EXERCISES IN LINEAR ALGEBRA. 1. Matrix operations

Size: px
Start display at page:

Download "EXERCISES IN LINEAR ALGEBRA. 1. Matrix operations"

Transcription

1 EXERCISES IN LINEAR ALGEBRA 1 Matrix operations (1) Put D = diag(d 1, d 2,, d n ) Let A = (a ij ) be an n n matrix Find DA and AD When is D invertible? (2) An n n matrix A = (a ij ) is called upper triangular if a ij = 0 whenever i > j Prove that product of upper triangular matrices is upper triangular (3) Let A be an m n matrix and B be an n p matrix Let A i denote the i th row of A and A j denote the j th column of A Show that AB = (AB 1, AB 2,, AB p ) and AB = (A 1 B, A 2 B,, A m B) t (4) Prove that a matrix that has a zero row or a zero column is not invertible (5) A square matrix A is called nilpotent if A k = 0 for some positive integer k Show that if A is nilpotent then I + A is invertible (6) Find infinitely many matrices B such that BA = I 2 where A = Show that there is no matrix C such that AC = I 3 (7) Let A and B be square matrices Let tr(a) denote the trace of A which is the sum of its diagonal entries Show that for two n n matrices A and B, tr(a + B) = tr(a) + tr(b) and tr(ab) = tr(ba) Show that if B is invertible then tr(a) = tr(bab 1 ) (8) Show that the equation AB BA = I has no solutions in R n n (9) Show that for any matrix A, AA t is symmetric Show that every square matrix is uniquely a sum of a symmetric and skew-symmetric matrix (10) Show that every matrix in C n n is uniquely a sum of a Hermitian and skew-hermitian matrix (11) Show that inverse of an invertible symmetric matrix is also symmetric (12) Consider a system of linear equations Ax = b where A R m n, x = (x 1, x 2,, x n ) t and b R m (a) Show that if Ax = b has more than one solution then it has infinitely many (b) Prove that if there is a complex solution then there is a real solution (13) Find all 2 2 matrices A such that A 2 = I 1

2 2 (14) Find all 2 2 matrices A such that A 2 = 0 (15) Show that if A 3 A + I = 0 then A is invertible 2 Vector spaces, subspaces, basis and dimension (16) Determine which of the following subsets of R n are subspaces? (a) V 1 = {(x 1, x 2,, x n ) x 1 = 1} (b) V 2 = {(x 1, x 2,, x n ) x 1 = 0} (c) V 3 = {(x 1, x 2,, x n ) n i=1 x iy i = 0} Here (y 1, y 2,, y n ) R n } is a fixed vector (17) Let V = C(R) = {f : R R f is continuous} Determine which of the following are subspaces of C(R) (a) V 4 = {f V f(1/2) is a rational number} (b) V 5 = {f V 1 f(t)dt = 0} 0 (c) V 5 = {f V a d2 f dt 2 + b df + cf = 0} Here a, b, c R are fixed dt (18) Find a basis of the subspace of R n of the solutions of the equation x 1 +x 2 + +x n = 0 (19) Show that the vector space F x] of all polynomials over a field F is not finitely generated (20) Is the vector space C(R) finite dimensional? (21) Show that the set {1, (x a), (x a) 2, (x a) 3,, (x a) n } for a fixed a F is a basis of the vector space P n (F ) of all polynomials with coefficients in F of degree atmost n (22) Let u 1, u 2, u n be linearly independent vectors in a vector space V Show that any vector in L(u 1, u 2,, u n ) is unique linear combination of u 1, u 2,, u n (23) Describe all the subspaces of R 3 (24) Let U and V be subspaces of a vector space W Suppose that U V = (0) and dim W = dim U + dim V Show that any w W there exist unique vectors u U and v V such that w = u + v (25) What is the dimension of the Q-vector space R? (26) Determine whether (1, 1, 1) L{(1, 3, 4), (4, 0, 1), (3, 1, 2)} (27) Prove that every subspace W of a finitely generated vector space V is finitely generated Prove that dim W dim V with equality if and only if V = W (28) Let F be a field with two elements Let V be a two dimensional vector space over F Count the number of elements of V, the number of subspaces of V and the number of different bases (29) Let S and T be two dimensional subspaces of R 3 Show that dim(s T ) 1 (30) Find bases of the following vector spaces: (a) the vector space of all n n real upper triangular matrices, (b) the vector space of all real n n symmetric matrices, (c)

3 the vector space of all real n n skew-symmetric matrices and (d) the vector space of all homogeneous polynomials of degree d in n variables together with the zero polynomial 3 Systems of linear equations, rank of a matrix 3 (31) Test for solvability of the following systems of equations, and if solvable, find all the solutions (a) (b) x 1 + x 2 + x 3 = 8 x 1 + x 2 + x 4 = 1 x 1 + x 3 + x 4 = 14 x 2 + x 3 + x 4 = 14 x 1 + 2x 2 + 4x 3 = 1 2x 1 + x 2 + 5x 3 = 0 3x 1 x 2 + 5x 3 = 0 (32) For what vaules of a does the following system of equations have a solution? 3x 1 x 2 + ax 3 = 1 3x 1 x 2 + x 3 = 5 (33) Prove that a system of m homogeneous linear equations in n > m unknowns always has a nontrivial solution (34) Show that a system of homogeneous linear equations in n unknowns has a nontrivial solution if and only if the coefficient matrix has rank less than n (35) Find a basis of the solution space of the system 3x 1 x 2 + x 4 = 0 x 1 + x 2 + x 3 + x 4 = 0 (36) Find a point in R 3 where the line joining the points (1, 1, 0) and ( 2, 1, 1) pierces the plane 3x 1 x 2 + x 3 1 = 0 (37) Using row and column operations find the rank of the matrix

4 4 (38) Find the rank of an upper triangular matrix in terms of the diagonal entries (39) Let A be an m n matrix and B be an n r matrix (a) Show that the columns of AB are linear combinations of the columns A Hence prove that rank(ab) rank(a) (b) Using (a) and the fact that rank of a matrix and its transpose are equal, prove that rank(ab) rank(b) (40) Let A be an n n matrix such that rank(a) = rank(a 2 ) Find all the vectors in the column space of A which are solutions to Ax = 0 4 Linear Transformations (41) Let F be a field and F n denote the vector space F n 1 Let T : F 2 F 2 be the linear transformation T ((x, y) t ) = ( 3x + y, x y) t Let U : F 2 F 2 be the linear transformation U((x, y) t ) = (x + y, x) t Describe the linear transformations UT, T U and T 2 + U Is T U = UT? (42) Test whether the linear transformations T : R 2 R 2, T ((x 1, x 2 ) t ) = (y 1, y 2 ) t defined below are one-to-one (a) y 1 = 3x 1 x 2, y 2 = x 1 + x 2 (b) y 1 = x 1 + 2x 2 + x 3, y 2 = x 1 + x 2, y 3 = x 2 + x 3 (43) Let I : Rx] Rx] be the linear map I(f(x)) = x f(x)dx Let D : Rx] Rx] 0 be the linear map D(f(x)) = f (x) Show that DI = I but neither D nor I are isomorphisms Is D (resp I) one-to-one or onto? Find the ranks and nullities of D and I (44) Let S, T : R 2 R 2 be the linear maps defined by the equations S(u 1 ) = u 1 u 2, S(u 2 ) = u 1 and T (u 1 ) = u 2, T (u 2 ) = u 1, where B = {u 1, u 2 } is a basis of R 2 Let C = {w 1 = 3u 1 u 2, w 2 = u 1 + u 2 } Show that C is a basis of R 2 Find the matrices M B B (S), M B B (T ), M C C (S), M C C (S) Find invertible matrices X in each case such that X 1 AX = A where A is the matrix of the transformation with respect to the old basis and A is the matrix of the transformation with respect to the new basis (45) Let B = {u 1, u 2 } be a basis of R 2 Let S and T be the linear maps defined by the equations S(u 1 ) = u 1 + u 2, S(u 2 ) = u 1 u 2 and T (u 1 ) = u 1 u 2, T (u 2 ) = 2u 2 Find the rank and nullity of S and T Which of these linear maps are invertible? (46) Let V be a vector space of dimension n and T : V V be a linear map Let A be the matrix of T with respect to any basis of V Show that rank(t ) = rank(a)

5 (47) Let V be an n-dimensional vector space Let T : V V be a linear transformation such that the nullspace and the range of T are same Show that n is even Give an example of such a map for n = 2 (48) Let T be the linear operator on R 3 defined by the equations: T ((x 1, x 2, x 3 ) t ) = (3x 1, x 1 x 2, 2x 1 + x 2 + x 3 ) t Is T invertible? If so, find a formula for T 1 (49) Let V = C 2 2 be the vector space of 2 2 complex matrices Let ] 1 1 B = 4 4 Define T : V V by T (A) = BA Find rank of T Describe T 2 (50) Let V be vector space with dim V = n and T : V V be a linear map such that rank T 2 = rank T Show that N(T ) T (V ) = (0) Give an example of such a map (51) Let T be a linear operator on a finite-dimensional vector space V Suppose that U is a linear operator on V such that T U = I Prove that T is invertible and U = T 1 (52) Let W be the real vector space all 2 2 complex Hermitian matrices Show that the map ] (x, y, z, t) t t + x y + iz y iz t x is an isomorphism of R 4 onto W (53) Let V and W be finite dimensional vector spaces over a field F Show that V is isomorphic to W if and only if dim V = dim W (54) Show that every matrix A F m n of rank one has the form A = uv t where u F m 1 and v F n 1 (55) Let V be the infinite-dimensional real vector space of all real sequences Let R : V V be the right shift operator R((a 1, a 2, )) = (0, a 1, a 2, ) and L : V V denote the left shift operator defined by L((a 1, a 2, )) = (a 2, a 3, ) Show that R is one-to-one but not onto and L is onto but not one-to-one (56) Let V be an n-dimensional vector space over a field F Let B = {u 1, u 2,, u n } be a basis of V Define the linear transformation T : V V by T (u i ) = u i+1 for i = 1, 2,, n 1 and T (u n ) = 0 (a) Find the matrix A = MB B (T ) (b) Show that T n 1 0 but T n = 0 (c) Let S be any linear operator on V such that S n = 0 but S n 1 0 Prove that there is a basis C of V such that MC C (S) = A (d) Let M, N F n n and M n = N n = 0 but M n 1 0 and N n 1 0 Show that M and N are similar matrices 5

6 6 (57) Let V be a two-dimensional vector space over a field F Let T be a linear operator on V so that the matrix of T with respect to a basis B of V is ] a b c d Show that T 2 (a + d)t + (ad bc)i = 0 (58) Let T : V W be a linear map of vector spaces Suppose V is infinite-dimensional Prove that at least one of N(T ) or T (V ) is infinite-dimensional (59) Let V be the vector space of all real functions continuous on a, b] Define T : V V by the equation T (f(x)) = b a f(t) sin(x t)dt for a x b Find the rank and nullity of T (60) Let V denote the vector space of all real functions continuous on the interval π, π] Let S denote the subspace of V consisting of all f satisfying π π f(t)dt = 0, π π f(t) cos tdt = 0, π π f(t) sin tdt = 0 Prove that S contains the functions f(x) = sin nx and f(x) = cos nx for all n = 2, 3, Show that S is infinite-dimensional 5 Inner product spaces (61) Let V be the subspace spanned by the vectors u 1 = ( 1, 1, 1, 1), u 2 = (1, 1, 1, 1), u 3 = (1, 1, 1, 1) in R 4 Find an orthonormal basis of V by Gram-Schmidt process (62) Find an orthonormal basis of the vector space V = P 3 (R) of all real polynomials of degree atmost 3 with the inner product < f, g >= 1 f(t)g(t)dt Take {1, x, 0 x2, x 3 } as a basis of V (63) Let V = C π, π] be the vector space of all continuous real valued functions defined on the interval π, π] Then V is an inner product space with the inner product < f, g >= π f(t)g(t)dt Show that the functions 1, sin nx, cos nx, n = 1, 2, form π an orthogonal set (64) Two vector spaces V and W with inner products < v 1, v 2 > and w 1, w 2 ] respectively, are said to be isometric if there is an isomorphism T : V W such that T (v 1 ), T (v 2 )] =< v 1, v 2 > for all v 1, v 2 V Such a T is called an isometry Let V be a finite-dimensional inner product space over a field F with inner product < u, v > Let B = {v 1, v 2,, v n } be an orthonormal basis of V Let T : V F n be the linear map T (v) = M B (v) Consider F n with standard inner product Show that T is an isometry

7 (65) Let V be a finite-dimensional inner product space Let W be a subspace Show that the set W = {v V < v, w >= 0 for all w W } is a subspace of V and dim W + dim W = dim V (66) Show that every subspace of C n with standard inner product is the subspace of all solutions to a system of homogeneous linear equations (67) Let A = (a ij ) R 2 2 For u, v R 2 define f A (u, v) = v t Au Show that f A is an inner product on R 2 if and only if A = A t, a 11 > 0, a 22 > 0 and det A > 0 (68) Let V = C n n with the inner product < A, B >= tr(ab ) Let D be the subspace of diagonal matrices Find D (69) Let W be a finite-dimensional subspace of an inner product space V Let E be the orthogonal projection of V onto W Prove that < Eu, v >=< u, Eu > for all u, v V (70) Let V be a finite-dimensional inner product space and let B = {u 1, u 2,, u n } be a basis of V Let T : V V be a linear map Put MB B(T ) = (a ij) Show that a ij =< T u j, u i > (71) Let A be a symmetric n n real matrix Let u, v V = R n 1 \ {0} and λ, µ R such that Au = λu and Av = µv Show that u v In other words, eigenvectors for distinct eigenvalues of symmetric real matrices are orthogonal (72) Let B = {u 1, u 2,, u n } be an orthonormal set of vectors in an inner product space V Show that for any v V, n i=1 v, u i 2 v 2 and equality holds if and only if v L(B) (73) Let p, q, r Z Show that the vectors (p, q, r) t, (q, r, p) t, (r, p, q) t R 3 are mutually orthogonal if and only if pq + qr + rp = 0 Show that in this case, the length of each of these vectors in p + q + r (74) Let U, V be subspaces of an inner product space W Let dim U < dim V Show that there is a nonzero vector in V lying in U (75) Without using Gram-Schmidt orthogonalization process, find the orthogonal projection of (1, 2, 2, 9) t R 4 in the column space of the matrix 7 A =

8 8 6 Determinants (76) Find the inverses of the following matrices by Gauss-Jordan method and the adjoint formula: ] a b, ad bc c d (77) Find the ranks of the following matrices by using determinants: ] , (78) Show that the equation of line through the distinct points (a, b) and (c, d) in R 2 is given by x y 1 a b 1 = 0 c d 1 (79) Show that the equation of the plane in R 3 passing through three non-collinear points (a, b, c); (d, e, f); (g, h, k) is given by x y z 1 a b c 1 d e f 1 g h k 1 = 0 (80) Show that the area of the triangle with vertices (a, b); (c, d); (e, f) in the plane is given by the absolute value of 1 a b 1 c d 1 6 e f 1 (81) Show that the volume of the tetrahedron with vertices (a 1, a 2, a 3 ), (b 1, b 2, b 3 ), (c 1, c 2, c 3 ), (d 1, d 2, d 3 ) is given by the absolute value of 1 6 a 1 a 2 a 3 1 b 1 b 2 b 3 1 c 1 c 2 c 3 1 d 1 d 2 d 3 1

9 (82) Prove the following formula for the van der Monde determinant: 1 a 1 a 2 1 a n a V n = 2 a 2 2 a n 1 2 = j a i ) i<j(a 1 a n a 2 n a n 1 n Hint: Use induction on n Multiply each column by a 1 and subtract it from the next column on the right, starting from the right hand side Prove that V n = (a n a 1 )(a n 1 a 1 ) (a 2 a 1 )V n 1 ] (83) If A C n n is a skew-symmetric matrix where n is odd, then show that det A = 0 (84) Let A be an orthogonal matrix, that is, AA t = I Show that for such a matrix, det A = ±1 Give an example of an orthogonal matrix with determinant 1 (85) A complex n n matrix is called unitary if AA = I Here A denotes the conjugate transpose of A If A is unitary, show that det A = 1 (86) Let V = F n n Let B V Define T B : V V by T B (A) = AB BA Show that det T B = 0 (87) Let A, B F n n where A is invertible Show that there are atmost n scalars for which ca + B is not invertible (88) Let V = F n n and B V Define L B, R B : V V by L B (A) = BA and R B (A) = AB for all A V Show that det R B = det L B = (det B) n (89) Let V = F 1 n and let T : V V be a linear operator Define f(u 1, u 2,, u n ) = det(t u 1, T u 2,, T u n ) (1) Show that f is multilinear and alternating (2) Let B be any ordered basis of V and A = T ] B Show that det A = det T = f(e 1, e 2,, e n ) (90) Let B V = C n n Define the linear operator M B : V V by M B (A) = BAB Show that det M B = det B 2n 9 7 Diagonalization of matrices and operators Let V be an n-dimensional vector space over a field F and T be a linear operator on V in the following problems unless stated otherwise Eigenvalues and eigenvectors (91) Show that similar matrices have same characteristic polynomials and hence have same eigenvalues and traces (92) Find the eigenvalues and eigenspaces of the following matrices and determine if they are diagonalizable: ], ]

10 10 (93) Let f(x) F x] Show that α is an eigenvalue of T if and only if f(α) is an eigenvalue of f(t ) (94) Let A, B F n n Prove that if I AB is invertible then I BA is invertible and (I BA) 1 = I + B(I AB) 1 A (95) Use the result of the above exercise to show that AB and BA have the same characteristic polynomials (96) Let T be an invertible linear operator on a vector space V Show that λ is an eigenvalue of T if and only if λ 0 and λ 1 is an eigenvalue of T 1 (97) Let N C 2 2 and N 2 = 0 Prove that either N = 0 or N is similar over C to (98) Let A C 2 2 Show that A is similar over C to a matrix of one of the two types: ] ] a 0 a 0, 0 b 1 a (99) Let V denote the vector space of all continuous real valued functions defined on R Let T be the linear operator T (f(x)) = x f(t)dt Show that T has no eigenvalues 0 (100) Let A be an n n diagonal matrix with characteristic polynomial C A (x) = (x c 1 ) d 1 (x c 2 ) d 2 (x c k ) d k ] where c 1, c 2,, c k are distinct Let V be the vector space of all n n matrices B such that AB = BA Prove that dim V = d d d 2 k (101) Find the minimal polynomials of ] 2 0, 3 1 Minimal polynomials , (102) Find an n n nilpotent matrix with minimal polynomial x 2 (103) Show that the following matrices have the same minimal polynomials: , (104) Prove that a linear operator T defined on a finite dimensional vector space V is invertible if and only if its minimal polynomial has a nonzero constant term Describe how to find T 1 from its minimal polynomial (105) Let T be a nilpotent operator on V Show that T n = 0

11 (106) Let V = F n n Let A V be a fixed matrix Let T be the linear operator on V defined by T (B) = AB Show that T and A have same minimal polynomial (107) Let m(x) be the minimal polynomial of T and f(x) F x] Let d(x) be the greatest common divisor of m(x) and f(x) Show that the nullspaces of f(t ) and d(t ) are equal (108) Show that the matrix Diagonalization is similar to a diagonal matrix in C 3 3 but not in R 3 3 (109) Let T have n distinct eigenvalues Show that T is diagonalizable (110) Show that every matrix A such that A 2 = A is diagonalizable (111) Show that the orthogonal projection operators are diagonalizable (112) When is a nilpotent operator diagonalizable? (113) Show that the differentiation operator defined on the space of real polynomials of degree atmost n 1 is not diagonalizable (114) Let T : R 4 R 4 be the linear operator induced by the matrix a b c 0 Find necessary and sufficient conditions on a, b, c so that T is diagonalizable (115) Show that a 2 2 real symmetric matrix is diagonalizable 11 8 Projections and invariant direct sums Projections (116) Find a projection E : R 2 R 2 so that E(R 2 ) is the subspace spanned by (1, 1) t and N(E) is spanned by (1, 2) t (117) Let E 1 and E 2 be projections onto independent subspaces of a vector space V Is E 1 + E 2 a projection? (118) Is it true that a diagonalizable operator with only eigenvalues 0 and 1 is a projection? (119) Let E : V V be a projection Show that I E is a projection along E(V ) onto N(E)

12 12 (120) Let V be a real vector space and let E : V V be a projection Prove that I + E is invertible and find its inverse (121) Let F be a subfield of C Let E 1, E 2,, E k be projections of an n-dimensional F - vector space V such that E 1 + E E k = I Prove that E i E j = 0 for i j Hint: Use the fact that the trace of projection is its rank] Invariant subspaces and direct sums (122) Let E be a projection of V and T L(V, V ) Prove that E(V ) is invariant under T if and only if ET E = T E Prove that E(V ) and N(E) are invariant under T if and only if T E = ET (123) Let T : R 2 R 2 be the linear operator induced by the matrix Let W 1 = L(e 1 ) Prove that W 1 is invariant under T Show that there is no subspace W 2 of R 2 that is invariant under T and R 2 = W 1 W 2 (124) Let T be a linear operator on V Suppose V = W 1 W 2 W k where each W i is invariant under T Let T i be the restriction of T on W i (a) Prove that det T = det T 1 det T 2 det T k (b) Show that C T (x) = C T1 (x)c T2 (x) C Tk (x) (c) Show that the minimal polynomial of T is the least common multiple of the minimal polynomials of T 1, T 2,, T k (125) Let T be the linear operator on V = R 3 induced by the matrix A = ] Use Lagrange polynomials to find matrices E 1, E 2 R 3 3 so that A = E 1 +2E 2, E 1 + E 2 = I and E 1 E 2 = 0 (126) Let T be a linear operator on V which commutes with every projection operator on V What can you say about T? 9 Primary decomposition, cyclic subspaces and Jordan form (127) Let T be a linear operator on the finite-dimensional vector space V with characteristic polynomial c T (x) = k i=1 (x c i) d i and minimal polynomial m T (x) = k i=1 (x c i) r i Let W i = Null(T c i I) r i Show W i = {u V (T c i I) m u = 0 for some m depending on u} and dim W i = d i

13 (128) Let T be a rank one linear operator on a finite dimensional vector space V Show that either T is diagonalizable or T is nilpotent but not both (129) Show that two 3 3 nilpotent matrices over a field F are similar if and only if they have same minimal poynomials (130) Give an example of two 4 4 nilpotent matrices which have same minimal polynomials but which are not similar (131) Let T be the linear map induced on R 3 by the matrix diag(2, 2, 1) Show that T has no cyclic vector (132) Let T be a diagonalizable linear operator on an n-dimensional vector space V (a) If T has a cyclic vector, show that the characteristic polynomial has n distinct roots (b) If T has n distinct eigenvalues and {u 1, u 2,, u n } is a basis of eigenvectors then u = u 1 + u u n is a cyclic vector for T (133) Let A be a complex 5 5 matrix with characteristic polynomial f(x) = (x 2) 3 (x+7) 2 and minimal polynomial p(x) = (x 2) 2 (x + 7) What is the Jordan form of A? (134) Let V be the complex vector space of polynomials of degree atmost 3 Let D : V V be the differentiation operator Find the Jordan form of the matrix of D in the standard basis B = {1, x, x 2, x 3 } of V (135) Let N be a k k nilpotent matrix whose degree of nilpotency is k Show that N t is similar to N Show that every complex n n matrix is similar to its transpose (136) Let N V = F n n be a nonzero nilpotent matrix with N n = 0 but N n 1 0 Show that there is no matrix A V such that A 2 = N (137) Let N be a 3 3 complex nilpotent matrix Prove that A = I + 1N 1N 2 satisfies 2 8 A 2 = I + N We say that A is a square root of I + N Let N be any n n complex nilpotent matrix Find a formula for square root of I + N (138) Use Jordan form to prove that every invertible n n complex matrix has a square root (139) Find the Jordan canonical form over C of the matrices: ] (140) Let A R n n such that A 2 + I = 0 Prove that n = 2k for some k N and A is similar over R to the matrix in block form: ] 0 I I 0 where I is the k k identity matrix 13

14 14 10 Spectral Theory and its applications Linear functionals and adjoints (141) Let V be a finite dimensional inner product space and T a linear operator on V Show that T (V ) = Null(T ) (142) Let V be an inner product space and v, w V be fixed vectors Define T (u) = u, v w Show that T has an adjoint and find T Now let V = C n Find the rank of T and the matrix of T in standard basis of C n (143) Let V be the vector space of real polynomials of degree atmost 3, with the inner product f(t), g(t) = 1 f(t)g(t)dt Let r R and let T (f(t)) = f(r) Show that 0 T is a linear functional and find g(t) V such that T (f(t)) = f(t), g(t) for all f(t) V (144) Let D be the differentiation operator on V as defined in the problem 143 Find D (145) Let V = C n n with inner product A, B = tr(ab ) Let P V be a fixed invertible matrix and define T (A) = P 1 AP for all A V Find the adjoint of T (146) Let T be a linear operator on a finite dimensional inner product space V Show that T is self-adjoint if and only if T u, u R for all u V Unitary operators (147) Let V be as in problem 145 For a fixed M V, Define T (A) = MA Show that T is unitary if and only if M is a unitary matrix (148) Let V = R 2 with standard inner product Let U be a unitary operator on V Let E be the standard basis of V Show that ] ] cos θ sin θ cos θ sin θ U] E = U θ = or sin θ cos θ sin θ cos θ Find the adjoint of U θ (149) Let V = R 2 with standard inner product Let W be the plane spanned by u = (1, 1, 1) t and v = (1, 1, 2) t Let U be the anticlockwise rotation through an angle θ about the line perpendicular to W when seen from a high point above the plane Find the matrix of U in the standard basis of R 2 (150) Let V be a finite dimensional inner product space and W a subspace of V Then V = W W Let u = v + w where u V, v W, and w W Define U(u) = v w Prove that U is self-adjoint and unitary Prove that every self-adjoint unitary operator on V arises this way from a subspace W of V Let W be the linear span of (1, 0, 1) t Find the matrix of U in the standard basis

15 (151) Let V be an inner product space A function T : V V is called a rigid motion if T (u) T (v) = u v for all u, v V (a) Show that unitary operators are rigid motions (b) Let w V be fixed Define T w, translation by w, by T w (u) = u + w for all u V Show that translations are rigid motions (c) Let V = R 2 Let T be a rigid motion of V with T (0) = 0 Show that T is linear and unitary (d) Show that every rigid motion of R 2 is translation followed by a rotation or a reflection and a rotation (152) For Normal operators A = find an orthogonal matrix P such that P t AP is a diagonal matrix (153) Find an orthonormal basis of C 2 with standard inner product consisting of eigenvectors of the normal matrix A = 1 i i 1 (154) A linear operator T on an inner product space V is called positive if T is self-adjoint and T u, u is a positive real number Show that a normal linear operator T on a finite-dimensional inner product space V is self-adjoint, positive or unitary according as every eigenvalue of T is real, or positive or has absolute value 1 Find all positive and unitary operators on V (155) Show that a linear operator T defined on an inner product space V is normal if and only if T = T 1 + it 2 where T 1 and T 2 are self-adjoint operators on V such that T 1 T 2 = T 2 T 1 (156) Show that a real symmetric matrix has a real symmetric cube root (157) Let T be a normal operator on a finite dimensional inner product space Show that there is a complex polynomial f(x) such that T = f(t ) (158) Let A R n n be a symmetric matrix with A k = I for some k Show that A 2 = I (159) Show that if a normal linear operator T has spectral decomposition T = k i=1 a ie i then for any polynomial f(x) Cx], the spectral decomposition of f(t ) is given by f(t ) = k i=1 f(a i)e i (160) Using spectral theorem for symmetric matrices draw the conic section 9x xy + 16y 2 20x+15y = 0 and the quadric surface 7x 2 +7y 2 2z 2 +20yz 20zx 2xy = 36 ] 15

Inner Product Spaces and Orthogonality

Inner Product Spaces and Orthogonality Inner Product Spaces and Orthogonality week 3-4 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,

More information

LINEAR ALGEBRA. September 23, 2010

LINEAR ALGEBRA. September 23, 2010 LINEAR ALGEBRA September 3, 00 Contents 0. LU-decomposition.................................... 0. Inverses and Transposes................................. 0.3 Column Spaces and NullSpaces.............................

More information

Section 6.1 - Inner Products and Norms

Section 6.1 - Inner Products and Norms Section 6.1 - Inner Products and Norms Definition. Let V be a vector space over F {R, C}. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F,

More information

Applied Linear Algebra I Review page 1

Applied Linear Algebra I Review page 1 Applied Linear Algebra Review 1 I. Determinants A. Definition of a determinant 1. Using sum a. Permutations i. Sign of a permutation ii. Cycle 2. Uniqueness of the determinant function in terms of properties

More information

3. Let A and B be two n n orthogonal matrices. Then prove that AB and BA are both orthogonal matrices. Prove a similar result for unitary matrices.

3. Let A and B be two n n orthogonal matrices. Then prove that AB and BA are both orthogonal matrices. Prove a similar result for unitary matrices. Exercise 1 1. Let A be an n n orthogonal matrix. Then prove that (a) the rows of A form an orthonormal basis of R n. (b) the columns of A form an orthonormal basis of R n. (c) for any two vectors x,y R

More information

Similarity and Diagonalization. Similar Matrices

Similarity and Diagonalization. Similar Matrices MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

More information

Orthogonal Diagonalization of Symmetric Matrices

Orthogonal Diagonalization of Symmetric Matrices MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding

More information

1 Introduction to Matrices

1 Introduction to Matrices 1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns

More information

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1 (d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which

More information

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued). MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0

More information

T ( a i x i ) = a i T (x i ).

T ( a i x i ) = a i T (x i ). Chapter 2 Defn 1. (p. 65) Let V and W be vector spaces (over F ). We call a function T : V W a linear transformation form V to W if, for all x, y V and c F, we have (a) T (x + y) = T (x) + T (y) and (b)

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka kosecka@cs.gmu.edu http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa Cogsci 8F Linear Algebra review UCSD Vectors The length

More information

Chapter 6. Orthogonality

Chapter 6. Orthogonality 6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be

More information

by the matrix A results in a vector which is a reflection of the given

by the matrix A results in a vector which is a reflection of the given Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that

More information

Chapter 17. Orthogonal Matrices and Symmetries of Space

Chapter 17. Orthogonal Matrices and Symmetries of Space Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length

More information

LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar

More information

Math 550 Notes. Chapter 7. Jesse Crawford. Department of Mathematics Tarleton State University. Fall 2010

Math 550 Notes. Chapter 7. Jesse Crawford. Department of Mathematics Tarleton State University. Fall 2010 Math 550 Notes Chapter 7 Jesse Crawford Department of Mathematics Tarleton State University Fall 2010 (Tarleton State University) Math 550 Chapter 7 Fall 2010 1 / 34 Outline 1 Self-Adjoint and Normal Operators

More information

3. INNER PRODUCT SPACES

3. INNER PRODUCT SPACES . INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

More information

MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A =

MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A = MAT 200, Midterm Exam Solution. (0 points total) a. (5 points) Compute the determinant of the matrix 2 2 0 A = 0 3 0 3 0 Answer: det A = 3. The most efficient way is to develop the determinant along the

More information

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively. Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry

More information

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions. 3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in three-space, we write a vector in terms

More information

1 VECTOR SPACES AND SUBSPACES

1 VECTOR SPACES AND SUBSPACES 1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such

More information

Recall the basic property of the transpose (for any A): v A t Aw = v w, v, w R n.

Recall the basic property of the transpose (for any A): v A t Aw = v w, v, w R n. ORTHOGONAL MATRICES Informally, an orthogonal n n matrix is the n-dimensional analogue of the rotation matrices R θ in R 2. When does a linear transformation of R 3 (or R n ) deserve to be called a rotation?

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Chapter 6 Eigenvalues and Eigenvectors 6. Introduction to Eigenvalues Linear equations Ax D b come from steady state problems. Eigenvalues have their greatest importance in dynamic problems. The solution

More information

Linear Algebra Done Wrong. Sergei Treil. Department of Mathematics, Brown University

Linear Algebra Done Wrong. Sergei Treil. Department of Mathematics, Brown University Linear Algebra Done Wrong Sergei Treil Department of Mathematics, Brown University Copyright c Sergei Treil, 2004, 2009, 2011, 2014 Preface The title of the book sounds a bit mysterious. Why should anyone

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

Section 5.3. Section 5.3. u m ] l jj. = l jj u j + + l mj u m. v j = [ u 1 u j. l mj

Section 5.3. Section 5.3. u m ] l jj. = l jj u j + + l mj u m. v j = [ u 1 u j. l mj Section 5. l j v j = [ u u j u m ] l jj = l jj u j + + l mj u m. l mj Section 5. 5.. Not orthogonal, the column vectors fail to be perpendicular to each other. 5..2 his matrix is orthogonal. Check that

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

1 0 5 3 3 A = 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0

1 0 5 3 3 A = 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 Solutions: Assignment 4.. Find the redundant column vectors of the given matrix A by inspection. Then find a basis of the image of A and a basis of the kernel of A. 5 A The second and third columns are

More information

Lecture 1: Schur s Unitary Triangularization Theorem

Lecture 1: Schur s Unitary Triangularization Theorem Lecture 1: Schur s Unitary Triangularization Theorem This lecture introduces the notion of unitary equivalence and presents Schur s theorem and some of its consequences It roughly corresponds to Sections

More information

Notes on Symmetric Matrices

Notes on Symmetric Matrices CPSC 536N: Randomized Algorithms 2011-12 Term 2 Notes on Symmetric Matrices Prof. Nick Harvey University of British Columbia 1 Symmetric Matrices We review some basic results concerning symmetric matrices.

More information

MATH 551 - APPLIED MATRIX THEORY

MATH 551 - APPLIED MATRIX THEORY MATH 55 - APPLIED MATRIX THEORY FINAL TEST: SAMPLE with SOLUTIONS (25 points NAME: PROBLEM (3 points A web of 5 pages is described by a directed graph whose matrix is given by A Do the following ( points

More information

Similar matrices and Jordan form

Similar matrices and Jordan form Similar matrices and Jordan form We ve nearly covered the entire heart of linear algebra once we ve finished singular value decompositions we ll have seen all the most central topics. A T A is positive

More information

α = u v. In other words, Orthogonal Projection

α = u v. In other words, Orthogonal Projection Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v

More information

Factorization Theorems

Factorization Theorems Chapter 7 Factorization Theorems This chapter highlights a few of the many factorization theorems for matrices While some factorization results are relatively direct, others are iterative While some factorization

More information

Linear Algebra: Determinants, Inverses, Rank

Linear Algebra: Determinants, Inverses, Rank D Linear Algebra: Determinants, Inverses, Rank D 1 Appendix D: LINEAR ALGEBRA: DETERMINANTS, INVERSES, RANK TABLE OF CONTENTS Page D.1. Introduction D 3 D.2. Determinants D 3 D.2.1. Some Properties of

More information

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors 1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number

More information

Linear Algebra I. Ronald van Luijk, 2012

Linear Algebra I. Ronald van Luijk, 2012 Linear Algebra I Ronald van Luijk, 2012 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents 1. Vector spaces 3 1.1. Examples 3 1.2. Fields 4 1.3. The field of complex numbers. 6 1.4.

More information

x1 x 2 x 3 y 1 y 2 y 3 x 1 y 2 x 2 y 1 0.

x1 x 2 x 3 y 1 y 2 y 3 x 1 y 2 x 2 y 1 0. Cross product 1 Chapter 7 Cross product We are getting ready to study integration in several variables. Until now we have been doing only differential calculus. One outcome of this study will be our ability

More information

CS3220 Lecture Notes: QR factorization and orthogonal transformations

CS3220 Lecture Notes: QR factorization and orthogonal transformations CS3220 Lecture Notes: QR factorization and orthogonal transformations Steve Marschner Cornell University 11 March 2009 In this lecture I ll talk about orthogonal matrices and their properties, discuss

More information

4.5 Linear Dependence and Linear Independence

4.5 Linear Dependence and Linear Independence 4.5 Linear Dependence and Linear Independence 267 32. {v 1, v 2 }, where v 1, v 2 are collinear vectors in R 3. 33. Prove that if S and S are subsets of a vector space V such that S is a subset of S, then

More information

Linear Algebra Done Wrong. Sergei Treil. Department of Mathematics, Brown University

Linear Algebra Done Wrong. Sergei Treil. Department of Mathematics, Brown University Linear Algebra Done Wrong Sergei Treil Department of Mathematics, Brown University Copyright c Sergei Treil, 2004, 2009, 2011, 2014 Preface The title of the book sounds a bit mysterious. Why should anyone

More information

NOTES ON LINEAR TRANSFORMATIONS

NOTES ON LINEAR TRANSFORMATIONS NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all

More information

9 MATRICES AND TRANSFORMATIONS

9 MATRICES AND TRANSFORMATIONS 9 MATRICES AND TRANSFORMATIONS Chapter 9 Matrices and Transformations Objectives After studying this chapter you should be able to handle matrix (and vector) algebra with confidence, and understand the

More information

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all n-dimensional column

More information

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

More information

ISOMETRIES OF R n KEITH CONRAD

ISOMETRIES OF R n KEITH CONRAD ISOMETRIES OF R n KEITH CONRAD 1. Introduction An isometry of R n is a function h: R n R n that preserves the distance between vectors: h(v) h(w) = v w for all v and w in R n, where (x 1,..., x n ) = x

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION

4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION 4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION STEVEN HEILMAN Contents 1. Review 1 2. Diagonal Matrices 1 3. Eigenvectors and Eigenvalues 2 4. Characteristic Polynomial 4 5. Diagonalizability 6 6. Appendix:

More information

Recall that two vectors in are perpendicular or orthogonal provided that their dot

Recall that two vectors in are perpendicular or orthogonal provided that their dot Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal

More information

1 Sets and Set Notation.

1 Sets and Set Notation. LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most

More information

Finite dimensional C -algebras

Finite dimensional C -algebras Finite dimensional C -algebras S. Sundar September 14, 2012 Throughout H, K stand for finite dimensional Hilbert spaces. 1 Spectral theorem for self-adjoint opertors Let A B(H) and let {ξ 1, ξ 2,, ξ n

More information

University of Lille I PC first year list of exercises n 7. Review

University of Lille I PC first year list of exercises n 7. Review University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients

More information

Chapter 20. Vector Spaces and Bases

Chapter 20. Vector Spaces and Bases Chapter 20. Vector Spaces and Bases In this course, we have proceeded step-by-step through low-dimensional Linear Algebra. We have looked at lines, planes, hyperplanes, and have seen that there is no limit

More information

5. Orthogonal matrices

5. Orthogonal matrices L Vandenberghe EE133A (Spring 2016) 5 Orthogonal matrices matrices with orthonormal columns orthogonal matrices tall matrices with orthonormal columns complex matrices with orthonormal columns 5-1 Orthonormal

More information

Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.

Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i. Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(

More information

Lecture 5: Singular Value Decomposition SVD (1)

Lecture 5: Singular Value Decomposition SVD (1) EEM3L1: Numerical and Analytical Techniques Lecture 5: Singular Value Decomposition SVD (1) EE3L1, slide 1, Version 4: 25-Sep-02 Motivation for SVD (1) SVD = Singular Value Decomposition Consider the system

More information

Notes on Determinant

Notes on Determinant ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 9-18/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without

More information

( ) which must be a vector

( ) which must be a vector MATH 37 Linear Transformations from Rn to Rm Dr. Neal, WKU Let T : R n R m be a function which maps vectors from R n to R m. Then T is called a linear transformation if the following two properties are

More information

Inner Product Spaces. 7.1 Inner Products

Inner Product Spaces. 7.1 Inner Products 7 Inner Product Spaces 71 Inner Products Recall that if z is a complex number, then z denotes the conjugate of z, Re(z) denotes the real part of z, and Im(z) denotes the imaginary part of z By definition,

More information

Inner products on R n, and more

Inner products on R n, and more Inner products on R n, and more Peyam Ryan Tabrizian Friday, April 12th, 2013 1 Introduction You might be wondering: Are there inner products on R n that are not the usual dot product x y = x 1 y 1 + +

More information

[1] Diagonal factorization

[1] Diagonal factorization 8.03 LA.6: Diagonalization and Orthogonal Matrices [ Diagonal factorization [2 Solving systems of first order differential equations [3 Symmetric and Orthonormal Matrices [ Diagonal factorization Recall:

More information

x + y + z = 1 2x + 3y + 4z = 0 5x + 6y + 7z = 3

x + y + z = 1 2x + 3y + 4z = 0 5x + 6y + 7z = 3 Math 24 FINAL EXAM (2/9/9 - SOLUTIONS ( Find the general solution to the system of equations 2 4 5 6 7 ( r 2 2r r 2 r 5r r x + y + z 2x + y + 4z 5x + 6y + 7z 2 2 2 2 So x z + y 2z 2 and z is free. ( r

More information

Brief Introduction to Vectors and Matrices

Brief Introduction to Vectors and Matrices CHAPTER 1 Brief Introduction to Vectors and Matrices In this chapter, we will discuss some needed concepts found in introductory course in linear algebra. We will introduce matrix, vector, vector-valued

More information

Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013

Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013 Notes on Orthogonal and Symmetric Matrices MENU, Winter 201 These notes summarize the main properties and uses of orthogonal and symmetric matrices. We covered quite a bit of material regarding these topics,

More information

MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets.

MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. Norm The notion of norm generalizes the notion of length of a vector in R n. Definition. Let V be a vector space. A function α

More information

Orthogonal Projections

Orthogonal Projections Orthogonal Projections and Reflections (with exercises) by D. Klain Version.. Corrections and comments are welcome! Orthogonal Projections Let X,..., X k be a family of linearly independent (column) vectors

More information

Solutions to Math 51 First Exam January 29, 2015

Solutions to Math 51 First Exam January 29, 2015 Solutions to Math 5 First Exam January 29, 25. ( points) (a) Complete the following sentence: A set of vectors {v,..., v k } is defined to be linearly dependent if (2 points) there exist c,... c k R, not

More information

1 Symmetries of regular polyhedra

1 Symmetries of regular polyhedra 1230, notes 5 1 Symmetries of regular polyhedra Symmetry groups Recall: Group axioms: Suppose that (G, ) is a group and a, b, c are elements of G. Then (i) a b G (ii) (a b) c = a (b c) (iii) There is an

More information

Matrix Representations of Linear Transformations and Changes of Coordinates

Matrix Representations of Linear Transformations and Changes of Coordinates Matrix Representations of Linear Transformations and Changes of Coordinates 01 Subspaces and Bases 011 Definitions A subspace V of R n is a subset of R n that contains the zero element and is closed under

More information

Review Jeopardy. Blue vs. Orange. Review Jeopardy

Review Jeopardy. Blue vs. Orange. Review Jeopardy Review Jeopardy Blue vs. Orange Review Jeopardy Jeopardy Round Lectures 0-3 Jeopardy Round $200 How could I measure how far apart (i.e. how different) two observations, y 1 and y 2, are from each other?

More information

Numerical Methods I Eigenvalue Problems

Numerical Methods I Eigenvalue Problems Numerical Methods I Eigenvalue Problems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course G63.2010.001 / G22.2420-001, Fall 2010 September 30th, 2010 A. Donev (Courant Institute)

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra - 1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary

More information

NOV - 30211/II. 1. Let f(z) = sin z, z C. Then f(z) : 3. Let the sequence {a n } be given. (A) is bounded in the complex plane

NOV - 30211/II. 1. Let f(z) = sin z, z C. Then f(z) : 3. Let the sequence {a n } be given. (A) is bounded in the complex plane Mathematical Sciences Paper II Time Allowed : 75 Minutes] [Maximum Marks : 100 Note : This Paper contains Fifty (50) multiple choice questions. Each question carries Two () marks. Attempt All questions.

More information

Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Numerical Analysis Lecture Notes Peter J. Olver 6. Eigenvalues and Singular Values In this section, we collect together the basic facts about eigenvalues and eigenvectors. From a geometrical viewpoint,

More information

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two

More information

MA106 Linear Algebra lecture notes

MA106 Linear Algebra lecture notes MA106 Linear Algebra lecture notes Lecturers: Martin Bright and Daan Krammer Warwick, January 2011 Contents 1 Number systems and fields 3 1.1 Axioms for number systems......................... 3 2 Vector

More information

Math 215 HW #6 Solutions

Math 215 HW #6 Solutions Math 5 HW #6 Solutions Problem 34 Show that x y is orthogonal to x + y if and only if x = y Proof First, suppose x y is orthogonal to x + y Then since x, y = y, x In other words, = x y, x + y = (x y) T

More information

Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain

Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain 1. Orthogonal matrices and orthonormal sets An n n real-valued matrix A is said to be an orthogonal

More information

Inner product. Definition of inner product

Inner product. Definition of inner product Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product

More information

Lecture notes on linear algebra

Lecture notes on linear algebra Lecture notes on linear algebra David Lerner Department of Mathematics University of Kansas These are notes of a course given in Fall, 2007 and 2008 to the Honors sections of our elementary linear algebra

More information

18.06 Problem Set 4 Solution Due Wednesday, 11 March 2009 at 4 pm in 2-106. Total: 175 points.

18.06 Problem Set 4 Solution Due Wednesday, 11 March 2009 at 4 pm in 2-106. Total: 175 points. 806 Problem Set 4 Solution Due Wednesday, March 2009 at 4 pm in 2-06 Total: 75 points Problem : A is an m n matrix of rank r Suppose there are right-hand-sides b for which A x = b has no solution (a) What

More information

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL R. DRNOVŠEK, T. KOŠIR Dedicated to Prof. Heydar Radjavi on the occasion of his seventieth birthday. Abstract. Let S be an irreducible

More information

Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components

Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components The eigenvalues and eigenvectors of a square matrix play a key role in some important operations in statistics. In particular, they

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

BANACH AND HILBERT SPACE REVIEW

BANACH AND HILBERT SPACE REVIEW BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but

More information

15.062 Data Mining: Algorithms and Applications Matrix Math Review

15.062 Data Mining: Algorithms and Applications Matrix Math Review .6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop

More information

Elementary Linear Algebra

Elementary Linear Algebra Elementary Linear Algebra Kuttler January, Saylor URL: http://wwwsaylororg/courses/ma/ Saylor URL: http://wwwsaylororg/courses/ma/ Contents Some Prerequisite Topics Sets And Set Notation Functions Graphs

More information

r (t) = 2r(t) + sin t θ (t) = r(t) θ(t) + 1 = 1 1 θ(t) 1 9.4.4 Write the given system in matrix form x = Ax + f ( ) sin(t) x y 1 0 5 z = dy cos(t)

r (t) = 2r(t) + sin t θ (t) = r(t) θ(t) + 1 = 1 1 θ(t) 1 9.4.4 Write the given system in matrix form x = Ax + f ( ) sin(t) x y 1 0 5 z = dy cos(t) Solutions HW 9.4.2 Write the given system in matrix form x = Ax + f r (t) = 2r(t) + sin t θ (t) = r(t) θ(t) + We write this as ( ) r (t) θ (t) = ( ) ( ) 2 r(t) θ(t) + ( ) sin(t) 9.4.4 Write the given system

More information

Solving Linear Systems, Continued and The Inverse of a Matrix

Solving Linear Systems, Continued and The Inverse of a Matrix , Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing

More information

Name: Section Registered In:

Name: Section Registered In: Name: Section Registered In: Math 125 Exam 3 Version 1 April 24, 2006 60 total points possible 1. (5pts) Use Cramer s Rule to solve 3x + 4y = 30 x 2y = 8. Be sure to show enough detail that shows you are

More information

Lecture L3 - Vectors, Matrices and Coordinate Transformations

Lecture L3 - Vectors, Matrices and Coordinate Transformations S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between

More information

Vector and Matrix Norms

Vector and Matrix Norms Chapter 1 Vector and Matrix Norms 11 Vector Spaces Let F be a field (such as the real numbers, R, or complex numbers, C) with elements called scalars A Vector Space, V, over the field F is a non-empty

More information

APPLICATIONS. are symmetric, but. are not.

APPLICATIONS. are symmetric, but. are not. CHAPTER III APPLICATIONS Real Symmetric Matrices The most common matrices we meet in applications are symmetric, that is, they are square matrices which are equal to their transposes In symbols, A t =

More information

CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION

CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August

More information

CONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation

CONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation Chapter 2 CONTROLLABILITY 2 Reachable Set and Controllability Suppose we have a linear system described by the state equation ẋ Ax + Bu (2) x() x Consider the following problem For a given vector x in

More information

17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function

17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function 17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function, : V V R, which is symmetric, that is u, v = v, u. bilinear, that is linear (in both factors):

More information