x + y + z = 1 2x + 3y + 4z = 0 5x + 6y + 7z = 3


 Victor Allison
 1 years ago
 Views:
Transcription
1 Math 24 FINAL EXAM (2/9/9  SOLUTIONS ( Find the general solution to the system of equations ( r 2 2r r 2 r 5r r x + y + z 2x + y + 4z 5x + 6y + 7z So x z + y 2z 2 and z is free. ( r r 2 r r r 2 r 2 2 (2 Let V R and define a product on V by (x y z x 2 y 2 z 2 x x 2 + y y 2. Show that this is not an inner product by finding a property of inner products that fails to hold. The property that fails to hold is (u u u. For example if u then u but (u u. ( Let A 2 7 (a Find a basis for the nullspace of A. Reduce the augmented matrix A to RREF: 2 7 ( r 2 r r 2 r r r r r 2 4 So the solutions are x x 2 x x 4 x x + x 5 4x 5 x x 5 ( r 2r r r 2 +r r 2 x ( r r 2 r r +r 2 r 4 + x so { T 4 T } is a basis for the nullspace of A. (b Find a basis for the columnspace of A. From above the RREF of A has leading ones in columns 2 and 4. Therefore the first second and fourth columns of A form a basis: { T 2 T { T }. (c Find a basis for the rowspace of A. From above the three rows of the RREF of A have leading ones so they form a basis for the rowspace of A: { 2 4 }. (d What is the rank of A? Explain. rank A since by part (b that is the dimension of the columnspace. (or since by part (c that is the dimension of the rowspace.
2 (4 Let L : V W be a linear transformation. (a Prove that L(. L( L( L(. OR: L( L( +( L( + ( L( L( L(. (b Prove that the range of L is a subspace of W. Let w w 2 range L. Then w L(v for some v V and w 2 L(v 2 for some v 2 V. So w + w 2 L(v + L(v 2 L(v + v 2 range L since v + v 2 V. Also let w range L c R then w L(v for some v V so c w c L(v L(c v range L since c v V. Thus the range is closed under addition and under scalar multiplication so it is a subspace. (5 Let V be an inner product space and let u v be vectors in V. Prove that u + v 2 + u v 2 2 u v 2 u + v 2 + u v 2 (u + v u + v + (u v u v (u u + (u v + (v u + (v v + (u u (u v (v u + (v v 2(u u + 2(v v 2 u 2 + v 2 (6 Let V be an inner product space let w w 2 be linearly independent vectors in V and let W span{w w 2 }. Let u be a nonzero vector in V which is an element of W the orthogonal complement of W in V. Prove that w w 2 u are linearly independent. Supose c w +c 2 w 2 +c u. Then (u c w +c 2 w 2 +c u (u. So c (u w + c 2 (u w 2 + c (u u. But since u W (u w (u w 2 so c (u u and since u this implies c. Therefore c w +c 2 w 2. Since w w 2 are linearly independent this implies c c 2. Thus c c 2 c proving that w w 2 u are linearly independent. (7 Let V P the space of all polynomials of degree. Define an inner product on V by (p(t q(t p(tq(tdt. Let W be the subspace of V with basis {t t 2 }. Find an orthogonal basis for W (you do not need to find an orthonormal basis. ( Hint: tn dt n+ We use the GS process: p (t t and p 2 (t t 2 (t2 t So {t t 2 4t} is an orthogonal basis for W. R (tt t t2 t dt R t2 dt t t2 /4 / t t2 4 t.
3 (8 Let V M 22 and let W R 2. Define a function L : V W as follows. Let b 5 and for any matrix A in V define L(A A b. (a Prove that L is a linear transformation. Let A A 2 V. Then L(A + A 2 (A + A 2 b A b +A 2 b L(A + L(A 2. Also if A V c R then L(cA (ca b c(a b cl(a. So L is linear. (b Find the representation of L with respect to the standard basis for V : S { and the standard basis for W : T ( L 5 ( L 5 { } ( L ( L So the matrix is 5 5 (9 Let A (a Find the eigenvalues of A. The characteristic polynomial is det(ti A det t 2 t t } (t (t + 4t + + ( 2(2 (t + 4( 2 (t ( 2(2 t + t 2 4t 4 + 2t t 4 t + t 2 + 2t t(t + 2(t +. So the eigenvalues are 2.
4 ( Let (b For each eigenvalue of A find a corresponding eigenvector. For the eigenvalue λ we find the nullspace of I A: So x z y z and z is free so T is a corresponding eigenvector. For the eigenvalue λ we find the nullspace of I A: So x 2 z y z and z is free so 2 2T is a corresponding eigenvector. For the eigenvalue λ 2 we find the nullspace of 2I A: So x z y 4 z and z is free so 4 T is a corresponding eigenvector. (c Find the eigenvalues of A 2. If A v λ v then A 2 v A(λ v λ 2 v. Therefore the eigenvalues of A 2 are 2 ( 2 and ( A (a Show that the determinant of A is equal to. One option is to make one rowreduction step (r 4 r r 4 and then expand along the first column: det(a det det ((2 ((4( (b Use the result of part (a to show that A 2A 2. det(a while det(2a So A 2A 2 since their determinants are different. ( Let V P 2 the vector space of all polynomials of degree at most 2. Let S {+t t t 2 } and T { + t + t 2 } be ordered bases for V. Let p(t be a polynomial such that p(t S 2 (a Find p(t p(t ( + t + 2 ( t + t + t 2.
5 (b Find the transition matrix P T S between S and T. The matrix has columns + t T t T t 2 T. We can find these simultaneously using the rowreduction: Therefore (c Find p(t T 2 P T S p(t T P T S p(t S (2 Let L : V W be a linear transformation with ker L {}. Let v... v n be linearly independent vectors in V. Prove that the vectors L(v... L(v n are also linearly independent. Suppose c L(v c n L(v n. Then L(c v c n v n. So c v c n v n ker L {} and so c v +... c n v n. Since v... v n are linearly independent this implies c... c n. Thus L(v... L(v n are linearly independent. MAKEUP EXAM QUESTIONS: 4(b Prove that the kernel of L is a subspace of W. Let v v 2 ker L. Then L(v + v 2 L(v + L(v 2 + so v + v 2 ker L. Also if v ker L c R then L(c v cl(v so c v ker L. Thus the kernel is closed under addition and under scalar multiplication so it is a subspace. (5 Let V be an inner product space and let u v be vectors in V. Prove that (u v 4 u + v 2 4 u v 2 (u + v 2 (u v 2 (u + v u + v (u v u v (u u + (u v + (v u + (v v ( (u u + (u v + (v u + (v v 2(u v + 2(v u 4(u v. Dividing by 4 the identity follows. (2 Let L : V W be a linear transformation with range L W. Let v... v n be vectors in V and assume that v... v n are a spanning set for V. Prove that L(v... L(v n are a spanning set for W. Let w W. Then w range L so w L(v for some v V. Since v... v n are a spanning set for V v c v +... c n v n. So w L(v L(c v +... c n v n c L(v +...+c n L(v n so w span{l(v... L(v n }. Thus L(v... L(v n are a spanning set for W.
MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A =
MAT 200, Midterm Exam Solution. (0 points total) a. (5 points) Compute the determinant of the matrix 2 2 0 A = 0 3 0 3 0 Answer: det A = 3. The most efficient way is to develop the determinant along the
More informationSimilarity and Diagonalization. Similar Matrices
MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that
More informationPractice Math 110 Final. Instructions: Work all of problems 1 through 5, and work any 5 of problems 10 through 16.
Practice Math 110 Final Instructions: Work all of problems 1 through 5, and work any 5 of problems 10 through 16. 1. Let A = 3 1 1 3 3 2. 6 6 5 a. Use Gauss elimination to reduce A to an upper triangular
More informationRecall that two vectors in are perpendicular or orthogonal provided that their dot
Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal
More informationMA 242 LINEAR ALGEBRA C1, Solutions to Second Midterm Exam
MA 4 LINEAR ALGEBRA C, Solutions to Second Midterm Exam Prof. Nikola Popovic, November 9, 6, 9:3am  :5am Problem (5 points). Let the matrix A be given by 5 6 5 4 5 (a) Find the inverse A of A, if it exists.
More information1 2 3 1 1 2 x = + x 2 + x 4 1 0 1
(d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which
More information( ) which must be a vector
MATH 37 Linear Transformations from Rn to Rm Dr. Neal, WKU Let T : R n R m be a function which maps vectors from R n to R m. Then T is called a linear transformation if the following two properties are
More informationMATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).
MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0
More informationby the matrix A results in a vector which is a reflection of the given
Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the yaxis We observe that
More informationSolutions to Math 51 First Exam January 29, 2015
Solutions to Math 5 First Exam January 29, 25. ( points) (a) Complete the following sentence: A set of vectors {v,..., v k } is defined to be linearly dependent if (2 points) there exist c,... c k R, not
More informationOrthogonal Diagonalization of Symmetric Matrices
MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding
More informationMATH 240 Fall, Chapter 1: Linear Equations and Matrices
MATH 240 Fall, 2007 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 9th Ed. written by Prof. J. Beachy Sections 1.1 1.5, 2.1 2.3, 4.2 4.9, 3.1 3.5, 5.3 5.5, 6.1 6.3, 6.5, 7.1 7.3 DEFINITIONS
More informationSolutions to Linear Algebra Practice Problems
Solutions to Linear Algebra Practice Problems. Find all solutions to the following systems of linear equations. (a) x x + x 5 x x x + x + x 5 (b) x + x + x x + x + x x + x + 8x Answer: (a) We create the
More information1 Eigenvalues and Eigenvectors
Math 20 Chapter 5 Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors. Definition: A scalar λ is called an eigenvalue of the n n matrix A is there is a nontrivial solution x of Ax = λx. Such an x
More informationMath 215 HW #6 Solutions
Math 5 HW #6 Solutions Problem 34 Show that x y is orthogonal to x + y if and only if x = y Proof First, suppose x y is orthogonal to x + y Then since x, y = y, x In other words, = x y, x + y = (x y) T
More informationChapter 6. Orthogonality
6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be
More information(January 14, 2009) End k (V ) End k (V/W )
(January 14, 29) [16.1] Let p be the smallest prime dividing the order of a finite group G. Show that a subgroup H of G of index p is necessarily normal. Let G act on cosets gh of H by left multiplication.
More informationMAT 242 Test 2 SOLUTIONS, FORM T
MAT 242 Test 2 SOLUTIONS, FORM T 5 3 5 3 3 3 3. Let v =, v 5 2 =, v 3 =, and v 5 4 =. 3 3 7 3 a. [ points] The set { v, v 2, v 3, v 4 } is linearly dependent. Find a nontrivial linear combination of these
More informationLINEAR ALGEBRA. September 23, 2010
LINEAR ALGEBRA September 3, 00 Contents 0. LUdecomposition.................................... 0. Inverses and Transposes................................. 0.3 Column Spaces and NullSpaces.............................
More informationLinearly Independent Sets and Linearly Dependent Sets
These notes closely follow the presentation of the material given in David C. Lay s textbook Linear Algebra and its Applications (3rd edition). These notes are intended primarily for inclass presentation
More informationAu = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.
Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry
More informationThese axioms must hold for all vectors ū, v, and w in V and all scalars c and d.
DEFINITION: A vector space is a nonempty set V of objects, called vectors, on which are defined two operations, called addition and multiplication by scalars (real numbers), subject to the following axioms
More informationMATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.
MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all ndimensional column
More informationMAT 242 Test 3 SOLUTIONS, FORM A
MAT Test SOLUTIONS, FORM A. Let v =, v =, and v =. Note that B = { v, v, v } is an orthogonal set. Also, let W be the subspace spanned by { v, v, v }. A = 8 a. [5 points] Find the orthogonal projection
More informationOrthogonal Projections and Orthonormal Bases
CS 3, HANDOUT A, 3 November 04 (adjusted on 7 November 04) Orthogonal Projections and Orthonormal Bases (continuation of Handout 07 of 6 September 04) Definition (Orthogonality, length, unit vectors).
More informationRecall the basic property of the transpose (for any A): v A t Aw = v w, v, w R n.
ORTHOGONAL MATRICES Informally, an orthogonal n n matrix is the ndimensional analogue of the rotation matrices R θ in R 2. When does a linear transformation of R 3 (or R n ) deserve to be called a rotation?
More informationInner Product Spaces and Orthogonality
Inner Product Spaces and Orthogonality week 34 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,
More informationSolution. Area(OABC) = Area(OAB) + Area(OBC) = 1 2 det( [ 5 2 1 2. Question 2. Let A = (a) Calculate the nullspace of the matrix A.
Solutions to Math 30 Takehome prelim Question. Find the area of the quadrilateral OABC on the figure below, coordinates given in brackets. [See pp. 60 63 of the book.] y C(, 4) B(, ) A(5, ) O x Area(OABC)
More information4.1 VECTOR SPACES AND SUBSPACES
4.1 VECTOR SPACES AND SUBSPACES What is a vector space? (pg 229) A vector space is a nonempty set, V, of vectors together with two operations; addition and scalar multiplication which satisfies the following
More information1. True/False: Circle the correct answer. No justifications are needed in this exercise. (1 point each)
Math 33 AH : Solution to the Final Exam Honors Linear Algebra and Applications 1. True/False: Circle the correct answer. No justifications are needed in this exercise. (1 point each) (1) If A is an invertible
More informationMath 312 Homework 1 Solutions
Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please
More informationα = u v. In other words, Orthogonal Projection
Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v
More informationApplied Linear Algebra I Review page 1
Applied Linear Algebra Review 1 I. Determinants A. Definition of a determinant 1. Using sum a. Permutations i. Sign of a permutation ii. Cycle 2. Uniqueness of the determinant function in terms of properties
More informationLinear Algebra Notes
Linear Algebra Notes Chapter 19 KERNEL AND IMAGE OF A MATRIX Take an n m matrix a 11 a 12 a 1m a 21 a 22 a 2m a n1 a n2 a nm and think of it as a function A : R m R n The kernel of A is defined as Note
More informationMath 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.
Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(
More informationName: Section Registered In:
Name: Section Registered In: Math 125 Exam 3 Version 1 April 24, 2006 60 total points possible 1. (5pts) Use Cramer s Rule to solve 3x + 4y = 30 x 2y = 8. Be sure to show enough detail that shows you are
More informationLINEAR ALGEBRA W W L CHEN
LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,
More informationLinear Algebra Review. Vectors
Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka kosecka@cs.gmu.edu http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa Cogsci 8F Linear Algebra review UCSD Vectors The length
More informationVector Spaces 4.4 Spanning and Independence
Vector Spaces 4.4 and Independence October 18 Goals Discuss two important basic concepts: Define linear combination of vectors. Define Span(S) of a set S of vectors. Define linear Independence of a set
More information4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION
4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION STEVEN HEILMAN Contents 1. Review 1 2. Diagonal Matrices 1 3. Eigenvectors and Eigenvalues 2 4. Characteristic Polynomial 4 5. Diagonalizability 6 6. Appendix:
More informationr (t) = 2r(t) + sin t θ (t) = r(t) θ(t) + 1 = 1 1 θ(t) 1 9.4.4 Write the given system in matrix form x = Ax + f ( ) sin(t) x y 1 0 5 z = dy cos(t)
Solutions HW 9.4.2 Write the given system in matrix form x = Ax + f r (t) = 2r(t) + sin t θ (t) = r(t) θ(t) + We write this as ( ) r (t) θ (t) = ( ) ( ) 2 r(t) θ(t) + ( ) sin(t) 9.4.4 Write the given system
More information[: : :] [: :1.  B2)CT; (c) AC  CA, where A= B= andc= o]l [o 1 o]l
Math 225 Problems for Review 1 0. Study your notes and the textbook (Sects. 1.11.5, 1.7, 2.12.3, 2.6). 1. Bring the augmented matrix [A 1 b] to a reduced row echelon form and solve two systems of linear
More informationSec 4.1 Vector Spaces and Subspaces
Sec 4. Vector Spaces and Subspaces Motivation Let S be the set of all solutions to the differential equation y + y =. Let T be the set of all 2 3 matrices with real entries. These two sets share many common
More informationMATH 551  APPLIED MATRIX THEORY
MATH 55  APPLIED MATRIX THEORY FINAL TEST: SAMPLE with SOLUTIONS (25 points NAME: PROBLEM (3 points A web of 5 pages is described by a directed graph whose matrix is given by A Do the following ( points
More informationMATH36001 Background Material 2015
MATH3600 Background Material 205 Matrix Algebra Matrices and Vectors An ordered array of mn elements a ij (i =,, m; j =,, n) written in the form a a 2 a n A = a 2 a 22 a 2n a m a m2 a mn is said to be
More informationSection 2.1. Section 2.2. Exercise 6: We have to compute the product AB in two ways, where , B =. 2 1 3 5 A =
Section 2.1 Exercise 6: We have to compute the product AB in two ways, where 4 2 A = 3 0 1 3, B =. 2 1 3 5 Solution 1. Let b 1 = (1, 2) and b 2 = (3, 1) be the columns of B. Then Ab 1 = (0, 3, 13) and
More information13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.
3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in threespace, we write a vector in terms
More information18.06 Problem Set 4 Solution Due Wednesday, 11 March 2009 at 4 pm in 2106. Total: 175 points.
806 Problem Set 4 Solution Due Wednesday, March 2009 at 4 pm in 206 Total: 75 points Problem : A is an m n matrix of rank r Suppose there are righthandsides b for which A x = b has no solution (a) What
More informationMath 550 Notes. Chapter 7. Jesse Crawford. Department of Mathematics Tarleton State University. Fall 2010
Math 550 Notes Chapter 7 Jesse Crawford Department of Mathematics Tarleton State University Fall 2010 (Tarleton State University) Math 550 Chapter 7 Fall 2010 1 / 34 Outline 1 SelfAdjoint and Normal Operators
More informationUsing determinants, it is possible to express the solution to a system of equations whose coefficient matrix is invertible:
Cramer s Rule and the Adjugate Using determinants, it is possible to express the solution to a system of equations whose coefficient matrix is invertible: Theorem [Cramer s Rule] If A is an invertible
More informationChapter 17. Orthogonal Matrices and Symmetries of Space
Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length
More informationSection 6.1  Inner Products and Norms
Section 6.1  Inner Products and Norms Definition. Let V be a vector space over F {R, C}. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F,
More informationProblem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday.
Math 312, Fall 2012 Jerry L. Kazdan Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday. In addition to the problems below, you should also know how to solve
More informationMethods for Finding Bases
Methods for Finding Bases Bases for the subspaces of a matrix Rowreduction methods can be used to find bases. Let us now look at an example illustrating how to obtain bases for the row space, null space,
More information2.1: MATRIX OPERATIONS
.: MATRIX OPERATIONS What are diagonal entries and the main diagonal of a matrix? What is a diagonal matrix? When are matrices equal? Scalar Multiplication 45 Matrix Addition Theorem (pg 0) Let A, B, and
More informationCITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION
No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August
More information1 Sets and Set Notation.
LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most
More information[1] Diagonal factorization
8.03 LA.6: Diagonalization and Orthogonal Matrices [ Diagonal factorization [2 Solving systems of first order differential equations [3 Symmetric and Orthonormal Matrices [ Diagonal factorization Recall:
More informationx1 x 2 x 3 y 1 y 2 y 3 x 1 y 2 x 2 y 1 0.
Cross product 1 Chapter 7 Cross product We are getting ready to study integration in several variables. Until now we have been doing only differential calculus. One outcome of this study will be our ability
More informationB such that AB = I and BA = I. (We say B is an inverse of A.) Definition A square matrix A is invertible (or nonsingular) if matrix
Matrix inverses Recall... Definition A square matrix A is invertible (or nonsingular) if matrix B such that AB = and BA =. (We say B is an inverse of A.) Remark Not all square matrices are invertible.
More informationLectures notes on orthogonal matrices (with exercises) 92.222  Linear Algebra II  Spring 2004 by D. Klain
Lectures notes on orthogonal matrices (with exercises) 92.222  Linear Algebra II  Spring 2004 by D. Klain 1. Orthogonal matrices and orthonormal sets An n n realvalued matrix A is said to be an orthogonal
More informationDiagonalisation. Chapter 3. Introduction. Eigenvalues and eigenvectors. Reading. Definitions
Chapter 3 Diagonalisation Eigenvalues and eigenvectors, diagonalisation of a matrix, orthogonal diagonalisation fo symmetric matrices Reading As in the previous chapter, there is no specific essential
More informationSimilar matrices and Jordan form
Similar matrices and Jordan form We ve nearly covered the entire heart of linear algebra once we ve finished singular value decompositions we ll have seen all the most central topics. A T A is positive
More informationPresentation 3: Eigenvalues and Eigenvectors of a Matrix
Colleen Kirksey, Beth Van Schoyck, Dennis Bowers MATH 280: Problem Solving November 18, 2011 Presentation 3: Eigenvalues and Eigenvectors of a Matrix Order of Presentation: 1. Definitions of Eigenvalues
More information4. Matrix inverses. left and right inverse. linear independence. nonsingular matrices. matrices with linearly independent columns
L. Vandenberghe EE133A (Spring 2016) 4. Matrix inverses left and right inverse linear independence nonsingular matrices matrices with linearly independent columns matrices with linearly independent rows
More informationThe Geometry of Polynomial Division and Elimination
The Geometry of Polynomial Division and Elimination Kim Batselier, Philippe Dreesen Bart De Moor Katholieke Universiteit Leuven Department of Electrical Engineering ESAT/SCD/SISTA/SMC May 2012 1 / 26 Outline
More informationApplied Linear Algebra
Applied Linear Algebra OTTO BRETSCHER http://www.prenhall.com/bretscher Chapter 7 Eigenvalues and Eigenvectors ChiaHui Chang Email: chia@csie.ncu.edu.tw National Central University, Taiwan 7.1 DYNAMICAL
More informationOrthogonal Projections
Orthogonal Projections and Reflections (with exercises) by D. Klain Version.. Corrections and comments are welcome! Orthogonal Projections Let X,..., X k be a family of linearly independent (column) vectors
More informationBANACH AND HILBERT SPACE REVIEW
BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but
More informationLecture Notes 2: Matrices as Systems of Linear Equations
2: Matrices as Systems of Linear Equations 33A Linear Algebra, Puck Rombach Last updated: April 13, 2016 Systems of Linear Equations Systems of linear equations can represent many things You have probably
More informationUniversity of Lille I PC first year list of exercises n 7. Review
University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients
More informationis in plane V. However, it may be more convenient to introduce a plane coordinate system in V.
.4 COORDINATES EXAMPLE Let V be the plane in R with equation x +2x 2 +x 0, a twodimensional subspace of R. We can describe a vector in this plane by its spatial (D)coordinates; for example, vector x 5
More informationLinear Algebra
. Linear Algebra Midterm Solutions. (pts) Consider a matrix A, andletb rref(a). (a) Is ker (A) necessarily equal to ker (B)? Explain. (b) Is im (A) necessarily equal to im (B)? Explain. (a) Yes. By construction
More informationMATH10212 Linear Algebra B Homework 7
MATH22 Linear Algebra B Homework 7 Students are strongly advised to acquire a copy of the Textbook: D C Lay, Linear Algebra and its Applications Pearson, 26 (or other editions) Normally, homework assignments
More informationRow and column operations
Row and column operations It is often very useful to apply row and column operations to a matrix. Let us list what operations we re going to be using. 3 We ll illustrate these using the example matrix
More informationEigenvalues, Eigenvectors, Matrix Factoring, and Principal Components
Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components The eigenvalues and eigenvectors of a square matrix play a key role in some important operations in statistics. In particular, they
More informationChapter 20. Vector Spaces and Bases
Chapter 20. Vector Spaces and Bases In this course, we have proceeded stepbystep through lowdimensional Linear Algebra. We have looked at lines, planes, hyperplanes, and have seen that there is no limit
More informationEigenvalues and Eigenvectors
Chapter 6 Eigenvalues and Eigenvectors 6. Introduction to Eigenvalues Linear equations Ax D b come from steady state problems. Eigenvalues have their greatest importance in dynamic problems. The solution
More informationReview Jeopardy. Blue vs. Orange. Review Jeopardy
Review Jeopardy Blue vs. Orange Review Jeopardy Jeopardy Round Lectures 03 Jeopardy Round $200 How could I measure how far apart (i.e. how different) two observations, y 1 and y 2, are from each other?
More informationSALEM COMMUNITY COLLEGE Carneys Point, New Jersey 08069 COURSE SYLLABUS COVER SHEET. Action Taken (Please Check One) New Course Initiated
SALEM COMMUNITY COLLEGE Carneys Point, New Jersey 08069 COURSE SYLLABUS COVER SHEET Course Title Course Number Department Linear Algebra Mathematics MAT240 Action Taken (Please Check One) New Course Initiated
More informationInner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
More informationMatrix Representations of Linear Transformations and Changes of Coordinates
Matrix Representations of Linear Transformations and Changes of Coordinates 01 Subspaces and Bases 011 Definitions A subspace V of R n is a subset of R n that contains the zero element and is closed under
More information4.6 Null Space, Column Space, Row Space
NULL SPACE, COLUMN SPACE, ROW SPACE Null Space, Column Space, Row Space In applications of linear algebra, subspaces of R n typically arise in one of two situations: ) as the set of solutions of a linear
More informationNOTES ON LINEAR TRANSFORMATIONS
NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all
More information17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function
17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function, : V V R, which is symmetric, that is u, v = v, u. bilinear, that is linear (in both factors):
More informationMathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 19967 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
More informationSergei Silvestrov, Christopher Engström, Karl Lundengård, Johan Richter, Jonas Österberg. November 13, 2014
Sergei Silvestrov,, Karl Lundengård, Johan Richter, Jonas Österberg November 13, 2014 Analysis Todays lecture: Course overview. Repetition of matrices elementary operations. Repetition of solvability of
More informationInner products on R n, and more
Inner products on R n, and more Peyam Ryan Tabrizian Friday, April 12th, 2013 1 Introduction You might be wondering: Are there inner products on R n that are not the usual dot product x y = x 1 y 1 + +
More informationNotes on Jordan Canonical Form
Notes on Jordan Canonical Form Eric Klavins University of Washington 8 Jordan blocks and Jordan form A Jordan Block of size m and value λ is a matrix J m (λ) having the value λ repeated along the main
More informationISOMETRIES OF R n KEITH CONRAD
ISOMETRIES OF R n KEITH CONRAD 1. Introduction An isometry of R n is a function h: R n R n that preserves the distance between vectors: h(v) h(w) = v w for all v and w in R n, where (x 1,..., x n ) = x
More informationTv = Tu 1 + + Tu N. (u 1,...,u M, v 1,...,v N ) T(Sv) = S(Tv) = Sλv = λ(sv).
54 CHAPTER 5. EIGENVALUES AND EIGENVECTORS 5.6 Solutions 5.1 Suppose T L(V). Prove that if U 1,...,U M are subspaces of V invariant under T, then U 1 + + U M is invariant under T. Suppose v = u 1 + + u
More informationUsing the Singular Value Decomposition
Using the Singular Value Decomposition Emmett J. Ientilucci Chester F. Carlson Center for Imaging Science Rochester Institute of Technology emmett@cis.rit.edu May 9, 003 Abstract This report introduces
More information8 Square matrices continued: Determinants
8 Square matrices continued: Determinants 8. Introduction Determinants give us important information about square matrices, and, as we ll soon see, are essential for the computation of eigenvalues. You
More informationImages and Kernels in Linear Algebra By Kristi Hoshibata Mathematics 232
Images and Kernels in Linear Algebra By Kristi Hoshibata Mathematics 232 In mathematics, there are many different fields of study, including calculus, geometry, algebra and others. Mathematics has been
More informationMath 240: Linear Systems and Rank of a Matrix
Math 240: Linear Systems and Rank of a Matrix Ryan Blair University of Pennsylvania Thursday January 20, 2011 Ryan Blair (U Penn) Math 240: Linear Systems and Rank of a Matrix Thursday January 20, 2011
More informationExamination paper for TMA4115 Matematikk 3
Department of Mathematical Sciences Examination paper for TMA45 Matematikk 3 Academic contact during examination: Antoine Julien a, Alexander Schmeding b, Gereon Quick c Phone: a 73 59 77 82, b 40 53 99
More informationLinear Algebra Problems
Math 504 505 Linear Algebra Problems Jerry L. Kazdan Note: New problems are often added to this collection so the problem numbers change. If you want to refer others to these problems by number, it is
More informationNumerical Analysis Lecture Notes
Numerical Analysis Lecture Notes Peter J. Olver 6. Eigenvalues and Singular Values In this section, we collect together the basic facts about eigenvalues and eigenvectors. From a geometrical viewpoint,
More informationInner product. Definition of inner product
Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product
More information2.1: Determinants by Cofactor Expansion. Math 214 Chapter 2 Notes and Homework. Evaluate a Determinant by Expanding by Cofactors
2.1: Determinants by Cofactor Expansion Math 214 Chapter 2 Notes and Homework Determinants The minor M ij of the entry a ij is the determinant of the submatrix obtained from deleting the i th row and the
More information