω = C eq 2 μ F + 2 μ F C eq = μ F Q = e Q 0 ln ( Q Q 0 ) s C t RC = t RC Q = 0.0 Q 0 Q = Q 0 e t RC ln (0.0) = Ω = 0.87 k Ω
4 0. What is the equivalent resistance between points a and b in the figure? Label the resistors as follows: R = 2 Ω R 2 = 6 Ω = 2 Ω = 4 Ω R 5 = 0 Ω R 6 = 3 Ω Resistors R 2,, and are in parallel with each other: = + + = R 2 6 Ω + 2 Ω + 4 Ω = 2 Ω Notice now current can either go through the 0 Ω resistor, or go through a wire with no resistance. The current will go through the path of zero resistance, so the 0 Ω resistor can be ignored. This puts the remaining resistors all in series.. For the given circuit: = R + + R 6 = 2 Ω + 2 Ω + 3 Ω = 7 Ω (a) (b) What is the magnitude of current through each section of the circuit? Calculate the power dissipated in each resistor in the circuit.
5 Redraw the circuit. Include guesses for directions of current and direction or labels for current loops: Apply Kirchoff's first rule at junction e (equation ): Apply Kirchoff's second rule for current loop abefa (equation 2): Apply Kirchoff's second rule for current loop bcdeb (equation 3): Combine equation with equation 2: I + I 2 = I 3 (6 Ω) I V (2 Ω) I 4 V = 0 (6 Ω) I 3 (2 Ω) I 2 V = 0 (5 Ω) I 2 + (2 Ω) I 2 V = 0 (6 Ω) (I + I 2 ) (2 Ω) I 2 V = 0 (6 Ω) I (6 Ω) I 2 (2 Ω) I 2 V = 0 (8 Ω) I (6 Ω) I 2 2 V = 0 Multiply equation 4 by 4: Add the equations in bold: (20 Ω) I 2 + (8 Ω) I 48 V = 0 (26 Ω) I 2 50 V = 0 (23 Ω) I 2 = 50 V I 2 = 2.7 A Remember if the current is negative, then the true direction of the current is opposite the guessed.
6 Use equation 2 to solve for I : (5 Ω) I 2 + (2 Ω) I 2 V = 0 I = 2 V + (5 Ω) I 2 (2 Ω) 2 V + (5 Ω) ( 2.7 A) I = (2 Ω) I = 0.57 A Use equation to determine I 3: I + I 2 = I 3 I 3 = (0.57 A) + ( 2.7 A) I 3 =.60 A Finally, solve for the power dissipated across each resister. P 2 = I 2 (2.0 Ω) = (0.57 A) 2 (2.0 Ω) = 0.65 W P 5 = I 2 2 (5.0 Ω) = (2.7 A) 2 (5.0 Ω) = 23.5 W P 6 = I 3 2 (6.0 Ω) = (.60 A) 2 (6.0 Ω) = 5.4 W
Parallel and Series Resistors, Kirchoff s Law
Experiment 2 31 Kuwait University Physics 107 Physics Department Parallel and Series Resistors, Kirchoff s Law Introduction In this experiment the relations among voltages, currents and resistances for
More informationCircuits. The light bulbs in the circuits below are identical. Which configuration produces more light? (a) circuit I (b) circuit II (c) both the same
Circuits The light bulbs in the circuits below are identical. Which configuration produces more light? (a) circuit I (b) circuit II (c) both the same Circuit II has ½ current of each branch of circuit
More informationCHAPTER 28 ELECTRIC CIRCUITS
CHAPTER 8 ELECTRIC CIRCUITS 1. Sketch a circuit diagram for a circuit that includes a resistor R 1 connected to the positive terminal of a battery, a pair of parallel resistors R and R connected to the
More informationSeries and Parallel Circuits
Series and Parallel Circuits Components in a circuit can be connected in series or parallel. A series arrangement of components is where they are inline with each other, i.e. connected endtoend. A parallel
More informationAnalysis of a singleloop circuit using the KVL method
Analysis of a singleloop circuit using the KVL method Figure 1 is our circuit to analyze. We shall attempt to determine the current through each element, the voltage across each element, and the power
More informationChapter 7 DirectCurrent Circuits
Chapter 7 DirectCurrent Circuits 7. Introduction...77. Electromotive Force...73 7.3 Resistors in Series and in Parallel...75 7.4 Kirchhoff s Circuit Rules...77 7.5 VoltageCurrent Measurements...79
More informationProblem Solving 8: RC and LR Circuits
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Problem Solving 8: RC and LR Circuits Section Table and Group (e.g. L04 3C ) Names Hand in one copy per group at the end of the Friday Problem
More informationAP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules
Name Period AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules Dr. Campbell 1. Four 240 Ω light bulbs are connected in series. What is the total resistance of the circuit? What
More informationElectrical Fundamentals Module 3: Parallel Circuits
Electrical Fundamentals Module 3: Parallel Circuits PREPARED BY IAT Curriculum Unit August 2008 Institute of Applied Technology, 2008 ATE310 Electrical Fundamentals 2 Module 3 Parallel Circuits Module
More informationExperiment 4 ~ Resistors in Series & Parallel
Experiment 4 ~ Resistors in Series & Parallel Objective: In this experiment you will set up three circuits: one with resistors in series, one with resistors in parallel, and one with some of each. You
More informationTutorial 12 Solutions
PHYS000 Tutorial 2 solutions Tutorial 2 Solutions. Two resistors, of 00 Ω and 200 Ω, are connected in series to a 6.0 V DC power supply. (a) Draw a circuit diagram. 6 V 00 Ω 200 Ω (b) What is the total
More informationChapter 7. DC Circuits
Chapter 7 DC Circuits 7.1 Introduction... 73 Example 7.1.1: Junctions, branches and loops... 74 7.2 Electromotive Force... 75 7.3 Electrical Energy and Power... 79 7.4 Resistors in Series and in Parallel...
More informationPreamble. Kirchoff Voltage Law (KVL) Series Resistors. In this section of my lectures we will be. resistor arrangements; series and
Preamble Series and Parallel Circuits Physics, 8th Edition Custom Edition Cutnell & Johnson Chapter 0.60.8, 0.0 Pages 6068, 696 n this section of my lectures we will be developing the two common types
More informationCircuit Analysis using the Node and Mesh Methods
Circuit Analysis using the Node and Mesh Methods We have seen that using Kirchhoff s laws and Ohm s law we can analyze any circuit to determine the operating conditions (the currents and voltages). The
More informationΣ I in = Σ I out E = IR 1 + IR 2 FXA 2008 KIRCHHOFF S LAWS 1. Candidates should be able to : LAW 1 (K1)
UNT G482 Module 3 2.3.1 Series & Parallel Circuits Candidates should be able to : KRCHHOFF S LAWS 1 LAW 1 (K1) State Kirchhoff s second law and appreciate that it is a consequence of conservation of energy.
More information( )( 10!12 ( 0.01) 2 2 = 624 ( ) Exam 1 Solutions. Phy 2049 Fall 2011
Phy 49 Fall 11 Solutions 1. Three charges form an equilateral triangle of side length d = 1 cm. The top charge is q =  4 μc, while the bottom two are q1 = q = +1 μc. What is the magnitude of the net force
More informationSeries and Parallel Resistive Circuits
Series and Parallel Resistive Circuits The configuration of circuit elements clearly affects the behaviour of a circuit. Resistors connected in series or in parallel are very common in a circuit and act
More information2 A bank account for electricity II: flows and taxes
PHYS 189 Lecture problems outline Feb 3, 2014 Resistors and Circuits Having introduced capacitors, we now expand our focus to another very important component of a circuit resistors. This entails more
More information13.10: How Series and Parallel Circuits Differ pg. 571
13.10: How Series and Parallel Circuits Differ pg. 571 Key Concepts: 5. Connecting loads in series and parallel affects the current, potential difference, and total resistance.  Using your knowledge of
More informationDC Circuits (Combination of resistances)
Name: Partner: Partner: Partner: DC Circuits (Combination of resistances) EQUIPMENT NEEDED: Circuits Experiment Board One Dcell Battery Wire leads Multimeter 100, 330, 1k resistors Purpose The purpose
More informationChapter 5. Parallel Circuits ISU EE. C.Y. Lee
Chapter 5 Parallel Circuits Objectives Identify a parallel circuit Determine the voltage across each parallel branch Apply Kirchhoff s current law Determine total parallel resistance Apply Ohm s law in
More information45. The peak value of an alternating current in a 1500W device is 5.4 A. What is the rms voltage across?
PHYS Practice Problems hapters 8 hapter 8. 45. The peak value of an alternating current in a 5W device is 5.4 A. What is the rms voltage across? The power and current can be used to find the peak voltage,
More informationExperiment NO.3 Series and parallel connection
Experiment NO.3 Series and parallel connection Object To study the properties of series and parallel connection. Apparatus 1. DC circuit training system 2. Set of wires. 3. DC Power supply 4. Digital A.V.O.
More informationKirchhoff's Current Law (KCL)
Kirchhoff's Current Law (KCL) I. Charge (current flow) conservation law (the Kirchhoff s Current law) Pipe Pipe Pipe 3 Total volume of water per second flowing through pipe = total volume of water per
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If the voltage at a point in space is zero, then the electric field must be A) zero. B) positive.
More informationSlide 1 / 26. Inductance. 2011 by Bryan Pflueger
Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one
More informationTHE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT
THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT YOUR NAME LAB MEETING TIME Reference: C.W. Alexander and M.N.O Sadiku, Fundamentals
More informationStudent Exploration: Circuits
Name: Date: Student Exploration: Circuits Vocabulary: ammeter, circuit, current, ohmmeter, Ohm s law, parallel circuit, resistance, resistor, series circuit, voltage Prior Knowledge Questions (Do these
More informationNodal and Loop Analysis
Nodal and Loop Analysis The process of analyzing circuits can sometimes be a difficult task to do. Examining a circuit with the node or loop methods can reduce the amount of time required to get important
More informationTristan s Guide to: Solving Parallel Circuits. Version: 1.0 Written in 2006. Written By: Tristan Miller Tristan@CatherineNorth.com
Tristan s Guide to: Solving Parallel Circuits. Version: 1.0 Written in 2006 Written By: Tristan Miller Tristan@CatherineNorth.com Parallel Circuits. Parallel Circuits are a little bit more complicated
More informationExample: Determine the power supplied by each of the sources, independent and dependent, in this circuit:
Example: Determine the power supplied by each of the sources, independent and dependent, in this circuit: Solution: We ll begin by choosing the bottom node to be the reference node. Next we ll label the
More informationLab 3  DC Circuits and Ohm s Law
Lab 3 DC Circuits and Ohm s Law L31 Name Date Partners Lab 3  DC Circuits and Ohm s Law OBJECTIES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in
More informationCornerstone Electronics Technology and Robotics I Week 15 Combination Circuits (SeriesParallel Circuits)
Cornerstone Electronics Technology and Robotics I Week 15 Combination Circuits (SeriesParallel Circuits) Administration: o Prayer o Turn in quiz Electricity and Electronics, Chapter 8, Introduction: o
More informationExercises on Voltage, Capacitance and Circuits. A d = (8.85 10 12 ) π(0.05)2 = 6.95 10 11 F
Exercises on Voltage, Capacitance and Circuits Exercise 1.1 Instead of buying a capacitor, you decide to make one. Your capacitor consists of two circular metal plates, each with a radius of 5 cm. The
More informationW03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören
W03 Analysis of DC Circuits Yrd. Doç. Dr. Aytaç Gören ELK 2018  Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors and
More informationEðlisfræði 2, vor 2007
[ Assignment View ] [ Print ] Eðlisfræði 2, vor 2007 30. Inductance Assignment is due at 2:00am on Wednesday, March 14, 2007 Credit for problems submitted late will decrease to 0% after the deadline has
More informationModule 2. DC Circuit. Version 2 EE IIT, Kharagpur
Module DC Circuit Lesson 4 Loop Analysis of resistive circuit in the context of dc voltages and currents Objectives Meaning of circuit analysis; distinguish between the terms mesh and loop. To provide
More informationSeries and Parallel Resistive Circuits Physics Lab VIII
Series and Parallel Resistive Circuits Physics Lab VIII Objective In the set of experiments, the theoretical expressions used to calculate the total resistance in a combination of resistors will be tested
More informationSolution Derivations for Capa #11
Solution Derivations for Capa #11 Caution: The symbol E is used interchangeably for energy and EMF. 1) DATA: V b = 5.0 V, = 155 Ω, L = 8.400 10 2 H. In the diagram above, what is the voltage across the
More informationResistors in Series and Parallel
Resistors in Series and Parallel Bởi: OpenStaxCollege Most circuits have more than one component, called a resistor that limits the flow of charge in the circuit. A measure of this limit on charge flow
More informationSeries and Parallel Circuits
Series and Parallel Circuits DirectCurrent Series Circuits A series circuit is a circuit in which the components are connected in a line, one after the other, like railroad cars on a single track. There
More informationAP1 Electricity. 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to
1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to (A) a force of repulsion between the shoes and the floor due to macroscopic gravitational forces.
More informationTristan s Guide to: Solving Series Circuits. Version: 1.0 Written in 2006. Written By: Tristan Miller Tristan@CatherineNorth.com
Tristan s Guide to: Solving Series Circuits. Version: 1.0 Written in 2006 Written By: Tristan Miller Tristan@CatherineNorth.com Series Circuits. A Series circuit, in my opinion, is the simplest circuit
More informationFig. 1 Analogue Multimeter Fig.2 Digital Multimeter
ELECTRICAL INSTRUMENT AND MEASUREMENT Electrical measuring instruments are devices used to measure electrical quantities such as electric current, voltage, resistance, electrical power and energy. MULTIMETERS
More informationLast Name: First Name: Physics 102 Spring 2006: Exam #2 MultipleChoice Questions 1. A charged particle, q, is moving with speed v perpendicular to a uniform magnetic field. A second identical charged
More informationResistors in Series and Parallel Circuits
69 Resistors in Series and Parallel Circuits E&M: Series and parallel circuits Equipment List DataStudio file: Not Required Qty s Part Numbers 1 C/DC Electronics Lab EM8656 2 D cell 1.5 volt Introduction
More informationCurrent, Resistance and Electromotive Force. Young and Freedman Chapter 25
Current, Resistance and Electromotive Force Young and Freedman Chapter 25 Electric Current: Analogy, water flowing in a pipe H 2 0 gallons/minute Flow Rate is the NET amount of water passing through a
More informationExperiment #5, Series and Parallel Circuits, Kirchhoff s Laws
Physics 182 Summer 2013 Experiment #5 1 Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws 1 Purpose Our purpose is to explore and validate Kirchhoff s laws as a way to better understanding
More informationDirectCurrent Circuits
8 DirectCurrent Circuits Clicker Questions Question N.0 Description: Understanding circuits with parallel resistances. Question A battery is used to light a bulb as shown. A second bulb is connected by
More informationCURRENT ELECTRICITY  I
CURRNT LCTRCTY  1. lectric Current 2. Conventional Current 3. Drift elocity of electrons and current 4. Current Density 5. Ohm s Law 6. Resistance, Resistivity, Conductance & Conductivity 7. Temperature
More informationThe Time Constant of an RC Circuit
The Time Constant of an RC Circuit 1 Objectives 1. To determine the time constant of an RC Circuit, and 2. To determine the capacitance of an unknown capacitor. 2 Introduction What the heck is a capacitor?
More informationMeasurement of Capacitance
Measurement of Capacitance PreLab Questions Page Name: Class: Roster Number: Instructor:. A capacitor is used to store. 2. What is the SI unit for capacitance? 3. A capacitor basically consists of two
More informationBasic Laws Circuit Theorems Methods of Network Analysis NonLinear Devices and Simulation Models
EE Modul 1: Electric Circuits Theory Basic Laws Circuit Theorems Methods of Network Analysis NonLinear Devices and Simulation Models EE Modul 1: Electric Circuits Theory Current, Voltage, Impedance Ohm
More informationKirchhoff s Laws Physics Lab IX
Kirchhoff s Laws Physics Lab IX Objective In the set of experiments, the theoretical relationships between the voltages and the currents in circuits containing several batteries and resistors in a network,
More informationHomework Assignment 03
Question 1 (2 points each unless noted otherwise) Homework Assignment 03 1. A 9V dc power supply generates 10 W in a resistor. What peaktopeak amplitude should an ac source have to generate the same
More informationV out. Figure 1: A voltage divider on the left, and potentiometer on the right.
Living with the Lab Fall 202 Voltage Dividers and Potentiometers Gerald Recktenwald v: November 26, 202 gerry@me.pdx.edu Introduction Voltage dividers and potentiometers are passive circuit components
More informationLast time : energy storage elements capacitor.
Last time : energy storage elements capacitor. Charge on plates Energy stored in the form of electric field Passive sign convention Vlt Voltage drop across real capacitor can not change abruptly because
More informationCurrent Electricity Lab Series/Parallel Circuits. Safety and Equipment Precautions!
Current Electricity Lab Series/Parallel Circuits Name Safety and Equipment Precautions! Plug in your power supply and use ONLY the D.C. terminals of the power source, NOT the A. C. terminals. DO NOT touch
More informationLight Bulbs in Parallel Circuits
Light Bulbs in Parallel Circuits In the last activity, we analyzed several different series circuits. In a series circuit, there is only one complete pathway for the charge to travel. Here are the basic
More informationSERIESPARALLEL DC CIRCUITS
Name: Date: Course and Section: Instructor: EXPERIMENT 1 SERIESPARALLEL DC CIRCUITS OBJECTIVES 1. Test the theoretical analysis of seriesparallel networks through direct measurements. 2. Improve skills
More informationSeries and Parallel Circuits
Direct Current (DC) Direct current (DC) is the unidirectional flow of electric charge. The term DC is used to refer to power systems that use refer to the constant (not changing with time), mean (average)
More informationPeople s Physics Book
The Big Ideas: The name electric current is given to the phenomenon that occurs when an electric field moves down a wire at close to the speed of light. Voltage is the electrical energy density (energy
More informationPhysics, Chapter 27: DirectCurrent Circuits
University of Nebraska  Lincoln DigitalCommons@University of Nebraska  Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 111958 Physics, Chapter 27: DirectCurrent Circuits
More informationEXAMPLE 8: An Electrical System (MechanicalElectrical Analogy)
EXAMPLE 8: An Electrical System (MechanicalElectrical Analogy) A completely analogous procedure can be used to find the state equations of electrical systems (and, ultimately, electromechanical systems
More informationChapter 1. Fundamental Electrical Concepts
Chapter 1 Fundamental Electrical Concepts Charge, current, voltage, power circuits, nodes, branches Branch and node voltages, Kirchhoff Laws Basic circuit elements, combinations 01 fundamental 1 1.3 Electrical
More informationPhysics 3330 Experiment #2 Fall 1999. DC techniques, dividers, and bridges R 2 =(1S)R P R 1 =SR P. R P =10kΩ 10turn pot.
Physics 3330 Experiment #2 Fall 1999 DC techniques, dividers, and bridges Purpose You will gain a familiarity with the circuit board and work with a variety of DC techniques, including voltage dividers,
More informationPHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits
PHYSCS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits This experiment is designed to investigate the relationship between current and potential in simple series
More informationSTUDY MATERIAL FOR CLASS 10+2  Physics CURRENT ELECTRICITY. The flow of electric charges in a particular direction constitutes electric current.
Chapter : 3 Current Electricity Current Electricity The branch of Physics which deals with the study of electric charges in motion is called current electricity. Electric current The flow of electric charges
More informationLecture Notes: ECS 203 Basic Electrical Engineering Semester 1/2010. Dr.Prapun Suksompong 1 June 16, 2010
Sirindhorn International Institute of Technology Thammasat University School of Information, Computer and Communication Technology Lecture Notes: ECS 203 Basic Electrical Engineering Semester 1/2010 Dr.Prapun
More informationResistors. Some substances are insulators. A battery will not make detectible current flow through them.
Resistors Some substances are insulators. A battery will not make detectible current flow through them. Many substances (lead, iron, graphite, etc.) will let current flow. For most substances that are
More informationParallel DC circuits
Parallel DC circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
More informationInduced voltages and Inductance Faraday s Law
Induced voltages and Inductance Faraday s Law concept #1, 4, 5, 8, 13 Problem # 1, 3, 4, 5, 6, 9, 10, 13, 15, 24, 23, 25, 31, 32a, 34, 37, 41, 43, 51, 61 Last chapter we saw that a current produces a magnetic
More informationSIMULATIONS OF PARALLEL RESONANT CIRCUIT POWER ELECTRONICS COLORADO STATE UNIVERSITY
SIMULATIONS OF PARALLEL RESONANT CIRCUIT POWER ELECTRONICS COLORADO STATE UNIVERSITY Page 1 of 25 PURPOSE: The purpose of this lab is to simulate the LCC circuit using MATLAB and ORCAD Capture CIS to better
More informationFirst Order Circuits. EENG223 Circuit Theory I
First Order Circuits EENG223 Circuit Theory I First Order Circuits A firstorder circuit can only contain one energy storage element (a capacitor or an inductor). The circuit will also contain resistance.
More informationBJT AC Analysis. by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008
by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008 Introduction This note will discuss AC analysis using the beta, re transistor model shown in Figure 1 for the three types of amplifiers: commonemitter,
More informationTECH TIP # 37 SOLVING SERIES/PARALLEL CIRCUITS THREE LAWS  SERIES CIRCUITS LAW # 1  THE SAME CURRENT FLOWS THROUGH ALL PARTS OF THE CIRCUIT
TECH TIP # 37 SOLVING SERIES/PARALLEL CIRCUITS Please study this Tech Tip along with assignment 4 in Basic Electricity. Parallel circuits differ from series circuits in that the current divides into a
More information6 Series Parallel Circuits
6 Series Parallel Circuits This work is licensed under the Creative Commons Attribution 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/. Air Washington
More informationLAB2 Resistors, Simple Resistive Circuits in Series and Parallel Objective:
LAB2 Resistors, Simple Resistive Circuits in Series and Parallel Objective: In this lab, you will become familiar with resistors and potentiometers and will learn how to measure resistance. You will also
More informationES250: Electrical Science. HW7: Energy Storage Elements
ES250: Electrical Science HW7: Energy Storage Elements Introduction This chapter introduces two more circuit elements, the capacitor and the inductor whose elements laws involve integration or differentiation;
More informationGeneral Physics (PHY 2140)
General Physics (PHY 2140) Lecture 12 Electricity and Magnetism Magnetism Magnetic fields and force Application of magnetic forces http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 19 1 Department
More informationEXPERIMENT 7 OHM S LAW, RESISTORS IN SERIES AND PARALLEL
260 7 I. THEOY EXPEIMENT 7 OHM S LAW, ESISTOS IN SEIES AND PAALLEL The purposes of this experiment are to test Ohm's Law, to study resistors in series and parallel, and to learn the correct use of ammeters
More informationCLASS TEST GRADE 11. PHYSICAL SCIENCES: PHYSICS Test 3: Electricity and magnetism
CLASS TEST GRADE 11 PHYSICAL SCIENCES: PHYSICS Test 3: Electricity and magnetism MARKS: 45 TIME: 1 hour INSTRUCTIONS AND INFORMATION 1. Answer ALL the questions. 2. You may use nonprogrammable calculators.
More informationExperiment 8 SeriesParallel Circuits
Experiment 8 SeriesParallel Circuits EL 111  DC Fundamentals By: Walter Banzhaf, E.K. Smith, and Winfield Young University of Hartford Ward College of Technology Objectives: 1. For the student to measure
More informationResistors in Series and Parallel
OpenStaxCNX module: m42356 1 Resistors in Series and Parallel OpenStax College This work is produced by OpenStaxCNX and licensed under the Creative Commons Attribution License 3.0 Abstract Draw a circuit
More informationSeriesParallel Circuits. Objectives
SeriesParallel Circuits Objectives Identify seriesparallel configuration Analyze seriesparallel circuits Apply KVL and KCL to the seriesparallel circuits Analyze loaded voltage dividers Determine the
More informationThe 2N3393 Bipolar Junction Transistor
The 2N3393 Bipolar Junction Transistor CommonEmitter Amplifier Aaron Prust Abstract The bipolar junction transistor (BJT) is a nonlinear electronic device which can be used for amplification and switching.
More informationELECTRICAL CIRCUITS. Electrical Circuits
Electrical Circuits A complete path, or circuit, is needed before voltage can cause a current flow through resistances to perform work. There are several types of circuits, but all require the same basic
More informationChapter 13: Electric Circuits
Chapter 13: Electric Circuits 1. A household circuit rated at 120 Volts is protected by a fuse rated at 15 amps. What is the maximum number of 100 watt light bulbs which can be lit simultaneously in parallel
More informationChapter 22 Further Electronics
hapter 22 Further Electronics washing machine has a delay on the door opening after a cycle of washing. Part of this circuit is shown below. s the cycle ends, switch S closes. t this stage the capacitor
More informationLecture  4 Diode Rectifier Circuits
Basic Electronics (Module 1 Semiconductor Diodes) Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Lecture  4 Diode Rectifier Circuits
More informationChapter 19. Electric Circuits
Chapter 9 Electric Circuits Series Wiring There are many circuits in which more than one device is connected to a voltage source. Series wiring means that the devices are connected in such a way that there
More informationHomework #11 20311721 Physics 2 for Students of Mechanical Engineering
Homework #11 20311721 Physics 2 for Students of Mechanical Engineering 2. A circular coil has a 10.3 cm radius and consists of 34 closely wound turns of wire. An externally produced magnetic field of
More informationEquipment: Power Supply, DAI, Variable resistance (8311), Variable inductance (8321)
Lab 4: 3phase circuits. Objective: to study voltagecurrent relationships in 3phase circuits; to learn to make delta and Y connections; to calculate and measure real, apparent, and reactive powers. Equipment:
More informationChapter 3. Diodes and Applications. Introduction [5], [6]
Chapter 3 Diodes and Applications Introduction [5], [6] Diode is the most basic of semiconductor device. It should be noted that the term of diode refers to the basic pn junction diode. All other diode
More information104 Practice Exam 23/21/02
104 Practice Exam 23/21/02 1. Two electrons are located in a region of space where the magnetic field is zero. Electron A is at rest; and electron B is moving westward with a constant velocity. A nonzero
More informationChapter 11. Inductors ISU EE. C.Y. Lee
Chapter 11 Inductors Objectives Describe the basic structure and characteristics of an inductor Discuss various types of inductors Analyze series inductors Analyze parallel inductors Analyze inductive
More informationThe D.C Power Supply
The D.C Power Supply Voltage Step Down Electrical Isolation Converts Bipolar signal to Unipolar Half or Full wave Smoothes the voltage variation Still has some ripples Reduce ripples Stabilize the output
More informationReview Questions PHYS 2426 Exam 2
Review Questions PHYS 2426 Exam 2 1. If 4.7 x 10 16 electrons pass a particular point in a wire every second, what is the current in the wire? A) 4.7 ma B) 7.5 A C) 2.9 A D) 7.5 ma E) 0.29 A Ans: D 2.
More informationPROCEDURE: 1. Measure and record the actual values of the four resistors listed in Table 101.
The answer to two questions will help you identify a series or parallel connection: (1) Will the identical current go through both components? f the answer is yes, the components are in series. (2) Are
More informationObjectives 200 CHAPTER 4 RESISTANCE
Objectives Explain the differences among conductors, insulators, and semiconductors. Define electrical resistance. Solve problems using resistance, voltage, and current. Describe a material that obeys
More information