CONTENTS 1. FUNDAMENTAL CONCEPTS 1 2. NUMBER SYSTEMS AND CODES 21. Acknowledgements

Size: px
Start display at page:

Download "CONTENTS 1. FUNDAMENTAL CONCEPTS 1 2. NUMBER SYSTEMS AND CODES 21. Acknowledgements"

Transcription

1 CONTENTS Acknowledgements xi 1. FUNDAMENTAL CONCEPTS Introduction Digital Signals Basic Digital Circuits The AND Operation The OR Operation The NOT Operation NAND and NOR Operations The NAND Operation The NOR Operation Exclusive-OR Operation Boolean Algebra Examples of IC Gates Summary 13 Glossary 14 Review Questions 16 Problems NUMBER SYSTEMS AND CODES Introduction Number Systems 22

2 xiv Contents 2.3 Binary Number System Binary-to-Decimal Conversion Decimal-to-Binary Conversion Signed Binary Numbers Sign-Magnitude Representation One s Complement Representation Two s Complement Representation Binary Arithmetic Binary Addition Binary Subtraction Binary Multiplication Binary Division s Complement Arithmetic Subtraction Using 2 s Complement Addition/Subtraction in 2 s Complement Representation Octal Number System Octal-to-Decimal Conversion Decimal-to-Octal Conversion Octal-to-Binary Conversion Binary-to-Octal Conversion Octal Arithmetic Applications of Octal Number System Hexadecimal Number System Hexadecimal-to-Decimal Conversion Decimal-to-Hexadecimal Conversion Hexadecimal-to-Binary Conversion Binary-to-Hexadecimal Conversion Conversion from Hex-to-Octal and Vice-Versa Hexadecimal Arithmetic Codes Straight Binary Code Natural BCD Code Excess-3 Code Gray Code Octal Code Hexadecimal Code Alphanumeric Codes Error Detecting and Correcting Codes Error-detecting Codes Error-correcting Codes Summary 54 Glossary 54 Review Questions 56 Problems 57

3 Contents xv 3. SEMICONDUCTOR DEVICES SWITCHING MODE OPERATION Introduction Semiconductors p-n Junction Diode Forward Bias Reverse Bias The Volt-Ampere Characteristic Zener Diode Transition Capacitance of a p-n Junction Diode Switching Characteristics of a Semiconductor Diode Schottky Diode Bipolar Junction Transistor Transistor Configurations Transistor as a Switch CE Transistor Switch Switching Speed of BJT Schottky Transistor Field-Effect Transistor Junction Field-Effect Transistor Metal-Oxide Semiconductor Field-Effect Transistor FET Switches Complementary MOSFET (CMOS) Summary 83 Glossary 83 Review Questions 83 Problems DIGITAL LOGIC FAMILIES Introduction Bipolar Logic Families Unipolar Logic Families Characteristics of Digital ICs Speed of Operation Power Dissipation Figure of Merit Fan-Out Current and Voltage Parameters Noise Immunity Operating Temperature Power Supply Requirements Flexibilities Available 93

4 xvi Contents 4.3 Resistor Transistor Logic (RTL) Logic Operation Loading Considerations Noise Margins Propagation Delay Time Current Source Logic Wired-Logic Direct-Coupled Transistor Logic (DCTL) Integrated-Injection Logic (I 2 L) I 2 L Inverter I 2 L Configuration Fabrication of I 2 L Diode Transistor Logic (DTL) Operation of DTL NAND Gate Propagation Delays Current Sink Logic Wired-Logic Modified Integrated DTL NAND Gate High-Threshold Logic (HTL) Transistor transistor Logic (TTL) Operation of TTL NAND Gate Active Pull-up Wired-AND Open-Collector Output Unconnected Inputs Clamping Diodes Schottky TTL /7400 TTL Series Emitter-Coupled Logic (ECL) Fan-Out Wired-OR Logic Open-Emitter Outputs Unconnected Inputs ECL Families Interfacing ECL and TTL TTL-to-ECL Translator ECL-to-TTL Translator MOS Logic MOSFET NAND and NOR Gates Fan-Out Propagation Delay Time Power Dissipation Unconnected Inputs 119

5 Contents xvii 4.14 CMOS Logic CMOS Inverter CMOS NAND and NOR Gates CMOS Transmission Gate Noise Margin Unconnected Inputs Wired-Logic Open-Drain Outputs C00/74C00 CMOS Series Interfacing CMOS and TTL CMOS Driving TTL TTL Driving CMOS Interfacing CMOS and ECL Tri-State Logic TSL Inverter Summary 128 Glossary 129 Review Questions 133 Problems COMBINATIONAL LOGIC DESIGN Introduction Standard Representations for Logical Functions Karnaugh Map Representation of Logical Functions Representation of Truth Table on K-Map Representation of Standard SOP Form on K-Map Representation of Standard POS Form on K-Map Simplification of Logical Functions Using K-Map Grouping Two Adjacent Ones Grouping Four Adjacent Ones Grouping Eight Adjacent Ones Grouping 2, 4, and 8 Adjacent Zeros Minimization of Logical Functions Specified in Minterms/Maxterms or Truth Table Minimization of SOP Form Minimization of POS Form Minimization of Logical Functions not Specified in Minterms/Maxterms Don t-care Conditions Design Examples Arithmetic Circuits BCD-to-7-Segment Decoder 166

6 xviii Contents 5.9 EX-OR AND EX-NOR Simplification of K-Maps Diagonal and Offset Adjacencies of Groups of Ones Five- and Six-Variable K-maps Quine-McCluskey Minimization Technique Summary 185 Glossary 186 Review Questions 187 Problems COMBINATIONAL LOGIC DESIGN USING MSI CIRCUITS Introduction Multiplexers and Their Use in Combinational Logic Design Multiplexer Combinational Logic Design Using Multiplexers Multiplexer Tree Demultiplexers/Decoders and Their Use in Combinational Logic Design Demultiplexer Demultiplexer Tree Adders and Their Use as Subtractors Adder with Look-Ahead Carry Cascading of Adders Subtraction Using Adder BCD Arithmetic BCD Adder BCD Subtractor Arithmetic Logic Unit (ALU) Digital Comparators Parity Generators/Checkers Code Converters BCD-to-Binary Converter Binary-to-BCD Converter Priority Encoders Decimal-to-BCD Encoder Octal-to-Binary Encoder Decoder/Drivers for Display Devices BCD-to Decimal Decoder/Driver BCD-to-7-Segment Decoder/Driver Summary 233 Glossary 233 Review Questions 234 Problems 234

7 Contents xix 7. FLIP-FLOPs Introduction A 1-Bit Memory Cell Clocked S R FLIP-FLOP Preset and Clear J K FLIP-FLOP The Race-Around Condition The Master Slave J K FLIP-FLOP D-Type FLIP-FLOP T-Type FLIP-FLOP Excitation Table of FLIP-FLOP Clocked FLIP-FLOP Design Conversion From One Type of FLIP-FLOP to Another Type Edge-Triggered FLIP-FLOPs Applications of FLIP-FLOPs Bounce-Elimination Switch Registers Counters Random-Access Memory Summary 259 Glossary 260 Review Questions 262 Problems SEQUENTIAL LOGIC DESIGN Introduction Registers Shift Register Applications of Shift Registers Delay Line Serial-to-Parallel Converter Parallel-to-Serial Converter Ring Counter Twisted-Ring Counter Sequence Generator Ripple or Asynchronous Counters UP/DOWN Counters Modulus of the Counter /74 Series Asynchronous Counter ICs Synchronous Counters Synchronous Counter Design 288

8 xx Contents Lock Out /74 Series Synchronous Counter ICs Clocked Sequential Circuit Design Asynchronous Sequential Circuits Asynchronus versus Synchronous Sequential Circuits Applications of Asynchronous Sequential Circuits Asynchronous Sequential Machine Modes Analysis of Asynchronous Sequential Machines Asynchronous Sequential Circuit Design Summary 327 Glossary 328 Review Questions 330 Problems TIMING CIRCUITS Introduction Applications of Logic Gates in Timing Circuits Free-Running Multivibrator Monostable Multivibrator OP AMP and its Applications in Timing Circuits OP AMP Comparator Regenerative Comparator (Schmitt Trigger) Astable (or Free-Running) Multivibrator Monostable Multivibrator Schmitt Trigger ICs Schmitt Trigger Square-Wave Generator Monostable Multivibrator ICs Monostable Multivibrator Retriggerable Monostable Multivibrators (74122 and 74123) Non-retriggerable Monostable Multivibrator with Clear (74221) Astable Multivibrator Using One-Shots Timer Monostable Multivibrator Astable Multivibrator Summary 362 Glossary 362 Review Questions 363 Problems A/D AND D/A CONVERTERS Introduction Digital-to-Analog Converters 367

9 Contents xxi Weighted-Resistor D/A Converter R 2R Ladder D/A Converter Specifications for D/A Converters An Example of D/A Converter IC Digital Input Codes Analog Output Calibration Sample-And-Hold Sample-and-Hold Circuit Analog-to-Digital Converters Quantization and Encoding Parallel-Comparator A/D Converter Successive-Approximation A/D Converter Counting A/D Converter Dual-Slope A/D Converter A/D Converter Using Voltage-to-Frequency Conversion A/D Converter Using Voltage-to-Time Conversion Specifications of A/D Converters An Example of A/D Converter IC Operation Digital Output Analog Input Calibration Summary 397 Glossary 398 Review Questions 399 Problems SEMICONDUCTOR MEMORIES Introduction Memory Organization and Operation Write Operation Read Operation Expanding Memory Size Expanding Word Size Expanding Word Capacity Classification and Characteristics of Memories Principle of Operation Physical Characteristics Mode of Access Fabrication Technology 413

10 xxii Contents 11.5 Sequential Memory Static Shift Register Dynamic Shift Register Read-Only Memory ROM Organization Programming Mechanisms ROM ICs Read and Write Memory Bipolar RAM Cell MOS RAMs RAM ICs Content Addressable Memory Operation of CAM Charge Coupled Device Memory Basic Concept of CCD Operation of CCD A Practical CCD Memory Device Summary 443 Glossary 444 Review Questions 445 Problems PROGRAMMABLE LOGIC DEVICES Introduction ROM as a PLD Programmable Logic Array Input Buffer AND Matrix OR Matrix Invert/Non-Invert Matrix Output Buffer Output through FLIP-FLOPs and Buffers Programming the PLA Expanding PLA Capacity Applications of PLAs Available PLAs Programmable Array Logic Registered PALs Configurable PALs Generic Array Logic Devices EX-OR PALs Available PALs Simple PLDs (SPLDs) 478

11 Contents xxiii 12.5 Complex Programmable Logic Devices (CPLDs) Block Diagram Programming Packaging Available CPLDs Field-Programmable Gate Array (FPGA) Logic Cell Array Actel ACT Antifuse Plessey ERA Summary 491 Glossary 491 Review Questions 492 Problems FUNDAMENTALS OF MICROPROCESSORS Introduction An Ideal Microprocessor The Data Bus The Address Bus The Control Bus Microprocessor Based System Basic Operation Microprocessor Operation Microprocessor Architecture System Bus Arithmetic Logic Unit (ALU) Registers Program Counter (PC) Flags Timing and Control Unit Instruction set The 8085A Microprocessor Organization and Operation Programming The 8086 Microprocessor The 8086 Architecture Programming Languages Summary 539 Glossary 540 Review Questions 542 Problems 543

12 xxiv Contents 14. COMPUTER-AIDED DESIGN OF DIGITAL SYSTEMS Introduction Computer Aided Design (CAD) Concepts CAD Tools Design Entry Initial Synthesis Functional Simulation Logic Synthesis and Optimization Physical Design Timing Simulation Summary Introduction to VHDL Entity Architecture Configuration Declaration Generic Data objects Examples of VHDL Codes Summary 565 Glossary 565 Review Questions 567 Problems 568 Appendix A1 Reserved Words in VHDL 569 A2 Symbols Defined in VHDL 570 Appendix B Bibliography 571 Appendix C Answers to Review Questions 574 Appendix D Answers to Selected Problems 579 Index 603

ANALOG & DIGITAL ELECTRONICS

ANALOG & DIGITAL ELECTRONICS ANALOG & DIGITAL ELECTRONICS Course Instructor: Course No: PH-218 3-1-0-8 Dr. A.P. Vajpeyi E-mail: apvajpeyi@iitg.ernet.in Room No: #305 Department of Physics, Indian Institute of Technology Guwahati,

More information

Standart TTL, Serie 74... Art.Gruppe 13.15. 1...

Standart TTL, Serie 74... Art.Gruppe 13.15. 1... Standart TTL, Serie 74... Art.Gruppe 13.15. 1... Standart TTL, Serie 74... 7400 Quad 2-Input Nand Gate (TP) DIL14 7402 Quad 2 Input Nor Gate (TP) DIL14 7403 Quad 2 Input Nand Gate (OC) DIL14 7404 Hex Inverter

More information

Digital Electronics Detailed Outline

Digital Electronics Detailed Outline Digital Electronics Detailed Outline Unit 1: Fundamentals of Analog and Digital Electronics (32 Total Days) Lesson 1.1: Foundations and the Board Game Counter (9 days) 1. Safety is an important concept

More information

Content Map For Career & Technology

Content Map For Career & Technology Content Strand: Applied Academics CT-ET1-1 analysis of electronic A. Fractions and decimals B. Powers of 10 and engineering notation C. Formula based problem solutions D. Powers and roots E. Linear equations

More information

CONTENTS PREFACE 1 INTRODUCTION 1 2 NUMBER SYSTEMS AND CODES 25. vii

CONTENTS PREFACE 1 INTRODUCTION 1 2 NUMBER SYSTEMS AND CODES 25. vii 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is CONTENTS PREFACE xv 1 INTRODUCTION 1 1.1 About Digital Design 1 1.2 Analog versus Digital 3 1.3 Digital Devices

More information

DATA SHEETS DE COMPONENTES DA FAMÍLIA LÓGICA TTL GATES AND INVERTERS POSITIVES NAND GATES AND INVERTERS DESCRIÇÃO

DATA SHEETS DE COMPONENTES DA FAMÍLIA LÓGICA TTL GATES AND INVERTERS POSITIVES NAND GATES AND INVERTERS DESCRIÇÃO GATES AND INVERTERS POSITIVES NAND GATES AND INVERTERS Hex Invertes 74LS04 Quadruple 2 Inputs Gates 74LS00 Triple 3 Inputs Gates 74LS10 Dual 4 Inputs Gates 74LS20 8 Inputs Gates 74LS30 13 Inputs Gates

More information

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design PH-315 COMINATIONAL and SEUENTIAL LOGIC CIRCUITS Hardware implementation and software design A La Rosa I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational circuits

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 4 Bit Binary Ripple Counter (Up-Down Counter) Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731-

More information

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter Description: The NTE2053 is a CMOS 8 bit successive approximation Analog to Digital converter in a 20 Lead DIP type package which uses a differential

More information

University of St. Thomas ENGR 230 ---- Digital Design 4 Credit Course Monday, Wednesday, Friday from 1:35 p.m. to 2:40 p.m. Lecture: Room OWS LL54

University of St. Thomas ENGR 230 ---- Digital Design 4 Credit Course Monday, Wednesday, Friday from 1:35 p.m. to 2:40 p.m. Lecture: Room OWS LL54 Fall 2005 Instructor Texts University of St. Thomas ENGR 230 ---- Digital Design 4 Credit Course Monday, Wednesday, Friday from 1:35 p.m. to 2:40 p.m. Lecture: Room OWS LL54 Lab: Section 1: OSS LL14 Tuesday

More information

ETEC 2301 Programmable Logic Devices. Chapter 10 Counters. Shawnee State University Department of Industrial and Engineering Technologies

ETEC 2301 Programmable Logic Devices. Chapter 10 Counters. Shawnee State University Department of Industrial and Engineering Technologies ETEC 2301 Programmable Logic Devices Chapter 10 Counters Shawnee State University Department of Industrial and Engineering Technologies Copyright 2007 by Janna B. Gallaher Asynchronous Counter Operation

More information

Digital Logic Design. Basics Combinational Circuits Sequential Circuits. Pu-Jen Cheng

Digital Logic Design. Basics Combinational Circuits Sequential Circuits. Pu-Jen Cheng Digital Logic Design Basics Combinational Circuits Sequential Circuits Pu-Jen Cheng Adapted from the slides prepared by S. Dandamudi for the book, Fundamentals of Computer Organization and Design. Introduction

More information

Course: Bachelor of Science (B. Sc.) 1 st year. Subject: Electronic Equipment Maintenance. Scheme of Examination for Semester 1 & 2

Course: Bachelor of Science (B. Sc.) 1 st year. Subject: Electronic Equipment Maintenance. Scheme of Examination for Semester 1 & 2 UPDATED SCHEME OF EXAMS. & SYLLABI FOR B.SC. Course: Bachelor of Science (B. Sc.) 1 st year Subject: Electronic Equipment Maintenance Scheme of Examination for Semester 1 & 2 (i) Theory: Two papers of

More information

Chapter 2 Logic Gates and Introduction to Computer Architecture

Chapter 2 Logic Gates and Introduction to Computer Architecture Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are

More information

ASYNCHRONOUS COUNTERS

ASYNCHRONOUS COUNTERS LB no.. SYNCHONOUS COUNTES. Introduction Counters are sequential logic circuits that counts the pulses applied at their clock input. They usually have 4 bits, delivering at the outputs the corresponding

More information

Chapter 9 Latches, Flip-Flops, and Timers

Chapter 9 Latches, Flip-Flops, and Timers ETEC 23 Programmable Logic Devices Chapter 9 Latches, Flip-Flops, and Timers Shawnee State University Department of Industrial and Engineering Technologies Copyright 27 by Janna B. Gallaher Latches A temporary

More information

LOGICOS SERIE 4000. Precios sujetos a variación. Ref. Part # Descripción Precio Foto Ref. Quad 2-Input NOR Buffered B Series Gate / PDIP-14

LOGICOS SERIE 4000. Precios sujetos a variación. Ref. Part # Descripción Precio Foto Ref. Quad 2-Input NOR Buffered B Series Gate / PDIP-14 LOGICOS SERIE 4000 Precios sujetos a variación Ref. Part # Descripción Precio Foto Ref. A-6-1 CD4001 Quad 2-Input NOR Buffered B Series Gate / PDIP-14 $ 290 A-6-2 CD4001BCM Quad 2-Input NOR Buffered B

More information

SECTION C [short essay] [Not to exceed 120 words, Answer any SIX questions. Each question carries FOUR marks] 6 x 4=24 marks

SECTION C [short essay] [Not to exceed 120 words, Answer any SIX questions. Each question carries FOUR marks] 6 x 4=24 marks UNIVERSITY OF KERALA First Degree Programme in Computer Applications Model Question Paper Semester I Course Code- CP 1121 Introduction to Computer Science TIME : 3 hrs Maximum Mark: 80 SECTION A [Very

More information

Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa

Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa Experiment # 9 Clock generator circuits & Counters Eng. Waleed Y. Mousa 1. Objectives: 1. Understanding the principles and construction of Clock generator. 2. To be familiar with clock pulse generation

More information

Copyright Peter R. Rony 2009. All rights reserved.

Copyright Peter R. Rony 2009. All rights reserved. Experiment No. 1. THE DIGI DESIGNER Experiment 1-1. Socket Connections on the Digi Designer Experiment No. 2. LOGIC LEVELS AND THE 7400 QUADRUPLE 2-INPUT POSITIVE NAND GATE Experiment 2-1. Truth Table

More information

Upon completion of unit 1.1, students will be able to

Upon completion of unit 1.1, students will be able to Upon completion of unit 1.1, students will be able to 1. Demonstrate safety of the individual, class, and overall environment of the classroom/laboratory, and understand that electricity, even at the nominal

More information

BINARY CODED DECIMAL: B.C.D.

BINARY CODED DECIMAL: B.C.D. BINARY CODED DECIMAL: B.C.D. ANOTHER METHOD TO REPRESENT DECIMAL NUMBERS USEFUL BECAUSE MANY DIGITAL DEVICES PROCESS + DISPLAY NUMBERS IN TENS IN BCD EACH NUMBER IS DEFINED BY A BINARY CODE OF 4 BITS.

More information

Modeling Sequential Elements with Verilog. Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: jimmy@ee.ncu.edu.tw. Sequential Circuit

Modeling Sequential Elements with Verilog. Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: jimmy@ee.ncu.edu.tw. Sequential Circuit Modeling Sequential Elements with Verilog Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: jimmy@ee.ncu.edu.tw 4-1 Sequential Circuit Outputs are functions of inputs and present states of storage elements

More information

Universidad Interamericana de Puerto Rico Recinto de Bayamón Escuela de Ingeniería Departamento de Ingeniería Eléctrica

Universidad Interamericana de Puerto Rico Recinto de Bayamón Escuela de Ingeniería Departamento de Ingeniería Eléctrica Universidad Interamericana de Puerto Rico Recinto de Bayamón Escuela de Ingeniería Departamento de Ingeniería Eléctrica Inventario de Materiales Edificio: Escuela de Ingeniería Oficina o Salón: G-221 Descripción(Circuitos

More information

COMBINATIONAL CIRCUITS

COMBINATIONAL CIRCUITS COMBINATIONAL CIRCUITS http://www.tutorialspoint.com/computer_logical_organization/combinational_circuits.htm Copyright tutorialspoint.com Combinational circuit is a circuit in which we combine the different

More information

The components. E3: Digital electronics. Goals:

The components. E3: Digital electronics. Goals: E3: Digital electronics Goals: Basic understanding of logic circuits. Become familiar with the most common digital components and their use. Equipment: 1 st. LED bridge 1 st. 7-segment display. 2 st. IC

More information

Counters. Present State Next State A B A B 0 0 0 1 0 1 1 0 1 0 1 1 1 1 0 0

Counters. Present State Next State A B A B 0 0 0 1 0 1 1 0 1 0 1 1 1 1 0 0 ounter ounters ounters are a specific type of sequential circuit. Like registers, the state, or the flip-flop values themselves, serves as the output. The output value increases by one on each clock cycle.

More information

Gates, Circuits, and Boolean Algebra

Gates, Circuits, and Boolean Algebra Gates, Circuits, and Boolean Algebra Computers and Electricity A gate is a device that performs a basic operation on electrical signals Gates are combined into circuits to perform more complicated tasks

More information

Digital Systems. Syllabus 8/18/2010 1

Digital Systems. Syllabus 8/18/2010 1 Digital Systems Syllabus 1 Course Description: This course covers the design and implementation of digital systems. Topics include: combinational and sequential digital circuits, minimization methods,

More information

DEPARTMENT OF INFORMATION TECHNLOGY

DEPARTMENT OF INFORMATION TECHNLOGY DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA Affiliated to Mahamaya Technical University, Noida Approved by AICTE DEPARTMENT OF INFORMATION TECHNLOGY Lab Manual for Computer Organization Lab ECS-453

More information

CpE358/CS381. Switching Theory and Logical Design. Class 4

CpE358/CS381. Switching Theory and Logical Design. Class 4 Switching Theory and Logical Design Class 4 1-122 Today Fundamental concepts of digital systems (Mano Chapter 1) Binary codes, number systems, and arithmetic (Ch 1) Boolean algebra (Ch 2) Simplification

More information

Analog & Digital Electronics Course No: PH-218

Analog & Digital Electronics Course No: PH-218 Analog & Digital Electronics Course No: PH-218 Lec-28: Logic Gates & Family Course Instructor: Dr. A. P. VAJPEYI Department of Physics, Indian Institute of Technology Guwahati, India 1 Digital Logic Gates

More information

RAM & ROM Based Digital Design. ECE 152A Winter 2012

RAM & ROM Based Digital Design. ECE 152A Winter 2012 RAM & ROM Based Digital Design ECE 152A Winter 212 Reading Assignment Brown and Vranesic 1 Digital System Design 1.1 Building Block Circuits 1.1.3 Static Random Access Memory (SRAM) 1.1.4 SRAM Blocks in

More information

DM9368 7-Segment Decoder/Driver/Latch with Constant Current Source Outputs

DM9368 7-Segment Decoder/Driver/Latch with Constant Current Source Outputs DM9368 7-Segment Decoder/Driver/Latch with Constant Current Source Outputs General Description The DM9368 is a 7-segment decoder driver incorporating input latches and constant current output circuits

More information

EE360: Digital Design I Course Syllabus

EE360: Digital Design I Course Syllabus : Course Syllabus Dr. Mohammad H. Awedh Fall 2008 Course Description This course introduces students to the basic concepts of digital systems, including analysis and design. Both combinational and sequential

More information

A Digital Timer Implementation using 7 Segment Displays

A Digital Timer Implementation using 7 Segment Displays A Digital Timer Implementation using 7 Segment Displays Group Members: Tiffany Sham u2548168 Michael Couchman u4111670 Simon Oseineks u2566139 Caitlyn Young u4233209 Subject: ENGN3227 - Analogue Electronics

More information

1.1 Silicon on Insulator a brief Introduction

1.1 Silicon on Insulator a brief Introduction Table of Contents Preface Acknowledgements Chapter 1: Overview 1.1 Silicon on Insulator a brief Introduction 1.2 Circuits and SOI 1.3 Technology and SOI Chapter 2: SOI Materials 2.1 Silicon on Heteroepitaxial

More information

Module 3: Floyd, Digital Fundamental

Module 3: Floyd, Digital Fundamental Module 3: Lecturer : Yongsheng Gao Room : Tech - 3.25 Email : yongsheng.gao@griffith.edu.au Structure : 6 lectures 1 Tutorial Assessment: 1 Laboratory (5%) 1 Test (20%) Textbook : Floyd, Digital Fundamental

More information

A Lesson on Digital Clocks, One Shots and Counters

A Lesson on Digital Clocks, One Shots and Counters A Lesson on Digital Clocks, One Shots and Counters Topics Clocks & Oscillators LM 555 Timer IC Crystal Oscillators Selection of Variable Resistors Schmitt Gates Power-On Reset Circuits One Shots Counters

More information

Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill

Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill Objectives: Analyze the operation of sequential logic circuits. Understand the operation of digital counters.

More information

Semiconduttori - C-MOS

Semiconduttori - C-MOS 4000 nor gate 2010-0005 TC4000BP TOS DIL14 4001 nor gate 2010-0010 CD4001BE TEX DIL14 2010-0015 HCF4001BEY STM DIL14 2010-0020 HCF4001BM1 STM SOIC14 2010-0011 HEF4001BP PHS DIL14 4002 nor gate 2010-0025

More information

Digital Electronics Part I Combinational and Sequential Logic. Dr. I. J. Wassell

Digital Electronics Part I Combinational and Sequential Logic. Dr. I. J. Wassell Digital Electronics Part I Combinational and Sequential Logic Dr. I. J. Wassell Introduction Aims To familiarise students with Combinational logic circuits Sequential logic circuits How digital logic gates

More information

Design Example: Counters. Design Example: Counters. 3-Bit Binary Counter. 3-Bit Binary Counter. Other useful counters:

Design Example: Counters. Design Example: Counters. 3-Bit Binary Counter. 3-Bit Binary Counter. Other useful counters: Design Eample: ers er: a sequential circuit that repeats a specified sequence of output upon clock pulses. A,B,C,, Z. G, O, T, E, R, P, S,!.,,,,,,,7. 7,,,,,,,.,,,,,,,,,,,. Binary counter: follows the binary

More information

Counters and Decoders

Counters and Decoders Physics 3330 Experiment #10 Fall 1999 Purpose Counters and Decoders In this experiment, you will design and construct a 4-bit ripple-through decade counter with a decimal read-out display. Such a counter

More information

ELECTRICAL/ELECTRONICS ENGINEERING TECHNOLOGY (EET) BODY OF KNOWLEDGE

ELECTRICAL/ELECTRONICS ENGINEERING TECHNOLOGY (EET) BODY OF KNOWLEDGE ELECTRICAL/ELECTRONICS ENGINEERING TECHNOLOGY (EET) BODY OF KNOWLEDGE Page 2 of 11 1 Basic Concepts of Electricity 1.1 Systems of Units and Notation 1.1.1 Units Systems and Fundamental Units. 1.1.2 Standard

More information

2011, The McGraw-Hill Companies, Inc. Chapter 3

2011, The McGraw-Hill Companies, Inc. Chapter 3 Chapter 3 3.1 Decimal System The radix or base of a number system determines the total number of different symbols or digits used by that system. The decimal system has a base of 10 with the digits 0 through

More information

A Lesson on Digital Clocks, One Shots and Counters

A Lesson on Digital Clocks, One Shots and Counters A Lesson on Digital Clocks, One Shots and Counters Topics Clocks & Oscillators LM 555 Timer IC Crystal Oscillators Selection of Variable Resistors Schmitt Gates Power-On Reset Circuits One Shots Counters

More information

Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) Institute of Technology. Electronics & Communication Engineering. B.

Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) Institute of Technology. Electronics & Communication Engineering. B. Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) Institute of Technology Electronics & Communication Engineering B.Tech III Semester 1. Electronic Devices Laboratory 2. Digital Logic Circuit Laboratory 3.

More information

EXPERIMENT 8. Flip-Flops and Sequential Circuits

EXPERIMENT 8. Flip-Flops and Sequential Circuits EXPERIMENT 8. Flip-Flops and Sequential Circuits I. Introduction I.a. Objectives The objective of this experiment is to become familiar with the basic operational principles of flip-flops and counters.

More information

Gates & Boolean Algebra. Boolean Operators. Combinational Logic. Introduction

Gates & Boolean Algebra. Boolean Operators. Combinational Logic. Introduction Introduction Gates & Boolean lgebra Boolean algebra: named after mathematician George Boole (85 864). 2-valued algebra. digital circuit can have one of 2 values. Signal between and volt =, between 4 and

More information

CMOS, the Ideal Logic Family

CMOS, the Ideal Logic Family CMOS, the Ideal Logic Family INTRODUCTION Let s talk about the characteristics of an ideal logic family. It should dissipate no power, have zero propagation delay, controlled rise and fall times, and have

More information

IC Overview: 74HC family

IC Overview: 74HC family IC Overview: 74HC family Part no Description Manufacture 74HC HCMOS family characteristics 74HC00 Quad 2-input NAND gate 74HC01 Quad. 2-input NAND Gates (with open drain outputs) Hitachi Semiconductor

More information

Chapter 7 Memory and Programmable Logic

Chapter 7 Memory and Programmable Logic NCNU_2013_DD_7_1 Chapter 7 Memory and Programmable Logic 71I 7.1 Introduction ti 7.2 Random Access Memory 7.3 Memory Decoding 7.5 Read Only Memory 7.6 Programmable Logic Array 77P 7.7 Programmable Array

More information

Sistemas Digitais I LESI - 2º ano

Sistemas Digitais I LESI - 2º ano Sistemas Digitais I LESI - 2º ano Lesson 6 - Combinational Design Practices Prof. João Miguel Fernandes (miguel@di.uminho.pt) Dept. Informática UNIVERSIDADE DO MINHO ESCOLA DE ENGENHARIA - PLDs (1) - The

More information

Course Requirements & Evaluation Methods

Course Requirements & Evaluation Methods Course Title: Logic Circuits Course Prefix: ELEG Course No.: 3063 Sections: 01 & 02 Department of Electrical and Computer Engineering College of Engineering Instructor Name: Justin Foreman Office Location:

More information

Combinational Logic Design

Combinational Logic Design Chapter 4 Combinational Logic Design The foundations for the design of digital logic circuits were established in the preceding chapters. The elements of Boolean algebra (two-element switching algebra

More information

CHAPTER 3 Boolean Algebra and Digital Logic

CHAPTER 3 Boolean Algebra and Digital Logic CHAPTER 3 Boolean Algebra and Digital Logic 3.1 Introduction 121 3.2 Boolean Algebra 122 3.2.1 Boolean Expressions 123 3.2.2 Boolean Identities 124 3.2.3 Simplification of Boolean Expressions 126 3.2.4

More information

DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute. 2nd (Spring) term 2012/2013

DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute. 2nd (Spring) term 2012/2013 DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 4. LECTURE: COUNTERS AND RELATED 2nd (Spring) term 2012/2013 1 4. LECTURE: COUNTERS AND RELATED 1. Counters,

More information

Memory Elements. Combinational logic cannot remember

Memory Elements. Combinational logic cannot remember Memory Elements Combinational logic cannot remember Output logic values are function of inputs only Feedback is needed to be able to remember a logic value Memory elements are needed in most digital logic

More information

Academic year: 2015/2016 Code: IES-1-307-s ECTS credits: 6. Field of study: Electronics and Telecommunications Specialty: -

Academic year: 2015/2016 Code: IES-1-307-s ECTS credits: 6. Field of study: Electronics and Telecommunications Specialty: - Module name: Digital Electronics and Programmable Devices Academic year: 2015/2016 Code: IES-1-307-s ECTS credits: 6 Faculty of: Computer Science, Electronics and Telecommunications Field of study: Electronics

More information

Fig1-1 2-bit asynchronous counter

Fig1-1 2-bit asynchronous counter Digital electronics 1-Sequential circuit counters Such a group of flip- flops is a counter. The number of flip-flops used and the way in which they are connected determine the number of states and also

More information

HCF4028B BCD TO DECIMAL DECODER

HCF4028B BCD TO DECIMAL DECODER BCD TO DECIMAL DECODER BCD TO DECIMAL DECODING OR BINARY TO OCTAL DECODING HIGH DECODED OUTPUT DRIVE CAPABILITY "POSITIVE LOGIC" INPUTS AND OUTPUTS: DECODED OUTPUTS GO HIGH ON SELECTION MEDIUM SPEED OPERATION

More information

MICROPROCESSOR. Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 1

MICROPROCESSOR. Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 1 MICROPROCESSOR A microprocessor incorporates the functions of a computer s central processing unit (CPU) on a single Integrated (IC), or at most a few integrated circuit. It is a multipurpose, programmable

More information

A Course Material on DIGITAL PRINCIPLES AND SYSTEM DESIGN

A Course Material on DIGITAL PRINCIPLES AND SYSTEM DESIGN A Course Material on By MS.G.MANJULA ASSISTANT PROFESSOR DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SASURIE COLLEGE OF ENGINEERING VIJAYAMANGALAM 638 56 QUALITY CERTIFICATE This is to certify

More information

Contents COUNTER. Unit III- Counters

Contents COUNTER. Unit III- Counters COUNTER Contents COUNTER...1 Frequency Division...2 Divide-by-2 Counter... 3 Toggle Flip-Flop...3 Frequency Division using Toggle Flip-flops...5 Truth Table for a 3-bit Asynchronous Up Counter...6 Modulo

More information

3.Basic Gate Combinations

3.Basic Gate Combinations 3.Basic Gate Combinations 3.1 TTL NAND Gate In logic circuits transistors play the role of switches. For those in the TTL gate the conducting state (on) occurs when the baseemmiter signal is high, and

More information

Interfacing To Alphanumeric Displays

Interfacing To Alphanumeric Displays Interfacing To Alphanumeric Displays To give directions or data values to users, many microprocessor-controlled instruments and machines need to display letters of the alphabet and numbers. In systems

More information

CHAPTER 11: Flip Flops

CHAPTER 11: Flip Flops CHAPTER 11: Flip Flops In this chapter, you will be building the part of the circuit that controls the command sequencing. The required circuit must operate the counter and the memory chip. When the teach

More information

AP331A XX G - 7. Lead Free G : Green. Packaging (Note 2)

AP331A XX G - 7. Lead Free G : Green. Packaging (Note 2) Features General Description Wide supply Voltage range: 2.0V to 36V Single or dual supplies: ±1.0V to ±18V Very low supply current drain (0.4mA) independent of supply voltage Low input biasing current:

More information

Diploma in Computer Hardware Maintenance and Network Technologies(DCHMNT)

Diploma in Computer Hardware Maintenance and Network Technologies(DCHMNT) Diploma in Computer Hardware Maintenance and Network Technologies(DCHMNT) Duration: One year including 3 months industrial Training The examination and evaluation pattern : Same as BTE The Structure of

More information

CHAPTER 16 MEMORY CIRCUITS

CHAPTER 16 MEMORY CIRCUITS CHPTER 6 MEMORY CIRCUITS Chapter Outline 6. atches and Flip-Flops 6. Semiconductor Memories: Types and rchitectures 6.3 Random-ccess Memory RM Cells 6.4 Sense-mplifier and ddress Decoders 6.5 Read-Only

More information

Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012

Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012 1 Secondary Task List 100 SAFETY 101 Demonstrate an understanding of State and School safety regulations. 102 Practice safety techniques for electronics work. 103 Demonstrate an understanding of proper

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SEET For a complete data sheet, please also download: The IC6 74C/CT/CU/CMOS ogic Family Specifications The IC6 74C/CT/CU/CMOS ogic Package Information The IC6 74C/CT/CU/CMOS ogic

More information

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package. PRESETTABLE BCD/DECADE UP/DOWN COUNTERS PRESETTABLE 4-BIT BINARY UP/DOWN COUNTERS The SN54/74LS90 is a synchronous UP/DOWN BCD Decade (842) Counter and the SN54/74LS9 is a synchronous UP/DOWN Modulo-6

More information

Read-only memory Implementing logic with ROM Programmable logic devices Implementing logic with PLDs Static hazards

Read-only memory Implementing logic with ROM Programmable logic devices Implementing logic with PLDs Static hazards Points ddressed in this Lecture Lecture 8: ROM Programmable Logic Devices Professor Peter Cheung Department of EEE, Imperial College London Read-only memory Implementing logic with ROM Programmable logic

More information

Gates. J. Robert Jump Department of Electrical And Computer Engineering Rice University Houston, TX 77251

Gates. J. Robert Jump Department of Electrical And Computer Engineering Rice University Houston, TX 77251 Gates J. Robert Jump Department of Electrical And Computer Engineering Rice University Houston, T 77251 1. The Evolution of Electronic Digital Devices...1 2. Logical Operations and the Behavior of Gates...2

More information

Programming Logic controllers

Programming Logic controllers Programming Logic controllers Programmable Logic Controller (PLC) is a microprocessor based system that uses programmable memory to store instructions and implement functions such as logic, sequencing,

More information

MM74HC4538 Dual Retriggerable Monostable Multivibrator

MM74HC4538 Dual Retriggerable Monostable Multivibrator MM74HC4538 Dual Retriggerable Monostable Multivibrator General Description The MM74HC4538 high speed monostable multivibrator (one shots) is implemented in advanced silicon-gate CMOS technology. They feature

More information

Lab 1: Study of Gates & Flip-flops

Lab 1: Study of Gates & Flip-flops 1.1 Aim Lab 1: Study of Gates & Flip-flops To familiarize with circuit implementations using ICs and test the behavior of different logic gates and Flip-flops. 1.2 Hardware Requirement a. Equipments -

More information

The string of digits 101101 in the binary number system represents the quantity

The string of digits 101101 in the binary number system represents the quantity Data Representation Section 3.1 Data Types Registers contain either data or control information Control information is a bit or group of bits used to specify the sequence of command signals needed for

More information

GLOLAB Two Wire Stepper Motor Positioner

GLOLAB Two Wire Stepper Motor Positioner Introduction A simple and inexpensive way to remotely rotate a display or object is with a positioner that uses a stepper motor to rotate it. The motor is driven by a circuit mounted near the motor and

More information

Sequential 4-bit Adder Design Report

Sequential 4-bit Adder Design Report UNIVERSITY OF WATERLOO Faculty of Engineering E&CE 438: Digital Integrated Circuits Sequential 4-bit Adder Design Report Prepared by: Ian Hung (ixxxxxx), 99XXXXXX Annette Lo (axxxxxx), 99XXXXXX Pamela

More information

Karnaugh Maps & Combinational Logic Design. ECE 152A Winter 2012

Karnaugh Maps & Combinational Logic Design. ECE 152A Winter 2012 Karnaugh Maps & Combinational Logic Design ECE 52A Winter 22 Reading Assignment Brown and Vranesic 4 Optimized Implementation of Logic Functions 4. Karnaugh Map 4.2 Strategy for Minimization 4.2. Terminology

More information

Lecture 8: Synchronous Digital Systems

Lecture 8: Synchronous Digital Systems Lecture 8: Synchronous Digital Systems The distinguishing feature of a synchronous digital system is that the circuit only changes in response to a system clock. For example, consider the edge triggered

More information

W04 Transistors and Applications. Yrd. Doç. Dr. Aytaç Gören

W04 Transistors and Applications. Yrd. Doç. Dr. Aytaç Gören W04 Transistors and Applications W04 Transistors and Applications ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors

More information

BOOLEAN ALGEBRA & LOGIC GATES

BOOLEAN ALGEBRA & LOGIC GATES BOOLEAN ALGEBRA & LOGIC GATES Logic gates are electronic circuits that can be used to implement the most elementary logic expressions, also known as Boolean expressions. The logic gate is the most basic

More information

PART B QUESTIONS AND ANSWERS UNIT I

PART B QUESTIONS AND ANSWERS UNIT I PART B QUESTIONS AND ANSWERS UNIT I 1. Explain the architecture of 8085 microprocessor? Logic pin out of 8085 microprocessor Address bus: unidirectional bus, used as high order bus Data bus: bi-directional

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 043

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 043 INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING Course Title VLSI DESIGN Course Code 57035 Regulation R09 COURSE DESCRIPTION Course Structure

More information

ELEC 2210 - EXPERIMENT 1 Basic Digital Logic Circuits

ELEC 2210 - EXPERIMENT 1 Basic Digital Logic Circuits Objectives ELEC - EXPERIMENT Basic Digital Logic Circuits The experiments in this laboratory exercise will provide an introduction to digital electronic circuits. You will learn how to use the IDL-00 Bit

More information

Lecture-3 MEMORY: Development of Memory:

Lecture-3 MEMORY: Development of Memory: Lecture-3 MEMORY: It is a storage device. It stores program data and the results. There are two kind of memories; semiconductor memories & magnetic memories. Semiconductor memories are faster, smaller,

More information

DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 5. LECTURE: REGISTERS AND RELATED

DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 5. LECTURE: REGISTERS AND RELATED DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 5. LECTURE: REGISTERS AND RELATED 2nd (Spring) term 22/23 5. LECTURE: REGISTERS. Storage registers 2. Shift

More information

1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1.

1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1. File: chap04, Chapter 04 1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1. 2. True or False? A gate is a device that accepts a single input signal and produces one

More information

V05: Diploma in Computer Hardware maintenance and Network Technologies (Windows 2000 Server) (32 CP)

V05: Diploma in Computer Hardware maintenance and Network Technologies (Windows 2000 Server) (32 CP) V05: Diploma in Computer Hardware maintenance and Network Technologies (Windows 2000 Server) (32 CP) DHW101: Digital Computer Electronics, Theory (4CP) DHW 102:Digital Computer Electronics, Practical (4CP)

More information

Two-level logic using NAND gates

Two-level logic using NAND gates CSE140: Components and Design Techniques for Digital Systems Two and Multilevel logic implementation Tajana Simunic Rosing 1 Two-level logic using NND gates Replace minterm ND gates with NND gates Place

More information

Asynchronous Counters. Asynchronous Counters

Asynchronous Counters. Asynchronous Counters Counters and State Machine Design November 25 Asynchronous Counters ENGI 25 ELEC 24 Asynchronous Counters The term Asynchronous refers to events that do not occur at the same time With respect to counter

More information

74AC191 Up/Down Counter with Preset and Ripple Clock

74AC191 Up/Down Counter with Preset and Ripple Clock 74AC191 Up/Down Counter with Preset and Ripple Clock General Description The AC191 is a reversible modulo 16 binary counter. It features synchronous counting and asynchronous presetting. The preset feature

More information

Chapter 4 Register Transfer and Microoperations. Section 4.1 Register Transfer Language

Chapter 4 Register Transfer and Microoperations. Section 4.1 Register Transfer Language Chapter 4 Register Transfer and Microoperations Section 4.1 Register Transfer Language Digital systems are composed of modules that are constructed from digital components, such as registers, decoders,

More information

Machine Architecture and Number Systems. Major Computer Components. Schematic Diagram of a Computer. The CPU. The Bus. Main Memory.

Machine Architecture and Number Systems. Major Computer Components. Schematic Diagram of a Computer. The CPU. The Bus. Main Memory. 1 Topics Machine Architecture and Number Systems Major Computer Components Bits, Bytes, and Words The Decimal Number System The Binary Number System Converting from Decimal to Binary Major Computer Components

More information