Forces and Dynamics Worksheet

Size: px
Start display at page:

Download "Forces and Dynamics Worksheet"

Transcription

1 Forces and Dynamics Worksheet 1. A block rests on a rough surface. Two forces P and Q act on the block, parallel to the surface. A friction force F between the block and the surface keeps the block in equilibrium. Which vector diagram best represents the three forces? A. P F B. P Q F Q C. P Q D. P F F Q 2. If the resultant external force acting on a particle is zero, the particle A. must have constant speed. B. must be at rest. C. must have constant velocity. D. must have zero momentum. Page 1 of 44

2 3. The weight of a mass is measured on Earth using a spring balance and a lever balance, as shown below. spring balance lever balance What change, if any, would occur in the measurements if they were repeated on the Moon s surface? Spring balance Lever balance A. same same B. same decrease C. decrease same D. decrease decrease 4. A mass is suspended from the roof of a lift (elevator) by means of a spring balance, as illustrated below. lift (elevator) mass Page 2 of 44

3 The lift (elevator) is moving upwards and the readings of the spring balance are noted as follows. Accelerating: Constant speed: Slowing down: R a R c R s Which one of the following is a correct relationship between the readings? A. R a > R c B. R a = R s C. R c = R s D. R c < R s 5. A body of weight 2W hangs vertically from a string attached to a body of weight W. Weight W is released and both bodies fall vertically. W 2W Air resistance may be neglected. What is the tension in the string during the fall? A. Zero B. W C. 2W D. 3W Page 3 of 44

4 6. A ball of weight W slides along a frictionless surface as shown below. P E Q At time T, the ball has moved from point P to the edge E of the surface. The ball then falls freely to point Q. Which graph best shows the variation with time t of the resultant upward vertical force F acting on the ball between point P and point Q? A. F +W B. F +W 0 0 T t 0 0 T t - W - W C. F +W D. F +W 0 0 T t 0 0 T t - W - W Page 4 of 44

5 7. A fireman is holding a hosepipe so that water leaves the pipe horizontally. The hosepipe has a constant cross-sectional area. The magnitude of the force that the fireman exerts to hold the hosepipe stationary is F. The volume of water delivered by the hose per second doubles, the force that the fireman must now exert is A. 2F. B. 2F. C. 4F. D. 8F. 8. A frictionless trolley of mass m moves down a slope with a constant acceleration a. A second similar frictionless trolley has mass 2m. The acceleration of the second trolley as it moves down the slope is A. 1 a. 2 B. a. C. 2a. D. 4a. Page 5 of 44

6 9. A ball of weight W is dropped on to the pan of a top pan weighing balance and rebounds off the pan. pan At the instant that the ball has zero velocity when in contact with the pan, the scale will read A. zero. B. a value less than W but greater than zero. C. W. D. a value greater than W. Page 6 of 44

7 10. A stone of mass m is attached to a string. The stone is made to rotate in a vertical circle of radius r, as shown. v r At the point where the stone is vertically above the centre of the circle, the stone has speed v. Which of the following expressions gives the tension in the string? A. B. mv mg r mv 2 r 2 C. mv r 2 mg D. 2 mv + mg r Page 7 of 44

8 11. A light inextensible string has a mass attached to each end and passes over a frictionless pulley as shown. pulley string mass M mass m The masses are of magnitudes M and m, where m < M. The acceleration of free fall is g. The downward acceleration of the mass M is ( ) ( ) M m g A.. M + m ( ) M m g B.. M ( ) ( ) M + m g C.. M m Mg D.. M + m ( ) Page 8 of 44

9 12. Mandy stands on a weighing scale inside a lift (elevator) that accelerates vertically upwards as shown in the diagram below. The forces on Mandy are her weight W and the reaction force from the scale R. The reading of the scale is A. R + W. B. W. C. R. D. R W. 13. A general expression for Newton s second law of motion is p F =. t What condition is applied so that the law may be expressed in the form F = ma? A. The mass m is constant. B. The acceleration a is constant. C. The force F is constant. D. The direction of the force F is constant. Page 9 of 44

10 14. A bird of weight W lands at the midpoint of a horizontal wire stretched between two poles. The magnitude of the force exerted by each pole on the wire is F. F F W The bird will be in equilibrium if A. 2F > W. B. 2F = W. C. 2F < W. D. F = W. 15. The momentum of a system is conserved if A. no external forces act on the system. B. no friction forces act within the system. C. no kinetic energy is lost or gained by the system. D. the forces acting on the system are in equilibrium. Page 10 of 44

11 16. An object of mass m is initially at rest. An impulse I acts on the object. The change in kinetic energy of the object is A. B. 2 I. 2m 2 I. m C. I 2 m. D. 2I 2 m. 17. Two spheres of masses m 1 and m 2 are moving towards each other along the same straight-line with speeds v 1 and v 2 as shown. positive direction m 1 v 1 v 2 m 2 The spheres collide. Which of the following gives the total change in linear momentum of the spheres as a result of the collision? A. 0 B. m 1 v 1 + m 2 v 2 C. m 1 v 1 m 2 v 2 D. m 2 v 2 m 1 v 1 Page 11 of 44

12 18. A ball of mass 2.0 kg falls vertically and hits the ground with speed 7.0 ms 1 as shown below. 7.0 ms ms before after The ball leaves the ground with a vertical speed 3.0 ms 1. The magnitude of the change in momentum of the ball is A. zero. B. 8.0 Ns. C. 10 Ns. D. 20 Ns. 19. Which of the following quantities are conserved in an inelastic collision between two bodies? Total linear momentum of the bodies Total kinetic energy of the bodies A. yes yes B. yes no C. no yes D. no no Page 12 of 44

13 20. A constant force is applied to a ball of mass m. The velocity of the ball changes from v 1 to v 2. The impulse received by the ball is A. m(v 2 + v 1 ). B. m(v 2 v 1 ). C. m(v v 1 2 ). D. m(v 2 2 v 1 2 ). 21. The engine of a rocket ejects gas at high speed, as shown below. rocket high speed gas direction of motion of rocket The rocket accelerates forwards because A. the momentum of the gas is equal but opposite in direction to the momentum of the rocket. B. the gas pushes on the air at the back of the rocket. C. the change in momentum of the gas gives rise to a force on the rocket. D. the ejected gas creates a region of high pressure behind the rocket. Page 13 of 44

14 22. A small ball P moves with speed v towards another identical ball Q along a line joining the centres of the two balls. Ball Q is at rest. Kinetic energy is conserved in the collision. v P Q at rest Which one of the following situations is a possible outcome of the collision between the balls? A. v v B. v = 0 v P Q P Q C. v 3v D. 4 4 P Q P v v 2 2 Q 23. A rocket is fired vertically. At its highest point, it explodes. Which one of the following describes what happens to its total momentum and total kinetic energy as a result of the explosion? Total momentum Total kinetic energy A. unchanged increased B. unchanged unchanged C. increased increased D. increased unchanged Page 14 of 44

15 24. This question is about an experiment designed to investigate Newton s second law. In order to investigate Newton s second law, David arranged for a heavy trolley to be accelerated by small weights, as shown below. The acceleration of the trolley was recorded electronically. David recorded the acceleration for different weights up to a maximum of 3.0 N. He plotted a graph of his results. heavy trolley acceleration pulley weight (a) Describe the graph that would be expected if two quantities are proportional to one another Page 15 of 44

16 (b) David s data are shown below, with uncertainty limits included for the value of the weights. Draw the best-fit line for these data acceleration / ms weight / N (c) Use the graph to (i) explain what is meant by a systematic error (ii) estimate the value of the frictional force that is acting on the trolley... Page 16 of 44

17 (iii) estimate the mass of the trolley (Total 9 marks) 25. Block on an inclined plane A block is held stationary on a frictionless inclined plane by means of a string as shown below. string block inclined plane (a) (i) On the diagram draw arrows to represent the three forces acting on the block. (3) (ii) The angle θ of inclination of the plane is 25. The block has mass 2.6 kg. Calculate the force in the string. You may assume that g = 9.8 m s 2. Page 17 of 44

18 (b) The string is pulled so that the block is now moving at a constant speed of 0.85 m s 1 up the inclined plane. (i) Explain why the magnitude of the force in the string is the same as that found in (a)(ii). (ii) Calculate the power required to move the block at this speed. (iii) State the rate of change of the gravitational potential energy of the block. Explain your answer. (Total 11 marks) 26. Kinematics (a) State the principle of conservation of energy Page 18 of 44

19 (b) An aircraft accelerates from rest along a horizontal straight runway and then takes-off. Discuss how the principle of conservation of energy applies to the energy changes that take place while the aircraft is accelerating along the runway (3) (c) The mass of the aircraft is kg. (i) The average resultant force on the aircraft while travelling along the runway is 70 kn. The speed of the aircraft just as it lifts off is 75 m s 1. Estimate the distance travelled along the runway. (3) (ii) The aircraft climbs to a height of 1250 m. Calculate the potential energy gained during the climb. Page 19 of 44

20 When approaching its destination, the pilot puts the aircraft into a holding pattern. This means the aircraft flies at a constant speed of 90 m s 1 in a horizontal circle of radius 500 m as shown in the diagram below. 500 m (d) For the aircraft in the holding pattern, (i) calculate the magnitude of the resultant force on the aircraft; (ii) state the direction of the resultant force. (Total 11 marks) 27. This question is about linear motion. A car moves along a straight road. At time t = 0 the car starts to move from rest and oil begins to drip from the engine of the car. One drop of oil is produced every 0.80 s. Oil drops are left on the road. The position of the oil drops are drawn to scale on the grid below such that 1.0 cm represents 4.0 m. The grid starts at time t = 0. direction of motion 1.0cm (a) (i) State the feature of the diagram above which indicates that, initially, the car is accelerating... Page 20 of 44

21 (ii) On the grid above, draw further dots to show where oil would have dripped if the drops had been produced from the time when the car had started to move. (iii) Determine the distance moved by the car during the first 5.6 s of its motion..... (b) Using information from the grid above, determine for the car, (i) the final constant speed (ii) the initial acceleration (Total 8 marks) Page 21 of 44

22 28. This question is about momentum. (a) Define (i) linear momentum..... (ii) impulse..... (b) In a ride in a pleasure park, a carriage of mass 450 kg is travelling horizontally at a speed of 18 m s 1. It passes through a shallow tank containing stationary water. The tank is of length 9.3 m. The carriage leaves the tank at a speed of 13 m s 1. carriage, mass 450 kg 18 m s 1 water-tank 13 m s 1 9.3m As the carriage passes through the tank, the carriage loses momentum and causes some water to be pushed forwards with a speed of 19 m s 1 in the direction of motion of the carriage. (i) For the carriage passing through the water-tank, deduce that the magnitude of its total change in momentum is 2250N s..... Page 22 of 44

23 (ii) Use the answer in (b)(i) to deduce that the mass of water moved in the direction of motion of the carriage is approximately 120 kg (iii) Calculate the mean value of the magnitude of the acceleration of the carriage in the water (3) (c) For the carriage in (b) passing through the water-tank, determine (i) its total loss in kinetic energy (3) (ii) the gain in kinetic energy of the water that is moved in the direction of motion of the carriage..... Page 23 of 44

24 (d) By reference to the principles of conservation of momentum and of energy, explain your answers in (c) (3) (Total 15 marks) 29. Momentum (a) State the law of conservation of momentum (b) An ice hockey puck collides with the wall of an ice rink. The puck is sliding along a line that makes an angle of 45 to the wall. wall ice rink direction of puck before collision direction of puck afte r collision The collision between the wall and the puck is perfectly elastic. (i) State what is meant by an elastic collision. Page 24 of 44

25 (ii) Discuss how the law of conservation of momentum applies to this situation. (c) The diagram below is a scale diagram that shows the vector representing the momentum of the puck before collision. Scale: 1.0 cm = 0.10 N s By adding appropriate vectors to the diagram, deduce that the magnitude of the change in momentum of the puck as a result of the collision is 0.71 N s. (4) Page 25 of 44

26 (d) The sketch-graph below shows the variation with time t of the force F exerted by the wall on the puck. F 0 0 t The total contact time is 12 ms. Estimate, explaining your reasoning, the maximum force exerted by the wall on the puck (3) (Total 12 marks) 30. This question is about momentum and energy. (a) Define impulse of a force and state the relation between impulse and momentum. definition: relation: Page 26 of 44

27 (b) By applying Newton s laws of motion to the collision of two particles, deduce that momentum is conserved in the collision (5) (c) In an experiment to measure the speed of a bullet, the bullet is fired into a piece of plasticine suspended from a rigid support by a light thread. bullet speed V 24cm plasticine The speed of the bullet on impact with the plasticine is V. As a result of the impact, the bullet embeds itself in the plasticine and the plasticine is displaced vertically through a height of 24 cm. The mass of the bullet is kg and the mass of the plasticine is 0.38 kg. Page 27 of 44

28 (i) Ignoring the mass of the bullet, calculate the speed of the plasticine immediately after the impact (ii) Deduce that the speed V with which the bullet strikes the plasticine is about 160 m s (Total 11 marks) Page 28 of 44

29 31. Electric motor (a) In an experiment to measure the efficiency of a small dc electric motor, the motor is clamped to the edge of a bench. The motor is used to raise a small weight that is attached to a pulley wheel by cotton thread. The pulley wheel is rotated by the motor. The thread wraps around the pulley wheel, so raising the weight. axel motor pulley wheel cotton thread Side view weight End-on-view The time taken for the motor to raise the weight through a certain height is measured. It is assumed that the weight accelerates uniformly whilst being raised. The weight of the cotton thread is negligible. (i) Draw a labelled free-body force diagram of the forces acting on the accelerating weight. (3) Page 29 of 44

30 (ii) The weight has a mass of 15 g and it takes 2.2 s to raise it from rest through a height of 0.84 m. Calculate the tension in the thread as the weight is being raised. (Acceleration of free fall g = 10 m s 2.) (4) (b) In a second experiment, the current is adjusted so that the weight of mass 15 g is raised at constant speed. The motor is connected to a 6.0 V supply and it now takes the motor 3.4 s to raise the weight through 0.84 m. (i) Suggest how it might be determined that the weight is being raised at constant speed. (ii) Determine the power delivered to the weight by the motor. (Acceleration of free fall g = 10 m s 2.) Page 30 of 44

31 (iii) The current in the motor is 45 ma. Estimate the efficiency of the motor. (Total 13 marks) 32. This question is about conservation of momentum and conservation of energy. (a) State Newton s third law (b) State the law of conservation of momentum The diagram below shows two identical balls A and B on a horizontal surface. Ball B is at rest and ball A is moving with speed V along a line joining the centres of the balls. The mass of each ball is M. v Before collision A B During the collision of the balls, the magnitude of the force that ball A exerts on ball B is F AB and the magnitude of the force that ball B exerts on ball A is F BA. Page 31 of 44

32 (c) On the diagram below, add labelled arrows to represent the magnitude and direction of the forces F AB and F BA. During the collision A B (3) The balls are in contact for a time t. After the collision, the speed of ball A is +v A and the speed of ball B is +v B in the directions shown. v A v B After the collision A B As a result of the collision, there is a change in momentum of ball A and of ball B. (d) Use Newton s second law of motion to deduce an expression relating the forces acting during the collision to the change in momentum of (i) ball B..... (ii) ball A..... Page 32 of 44

33 (e) Apply Newton s third law and your answers to (d), to deduce that the change in momentum of the system (ball A and ball B) as a result of this collision, is zero (4) (f) Deduce, that if kinetic energy is conserved in the collision, then after the collision, ball A will come to rest and ball B will move with speed V (3) (Total 17 marks) 33. This question is about the kinematics of an elevator (lift). (a) Explain the difference between the gravitational mass and the inertial mass of an object (3) Page 33 of 44

34 An elevator (lift) starts from rest on the ground floor and comes to rest at a higher floor. Its motion is controlled by an electric motor. A simplified graph of the variation of the elevator s velocity with time is shown below. velocity / m s time / s (b) The mass of the elevator is 250 kg. Use this information to calculate (i) the acceleration of the elevator during the first 0.50 s (ii) the total distance travelled by the elevator Page 34 of 44

35 (iii) the minimum work required to raise the elevator to the higher floor (iv) the minimum average power required to raise the elevator to the higher floor (v) the efficiency of the electric motor that lifts the elevator, given that the input power to the motor is 5.0 kw (c) On the graph axes below, sketch a realistic variation of velocity for the elevator. Explain your reasoning. (The simplified version is shown as a dotted line) velocity / m s time / s Page 35 of 44

36 The elevator is supported by a cable. The diagram below is a free-body force diagram for when the elevator is moving upwards during the first 0.50 s. tension weight (d) In the space below, draw free-body force diagrams for the elevator during the following time intervals. (i) 0.5 to s (ii) to s (3) A person is standing on weighing scales in the elevator. Before the elevator rises, the reading on the scales is W. Page 36 of 44

37 (e) On the axes below, sketch a graph to show how the reading on the scales varies during the whole s upward journey of the elevator. (Note that this is a sketch graph you do not need to add any values.) reading on scales W time / s (3) (f) The elevator now returns to the ground floor where it comes to rest. Describe and explain the energy changes that take place during the whole up and down journey (4) (Total 25 marks) Page 37 of 44

38 34. Momentum (a) State the law of conservation of linear momentum (b) A toy rocket of mass 0.12 kg contains 0.59 kg of water as shown in the diagram below. high-pressure air water nozzle, radius 1.4mm The space above the water contains high-pressure air. The nozzle of the rocket has a circular cross-section of radius 1.4 mm. When the nozzle is opened, water emerges from the nozzle at a constant speed of 18 m s 1. The density of water is 1000 kg m 3. (i) Deduce that the volume of water ejected per second through the nozzle is m 3. Page 38 of 44

39 (ii) Deduce that the upward force that the ejected water exerts on the rocket is approximately 2.0 N. Explain your working by reference to Newton s laws of motion. (4) (iii) Calculate the time delay between opening the nozzle and the rocket achieving lift-off. (Total 10 marks) Page 39 of 44

40 35. Linear motion At a sports event, a skier descends a slope AB. At B there is a dip BC of width 12 m. The slope and dip are shown in the diagram below. The vertical height of the slope is 41 m. A (not to scale) 41m slope B C D 1.8m dip 12m The graph below shows the variation with time t of the speed v down the slope of the skier v / ms t / s The skier, of mass 72 kg, takes 8.0 s to ski, from rest, down the length AB of the slope. (a) Use the graph to (i) calculate the kinetic energy E K of the skier at point B. Page 40 of 44 (ii) determine the length of the slope.

41 (4) Page 41 of 44

42 (b) (i) Calculate the magnitude of the change E P in the gravitational potential energy of the skier between point A and point B. (ii) Use your anwers to (a)(i) and (b)(i) to determine the ratio ( EP EK ). E P (iii) Suggest what this ration represents. Page 42 of 44

43 (c) At point B of the slope, the skier leaves the ground. He flies across the dip and lands on the lower side at point D. The lower side C of the dip is 1.8 m below the upper side B. (i) Calculate the time taken for an object to fall, from rest, through a vertical distance of 1.8 m. Assume negligible air resistance. (ii) The time calculated in (c)(i) is the time of flight of the skier across the dip. Determine the horizontal distance travelled by the skier during this time, assuming that the skier has the constant speed at which he leaves the slope at B. (Total 15 marks) 36. This question is about driving a metal bar into the ground. Large metal bars can be driven into the ground using a heavy falling object. object 3 mass = kg bar mass = 400 kg Page 43 of 44

44 In the situation shown, the object has a mass kg and the metal bar has a mass of 400 kg. The object strikes the bar at a speed of 6.0 m s 1. It comes to rest on the bar without bouncing. As a result of the collision, the bar is driven into the ground to a depth of 0.75 m. (a) Determine the speed of the bar immediately after the object strikes it (4) (b) Determine the average frictional force exerted by the ground on the bar (3) (Total 7 marks) Page 44 of 44

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true? 1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

More information

AP Physics - Chapter 8 Practice Test

AP Physics - Chapter 8 Practice Test AP Physics - Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on

More information

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J 1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9

More information

PHY231 Section 1, Form B March 22, 2012

PHY231 Section 1, Form B March 22, 2012 1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate

More information

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the

More information

Work, Energy and Power Practice Test 1

Work, Energy and Power Practice Test 1 Name: ate: 1. How much work is required to lift a 2-kilogram mass to a height of 10 meters?. 5 joules. 20 joules. 100 joules. 200 joules 5. ar and car of equal mass travel up a hill. ar moves up the hill

More information

Chapter 7: Momentum and Impulse

Chapter 7: Momentum and Impulse Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

More information

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26 Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,

More information

B) 286 m C) 325 m D) 367 m Answer: B

B) 286 m C) 325 m D) 367 m Answer: B Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of

More information

AP Physics C Fall Final Web Review

AP Physics C Fall Final Web Review Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of

More information

AP Physics 1 Midterm Exam Review

AP Physics 1 Midterm Exam Review AP Physics 1 Midterm Exam Review 1. The graph above shows the velocity v as a function of time t for an object moving in a straight line. Which of the following graphs shows the corresponding displacement

More information

Worksheet #1 Free Body or Force diagrams

Worksheet #1 Free Body or Force diagrams Worksheet #1 Free Body or Force diagrams Drawing Free-Body Diagrams Free-body diagrams are diagrams used to show the relative magnitude and direction of all forces acting upon an object in a given situation.

More information

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

More information

Kinetic Energy (A) stays the same stays the same (B) increases increases (C) stays the same increases (D) increases stays the same.

Kinetic Energy (A) stays the same stays the same (B) increases increases (C) stays the same increases (D) increases stays the same. 1. A cart full of water travels horizontally on a frictionless track with initial velocity v. As shown in the diagram, in the back wall of the cart there is a small opening near the bottom of the wall

More information

Tennessee State University

Tennessee State University Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

More information

Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work!

Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! 1. A student holds her 1.5-kg psychology textbook out of a second floor classroom window until her arm is tired; then she releases

More information

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc. Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed

More information

5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity.

5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity. 5. Forces and Motion-I 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will

More information

Conceptual Questions: Forces and Newton s Laws

Conceptual Questions: Forces and Newton s Laws Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is

More information

Curso2012-2013 Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía.

Curso2012-2013 Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía. 1. A body of mass m slides a distance d along a horizontal surface. How much work is done by gravity? A) mgd B) zero C) mgd D) One cannot tell from the given information. E) None of these is correct. 2.

More information

When showing forces on diagrams, it is important to show the directions in which they act as well as their magnitudes.

When showing forces on diagrams, it is important to show the directions in which they act as well as their magnitudes. When showing forces on diagrams, it is important to show the directions in which they act as well as their magnitudes. mass M, the force of attraction exerted by the Earth on an object, acts downwards.

More information

Newton s Law of Motion

Newton s Law of Motion chapter 5 Newton s Law of Motion Static system 1. Hanging two identical masses Context in the textbook: Section 5.3, combination of forces, Example 4. Vertical motion without friction 2. Elevator: Decelerating

More information

Two-Body System: Two Hanging Masses

Two-Body System: Two Hanging Masses Specific Outcome: i. I can apply Newton s laws of motion to solve, algebraically, linear motion problems in horizontal, vertical and inclined planes near the surface of Earth, ignoring air resistance.

More information

Work, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions

Work, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions Work, Power, Energy Multiple Choice PSI Physics Name Multiple Choice Questions 1. A block of mass m is pulled over a distance d by an applied force F which is directed in parallel to the displacement.

More information

Chapter 9. is gradually increased, does the center of mass shift toward or away from that particle or does it remain stationary.

Chapter 9. is gradually increased, does the center of mass shift toward or away from that particle or does it remain stationary. Chapter 9 9.2 Figure 9-37 shows a three particle system with masses m 1 3.0 kg, m 2 4.0 kg, and m 3 8.0 kg. The scales are set by x s 2.0 m and y s 2.0 m. What are (a) the x coordinate and (b) the y coordinate

More information

KE =? v o. Page 1 of 12

KE =? v o. Page 1 of 12 Page 1 of 12 CTEnergy-1. A mass m is at the end of light (massless) rod of length R, the other end of which has a frictionless pivot so the rod can swing in a vertical plane. The rod is initially horizontal

More information

10.1 Quantitative. Answer: A Var: 50+

10.1 Quantitative. Answer: A Var: 50+ Chapter 10 Energy and Work 10.1 Quantitative 1) A child does 350 J of work while pulling a box from the ground up to his tree house with a rope. The tree house is 4.8 m above the ground. What is the mass

More information

P211 Midterm 2 Spring 2004 Form D

P211 Midterm 2 Spring 2004 Form D 1. An archer pulls his bow string back 0.4 m by exerting a force that increases uniformly from zero to 230 N. The equivalent spring constant of the bow is: A. 115 N/m B. 575 N/m C. 1150 N/m D. 287.5 N/m

More information

The Grange School Maths Department. Mechanics 1 OCR Past Papers

The Grange School Maths Department. Mechanics 1 OCR Past Papers The Grange School Maths Department Mechanics 1 OCR Past Papers June 2005 2 1 A light inextensible string has its ends attached to two fixed points A and B. The point A is vertically above B. A smooth ring

More information

PHY121 #8 Midterm I 3.06.2013

PHY121 #8 Midterm I 3.06.2013 PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

More information

Chapter 9. particle is increased.

Chapter 9. particle is increased. Chapter 9 9. Figure 9-36 shows a three particle system. What are (a) the x coordinate and (b) the y coordinate of the center of mass of the three particle system. (c) What happens to the center of mass

More information

Problem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s

Problem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s Problem Set 1 1.1 A bicyclist starts from rest and after traveling along a straight path a distance of 20 m reaches a speed of 30 km/h. Determine her constant acceleration. How long does it take her to

More information

Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)

Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N) Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in

More information

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( ) Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight

8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight 1. What is the average speed of an object that travels 6.00 meters north in 2.00 seconds and then travels 3.00 meters east in 1.00 second? 9.00 m/s 3.00 m/s 0.333 m/s 4.24 m/s 2. What is the distance traveled

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) A person on a sled coasts down a hill and then goes over a slight rise with speed 2.7 m/s.

More information

Examples of Scalar and Vector Quantities 1. Candidates should be able to : QUANTITY VECTOR SCALAR

Examples of Scalar and Vector Quantities 1. Candidates should be able to : QUANTITY VECTOR SCALAR Candidates should be able to : Examples of Scalar and Vector Quantities 1 QUANTITY VECTOR SCALAR Define scalar and vector quantities and give examples. Draw and use a vector triangle to determine the resultant

More information

TEACHER ANSWER KEY November 12, 2003. Phys - Vectors 11-13-2003

TEACHER ANSWER KEY November 12, 2003. Phys - Vectors 11-13-2003 Phys - Vectors 11-13-2003 TEACHER ANSWER KEY November 12, 2003 5 1. A 1.5-kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude

More information

Supplemental Questions

Supplemental Questions Supplemental Questions The fastest of all fishes is the sailfish. If a sailfish accelerates at a rate of 14 (km/hr)/sec [fwd] for 4.7 s from its initial velocity of 42 km/h [fwd], what is its final velocity?

More information

At the skate park on the ramp

At the skate park on the ramp At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises

More information

Chapter 4: Newton s Laws: Explaining Motion

Chapter 4: Newton s Laws: Explaining Motion Chapter 4: Newton s Laws: Explaining Motion 1. All except one of the following require the application of a net force. Which one is the exception? A. to change an object from a state of rest to a state

More information

Sample Questions for the AP Physics 1 Exam

Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each

More information

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

More information

PHYS 211 FINAL FALL 2004 Form A

PHYS 211 FINAL FALL 2004 Form A 1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each

More information

Practice Exam Three Solutions

Practice Exam Three Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 Practice Exam Three Solutions Problem 1a) (5 points) Collisions and Center of Mass Reference Frame In the lab frame,

More information

Physics 11 Assignment KEY Dynamics Chapters 4 & 5

Physics 11 Assignment KEY Dynamics Chapters 4 & 5 Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problem-solving questions, draw appropriate free body diagrams and use the aforementioned problem-solving method.. Define the following

More information

Newton s Second Law. ΣF = m a. (1) In this equation, ΣF is the sum of the forces acting on an object, m is the mass of

Newton s Second Law. ΣF = m a. (1) In this equation, ΣF is the sum of the forces acting on an object, m is the mass of Newton s Second Law Objective The Newton s Second Law experiment provides the student a hands on demonstration of forces in motion. A formulated analysis of forces acting on a dynamics cart will be developed

More information

AP Physics C. Oscillations/SHM Review Packet

AP Physics C. Oscillations/SHM Review Packet AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete

More information

Lab 8: Ballistic Pendulum

Lab 8: Ballistic Pendulum Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally

More information

PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. PHYS 117- Exam I Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Car A travels from milepost 343 to milepost 349 in 5 minutes. Car B travels

More information

BHS Freshman Physics Review. Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science.

BHS Freshman Physics Review. Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science. BHS Freshman Physics Review Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science. Galileo (1564-1642): 1 st true scientist and 1 st person to use

More information

Exam Three Momentum Concept Questions

Exam Three Momentum Concept Questions Exam Three Momentum Concept Questions Isolated Systems 4. A car accelerates from rest. In doing so the absolute value of the car's momentum changes by a certain amount and that of the Earth changes by:

More information

Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1.

Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1. IB PHYSICS: Gravitational Forces Review 1. This question is about gravitation and ocean tides. (b) State Newton s law of universal gravitation. Use the following information to deduce that the gravitational

More information

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

More information

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

More information

Review Chapters 2, 3, 4, 5

Review Chapters 2, 3, 4, 5 Review Chapters 2, 3, 4, 5 4) The gain in speed each second for a freely-falling object is about A) 0. B) 5 m/s. C) 10 m/s. D) 20 m/s. E) depends on the initial speed 9) Whirl a rock at the end of a string

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

EDUH 1017 - SPORTS MECHANICS

EDUH 1017 - SPORTS MECHANICS 4277(a) Semester 2, 2011 Page 1 of 9 THE UNIVERSITY OF SYDNEY EDUH 1017 - SPORTS MECHANICS NOVEMBER 2011 Time allowed: TWO Hours Total marks: 90 MARKS INSTRUCTIONS All questions are to be answered. Use

More information

Unit 3 Work and Energy Suggested Time: 25 Hours

Unit 3 Work and Energy Suggested Time: 25 Hours Unit 3 Work and Energy Suggested Time: 25 Hours PHYSICS 2204 CURRICULUM GUIDE 55 DYNAMICS Work and Energy Introduction When two or more objects are considered at once, a system is involved. To make sense

More information

Exam 1 Review Questions PHY 2425 - Exam 1

Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1H Rev Ques.doc - 1 - Section: 1 7 Topic: General Properties of Vectors Type: Conceptual 1 Given vector A, the vector 3 A A) has a magnitude 3 times that

More information

Review Assessment: Lec 02 Quiz

Review Assessment: Lec 02 Quiz COURSES > PHYSICS GUEST SITE > CONTROL PANEL > 1ST SEM. QUIZZES > REVIEW ASSESSMENT: LEC 02 QUIZ Review Assessment: Lec 02 Quiz Name: Status : Score: Instructions: Lec 02 Quiz Completed 20 out of 100 points

More information

WORK DONE BY A CONSTANT FORCE

WORK DONE BY A CONSTANT FORCE WORK DONE BY A CONSTANT FORCE The definition of work, W, when a constant force (F) is in the direction of displacement (d) is W = Fd SI unit is the Newton-meter (Nm) = Joule, J If you exert a force of

More information

PHYSICS 111 HOMEWORK SOLUTION, week 4, chapter 5, sec 1-7. February 13, 2013

PHYSICS 111 HOMEWORK SOLUTION, week 4, chapter 5, sec 1-7. February 13, 2013 PHYSICS 111 HOMEWORK SOLUTION, week 4, chapter 5, sec 1-7 February 13, 2013 0.1 A 2.00-kg object undergoes an acceleration given by a = (6.00î + 4.00ĵ)m/s 2 a) Find the resultatnt force acting on the object

More information

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for

More information

4 Gravity: A Force of Attraction

4 Gravity: A Force of Attraction CHAPTER 1 SECTION Matter in Motion 4 Gravity: A Force of Attraction BEFORE YOU READ After you read this section, you should be able to answer these questions: What is gravity? How are weight and mass different?

More information

Force Concept Inventory

Force Concept Inventory Revised form 081695R Force Concept Inventory Originally published in The Physics Teacher, March 1992 by David Hestenes, Malcolm Wells, and Gregg Swackhamer Revised August 1995 by Ibrahim Halloun, Richard

More information

Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass

Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of

More information

Work, Energy and Power

Work, Energy and Power Work, Energy and Power In this section of the Transport unit, we will look at the energy changes that take place when a force acts upon an object. Energy can t be created or destroyed, it can only be changed

More information

VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

More information

Prelab Exercises: Hooke's Law and the Behavior of Springs

Prelab Exercises: Hooke's Law and the Behavior of Springs 59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. (Use g = 9.8 m/s2.) 1) A 21 kg box must be slid across the floor. If

More information

Physics 1401 - Exam 2 Chapter 5N-New

Physics 1401 - Exam 2 Chapter 5N-New Physics 1401 - Exam 2 Chapter 5N-New 2. The second hand on a watch has a length of 4.50 mm and makes one revolution in 60.00 s. What is the speed of the end of the second hand as it moves in uniform circular

More information

LAB 6: GRAVITATIONAL AND PASSIVE FORCES

LAB 6: GRAVITATIONAL AND PASSIVE FORCES 55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction

More information

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014 Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,

More information

Work-Energy Bar Charts

Work-Energy Bar Charts Name: Work-Energy Bar Charts Read from Lesson 2 of the Work, Energy and Power chapter at The Physics Classroom: http://www.physicsclassroom.com/class/energy/u5l2c.html MOP Connection: Work and Energy:

More information

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies

More information

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level *0123456789* PHYSICS 9702/02 Paper 2 AS Level Structured Questions For Examination from 2016 SPECIMEN

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

AP Physics Applying Forces

AP Physics Applying Forces AP Physics Applying Forces This section of your text will be very tedious, very tedious indeed. (The Physics Kahuna is just as sorry as he can be.) It s mostly just a bunch of complicated problems and

More information

Ph\sics 2210 Fall 2012 - Novcmbcr 21 David Ailion

Ph\sics 2210 Fall 2012 - Novcmbcr 21 David Ailion Ph\sics 2210 Fall 2012 - Novcmbcr 21 David Ailion Unid: Discussion T A: Bryant Justin Will Yuan 1 Place answers in box provided for each question. Specify units for each answer. Circle correct answer(s)

More information

HW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions

HW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions HW Set VI page 1 of 9 10-30 A 10 g bullet moving directly upward at 1000 m/s strikes and passes through the center of mass of a 5.0 kg block initially at rest (Fig. 10-33 ). The bullet emerges from the

More information

Chapter 3.8 & 6 Solutions

Chapter 3.8 & 6 Solutions Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled

More information

Fundamental Mechanics: Supplementary Exercises

Fundamental Mechanics: Supplementary Exercises Phys 131 Fall 2015 Fundamental Mechanics: Supplementary Exercises 1 Motion diagrams: horizontal motion A car moves to the right. For an initial period it slows down and after that it speeds up. Which of

More information

Physics 41 HW Set 1 Chapter 15

Physics 41 HW Set 1 Chapter 15 Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,

More information

Practice Test SHM with Answers

Practice Test SHM with Answers Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one

More information

Chapter 7 Momentum and Impulse

Chapter 7 Momentum and Impulse Chapter 7 Momentum and Impulse Collisions! How can we describe the change in velocities of colliding football players, or balls colliding with bats?! How does a strong force applied for a very short time

More information

Work Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work.

Work Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work. PhysicsFactsheet September 2000 Number 05 Work Energy & Power 1. Work If a force acts on a body and causes it to move, then the force is doing work. W = Fs W = work done (J) F = force applied (N) s = distance

More information

2After completing this chapter you should be able to

2After completing this chapter you should be able to After completing this chapter you should be able to solve problems involving motion in a straight line with constant acceleration model an object moving vertically under gravity understand distance time

More information

PHYSICAL QUANTITIES AND UNITS

PHYSICAL QUANTITIES AND UNITS 1 PHYSICAL QUANTITIES AND UNITS Introduction Physics is the study of matter, its motion and the interaction between matter. Physics involves analysis of physical quantities, the interaction between them

More information

Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion

Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion Chapter 3: Falling Objects and Projectile Motion 1. Neglecting friction, if a Cadillac and Volkswagen start rolling down a hill together, the heavier Cadillac will get to the bottom A. before the Volkswagen.

More information

Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis

Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis * By request, but I m not vouching for these since I didn t write them Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis There are extra office hours today & tomorrow Lots of practice exams

More information

TEACHER S CLUB EXAMS GRADE 11. PHYSICAL SCIENCES: PHYSICS Paper 1

TEACHER S CLUB EXAMS GRADE 11. PHYSICAL SCIENCES: PHYSICS Paper 1 TEACHER S CLUB EXAMS GRADE 11 PHYSICAL SCIENCES: PHYSICS Paper 1 MARKS: 150 TIME: 3 hours INSTRUCTIONS AND INFORMATION 1. This question paper consists of 12 pages, two data sheets and a sheet of graph

More information

STATIC AND KINETIC FRICTION

STATIC AND KINETIC FRICTION STATIC AND KINETIC FRICTION LAB MECH 3.COMP From Physics with Computers, Vernier Software & Technology, 2000. INTRODUCTION If you try to slide a heavy box resting on the floor, you may find it difficult

More information

Candidate Number. General Certificate of Education Advanced Level Examination June 2010

Candidate Number. General Certificate of Education Advanced Level Examination June 2010 entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 1 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Friday 18

More information