Chapter 20. Vector Spaces and Bases


 Eileen Spencer
 1 years ago
 Views:
Transcription
1 Chapter 20. Vector Spaces and Bases In this course, we have proceeded stepbystep through lowdimensional Linear Algebra. We have looked at lines, planes, hyperplanes, and have seen that there is no limit to this hierarchy of structures. We have indexed these objects by their dimension in an ad hoc way. It is time to unify these structures and ideas; this chapter gives a brief introduction to this more abstract viewpoint. Paradoxically, this abstraction also makes Linear Algebra more applicable to other areas of Mathematics and Science. In this higher viewpoint, Linear Algebra is the study of vector spaces and linear mappings between vector spaces. Definition of a vector space: A vector space is a set V of objects v called vectors which can be added and multiplied by scalars t R, subject to the rules: u + v = v + u, (u + v) + w = u + (v + w), t(u + v) = tu + tv, (t + s)v = tv + sv, t(sv) = (ts)v, these holding for all u, v, w V and s, t R. There must also be a vector 0 V with the properties that 0 + v = v, 0v = 0 for all v V. Examples of vector spaces: R n is a vector space. Any line, plane, hyperplane,... in R n is a vector space. Even the set consisting of one vector {0} is a vector space, called the trivial vector space. In fact, any subset of R n that is closed under addition and scalar multiplication is a vector space; such a vector space is called subspace of R n. For n 0, the set P n of all polynomials c 0 + c 1 x + + c n x n with real coefficients is a vector space. Here the vectors are polynomials. The set V of real valued functions f(x) satisfying the differential equation f +f = 0 is a vector space. For if f and g are solutions so are f + g and cf, where c is a scalar. Note that V is a subspace of the giant vector space C (R), consisting of all infinitely differentiable functions f : R R. In fact V = E( 1) is an eigenspace for the linear map d 2 dx 2 : C (R) C (R). Any nonzero vector space V contains infinitely many vectors. To write them all down, we want to have something like the standard basis e 1,..., e n of R n. Here, we have (x 1, x 2,..., x n ) = x 1 e 1 + x 2 e 2 + x n e n. (1) 1
2 Thus, any vector x = (x 1, x 2,..., x n ) R n is a linear combination of the vectors e 1, e n. Moreover, this linear combination is unique: Equation (1) is the only way to write x as a combination of the e i. Definition of a Basis: A basis of a vector space V is a set {v 1,..., v n } of vectors in V with the property that every vector in V can be uniquely expressed as a linear combination of v 1,..., v n. Examples of bases: A basis of a line l is a nonzero vector v in l. Every vector in l can be uniquely expressed as cv, for some a R. A basis of a plane P is a pair {u, v} of nonproportional vectors in P. Every vector in P can be uniquely expressed as au + bv, for some a, b in R. A basis of R 3 is any set of three vectors {u, v, w} in R 3 not contained in a plane. A basis of a hyperplane H R 4 is a set of three vectors in H not contained in a plane. A basis of R 4 is a set of four vectors not contained in a hyperplane. For any n 1, the standard basis {e 1,..., e n } is a basis of R n. There are many other bases, such as {e 1, e 1 + e 2,..., e 1 + e e n }. The set {1, x, x 2, x 3,..., x n } is a basis of P n. This means that any polynomial can be uniquely expressed as a finite linear combination c 0 + c 1 x + c 2 x c n x n. The vector space of solutions of the differential equation f + f = 0 has basis {cos x, sin x}. In other words, any function satisfying f + f = 0 can be uniquely expressed as f = c 1 cos x + c 2 sin x for some real numbers c 1, c 2. The above definition of a basis was simple to state, but it often takes time to fully grasp the idea. This is because the phrase can be uniquely is actually two conditions in compressed form. We now uncompress them, starting with can be. Definition of Span : The span of a set of vectors {v 1,..., v k } V is the set of all linear combinations of the v i, namely {c 1 v c n v n : c i R}. We also use span as a verb: {v 1,..., v k } spans V if every vector in V can be expressed as a linear combination of the v i. The span of a {v 1,..., v k } is closed under addition and scalar multiplication, hence forms a vector space in its own right. Now to unravel the second part of the definition of Basis: uniqueness. Definition of Linear Independence: A collection of vectors S in a vector space V is linearly independent if no vector in S is a linear combination of the other vectors in S. If some vector in S is a linear combination of the others, we say that S is linearly dependent. 2
3 Proposition 0.1 A subset S V is linearly dependent if and only if there exist vectors v 1,..., v k in S and nonzero scalars c 1,..., c k in R such that c 1 v 1 + c 2 v c k v k = 0. Proof: Suppose there exist vectors v i in S and nonzero scalars c i such that c 1 v c k v k = 0. Then v 1 = c 2 v 2 c k v k, c 1 c 1 so v 1 is a linear combination of the other vectors v 2,..., v k and therefore S is linearly dependent. Conversely, if S is linearly dependent, then we can write some v in S as a linear combination of other vectors v 1,..., v k in S: v = c 1 v c k v k, where the c i are nonzero scalars. Then with all coefficients nonzero. Example: The three vectors v c 1 v 1 c k v k = 0 u = (1, 2, 3), v = (4, 5, 6), w = (7, 8, 9) are linearly dependent because u 2v + w = 0. Definition of a Basis, rephrased: A basis of a vector space V is subset {v 1,... v n } V satisfying the two properties: (i) {v 1,..., v n } spans V; (ii) {v 1,..., v n } is linearly independent. To check that a given subset {v 1,..., v n } V is a basis of V, you have to check items (i) and (ii). That is, (i) To show spanning: Take an arbitrary vector v V, and show that there are scalars c 1,..., c n such that v = c 1 v c n v n. (ii) To show linearly independence: Suppose you have an equation of the form c 1 v c n v n = 0, and show this implies c 1 = c 2 = = c n = 0. 3
4 Example 1: Let V be the hyperplane in R 4 with equation The vectors x + y + z + w = 0. v 1 = e 1 e 2, v 2 = e 2 e 3, v 3 = e 3 e 4 are in V. Let s show that {v 1, v 2, v 3 } is a basis of V. Step (i): To check spanning, let v = (x, y, z, w) be an arbitary vector in V. We want to find scalars c 1, c 2, c 3 such that v = c 1 v 1 + c 2 v 2 + c 3 v 3. Since w = x y z, we have v = xv 1 + (x + y)v 2 + (x + y + z)v 3, so c 1 = x, c 2 = x + y, c 3 = x + y + z do the job. This shows that S spans V. Step (ii): To check linear independence, we suppose there are scalars c 1, c 2, c 3 such that c 1 v 1 + c 2 v 2 + c 3 v 3 = 0. Writing both sides out in terms of components, this means which amounts to the equations (c 1, c 2 c 1, c 3 c 2, c 3 ) = (0, 0, 0, 0), c 1 = 0 c 2 c 1 = 0 c 3 c 2 = 0 c 3 = 0. The only solution to these equation is c 1 = c 2 = c 3 = 0. This shows that {v 1, v 2, v 3 } is linearly independent. We have now shown that {v 1, v 2, v 3 } is a basis of V. This means that every vector v V can be uniquely written as v = c 1 v 1 + c 2 v 2 + c 3 v 3 = (c 1, c 2 c 1, c 3 c 2, c 3 ). Example 2: Let us now take the vector space W of vectors (x, y, z, w, t) in R 5 satisfying the same equation x + y + z + w = 0. Then the set {v 1, v 2, v 3 } in example 2 is no longer a basis of W: the vector e 5 is in W, but e 5 is not in the span of {v 1, v 2, v 3 }. By the method of example 2 one can check that the enlarged set {e 1 e 2, e 2 e 3, e 3 e 4, e 5 } is a basis of W. Example 3: We have seen that the vector space P n of polynomials of degree n has the basis {1, x, x 2, x 3,..., x n }. This may be the most obvious basis of P n, but for many purposes it is not the best one. For numerical integration, one prefers to use instead the basis {P 0, P 1, P 2,..., P n } 4
5 consisting of Legendre Polynomials. These are the unique polynomials satisfying the conditions deg P k = k, P k (1) = 1, 1 1 P k P l dx = 0 if k l. The first few Legendre polynomials are and a general formula for them is P 0 = 1, P 1 = x, P 2 = 1 2 (3x2 1), P 3 = 1 2 (5x3 3x), (2) P k (x) = All we need to know from this formula is that (2k) d k dx k [(x2 1) k ]. P k (x) = a k x k + (lower powers of x). Let s show that {P 0, P 1, P 2,..., P n } is a basis of P n. Step (i): The span L n of {P 0, P 1, P 2,..., P n } is a vector space, consisting of all linear combinations of the P k, and we want to show that L n = P n. We first note that 1 = P 0 and x = P 1, so 1 and x are in L n. Next, P 2 = 3 2 x2 1 2 x and both P 2 and x are in L n, so 3 2 x2 L n, so x 2 L n. Likewise, P 3 = a 3 x 3 + (linear combination of 1, x, x 2 and since 1, x, x 2 and P 3 are in L n we have x 3 L n. In general P k = a k x k + (linear combination of 1, x,..., x k 1 and up to this point we will have shown 1, x,..., x k 1 L n, along with having P k L n by definition, so we get x k L n, and continue like this, until we have all powers 1, x,..., x n in L n. Now, since a general polynomial Q P n is a linear combination of 1, x,..., x n, we have Q L n as well. This proves spanning. Step (ii): To show linear independence, suppose c 0, c 1,..., c n are scalars such that c 0 P 0 + c 1 P c n P n = 0 is the zero polynomial. Since deg P n = n and deg P k < n for k < n, it follows that x n appears in c n P n and nowhere else. Since the coefficient of x n must cancel out, we must have c n = 0. The same argument now shows c n 1 = 0, etc., so all c k = 0 and this proves that {P 0, P 1, P 2,..., P n } is linearly independent and is therefore a basis of P n. Example 4: Let V be the vector space of solutions to the differential equation f + af + bf = 0, 5
6 where a and b are constants. Let λ and µ be the roots of the polynomial x 2 + ax + b and assume for simplicity that λ µ. I claim that {e λx, e µx } is a basis of V. Let D : C (R) C (R) be the linear map of the vector space of infinitely differentiable functions given by Df = f. The eigenvectors of D with eigenvalue λ are solutions to the equation Df = λf, namely f = ke λx, where k is a constant. In other words, e λx spans ker(d λ). Since x 2 + ax + b = (x λ)(x µ) we have f + af + bf = (D 2 + ad + b)f = (D λ)(d µ)f = (D µ)(d λ)f. If f + af + bf = 0 then (D µ)f ker(d λ) and viceversa. so (D µ)f = k 1 e λx and (D λ)f = k 2 e µx, for some constants k 1 and k 2. Solving these two equations for Df we get Integrating both sides, we get This shows that {e λx, e µx } spans V. We now show linear independence. Suppose (λ µ)df = k 1 λe λx k 2 µe µx. f = 1 ( k1 λe λx k 2 µe µx). λ µ c 1 e λx + c 2 e µx = 0 for some constants c 1 and c 2. Differentiating, we get c 1 λe λ x + c 2 µe µx = 0. Multiplying the first equation by µ and subtracting we get c 1 (µ λ)e λ x = 0. Since µ λ this forces c 1 = 0. Then c 2 e µx = 0 so c 2 = 0. This proves that {e λx, e µx } is linearly independent and is therefore a basis of the solution space V. 6
7 Exercise 20.1 Find a basis of the hyperplane in R 4 with equation x + 2y + 3z + 4w = 0. Exercise 20.2 Let V be the vector space of solutions of the differential equation f 2f + f = 0. (a) Show that the functions e x and xe x belong to V. (b) Show that the functions e x and xe x are linearly independent. 1 Exercise 20.3 Let P n be the vector space of polynomials of degree at most n. Let p 0, p 1,..., p n be polynomials with deg(p i ) = i. Show that {p 0, p 1,..., p n } is a basis of P n. Exercise 20.4 On P n, we have the an analogue of the dot product, given by p, q = 1 1 p(x)q(x) dx. We say p and q are orthogonal if p, q = 0. In this problem you may use without proof the fact that distinct Legendre polynomials P k and P l are orthogonal: P k, P l = 0 if k l. (a) Suppose f P n is orthogonal to each Legendre polynomial P k, for all 0 k n. Show that f = 0. (b) We know that any f P n may be uniquely expressed as a linear combination of the P k. Show that this unique linear combination is given by f(x) = n k=0 f, P k P k, P k P k(x). [Hint: Let be the difference of the two sides and show that, P k = 0 for all 0 k n. Then invoke part (a). ] Exercise 20.5 Let v 1,... v k be nonzero vectors in R n which are orthogonal with respect to the dot product. Prove that {v 1,..., v k } is linearly independent. 1 In fact {e x, xe x } is a basis of V, but that is harder to prove. 7
Review: Vector space
Math 2F Linear Algebra Lecture 13 1 Basis and dimensions Slide 1 Review: Subspace of a vector space. (Sec. 4.1) Linear combinations, l.d., l.i. vectors. (Sec. 4.3) Dimension and Base of a vector space.
More informationby the matrix A results in a vector which is a reflection of the given
Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the yaxis We observe that
More informationSimilarity and Diagonalization. Similar Matrices
MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that
More informationDiagonalisation. Chapter 3. Introduction. Eigenvalues and eigenvectors. Reading. Definitions
Chapter 3 Diagonalisation Eigenvalues and eigenvectors, diagonalisation of a matrix, orthogonal diagonalisation fo symmetric matrices Reading As in the previous chapter, there is no specific essential
More informationLinear Algebra I. Ronald van Luijk, 2012
Linear Algebra I Ronald van Luijk, 2012 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents 1. Vector spaces 3 1.1. Examples 3 1.2. Fields 4 1.3. The field of complex numbers. 6 1.4.
More informationMATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).
MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0
More informationLINEAR ALGEBRA W W L CHEN
LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,
More informationMath 215 Exam #1 Practice Problem Solutions
Math 5 Exam # Practice Problem Solutions For each of the following statements, say whether it is true or false If the statement is true, prove it If false, give a counterexample (a) If A is a matrix such
More informationSome Basic Properties of Vectors in n
These notes closely follow the presentation of the material given in David C. Lay s textbook Linear Algebra and its Applications (3rd edition). These notes are intended primarily for inclass presentation
More informationOrthogonal Diagonalization of Symmetric Matrices
MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding
More informationChapter 17. Orthogonal Matrices and Symmetries of Space
Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length
More informationMathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 19967 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
More informationLinear Span and Bases
MAT067 University of California, Davis Winter 2007 Linear Span and Bases Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (January 23, 2007) Intuition probably tells you that the plane R 2 is of dimension
More informationSystems of Linear Equations
Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and
More informationBANACH AND HILBERT SPACE REVIEW
BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but
More informationInner Product Spaces and Orthogonality
Inner Product Spaces and Orthogonality week 34 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,
More informationLinear Algebra Notes
Linear Algebra Notes Chapter 19 KERNEL AND IMAGE OF A MATRIX Take an n m matrix a 11 a 12 a 1m a 21 a 22 a 2m a n1 a n2 a nm and think of it as a function A : R m R n The kernel of A is defined as Note
More informationMAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A =
MAT 200, Midterm Exam Solution. (0 points total) a. (5 points) Compute the determinant of the matrix 2 2 0 A = 0 3 0 3 0 Answer: det A = 3. The most efficient way is to develop the determinant along the
More informationMATH 304 Linear Algebra Lecture 16: Basis and dimension.
MATH 304 Linear Algebra Lecture 16: Basis and dimension. Basis Definition. Let V be a vector space. A linearly independent spanning set for V is called a basis. Equivalently, a subset S V is a basis for
More information2.1 Functions. 2.1 J.A.Beachy 1. from A Study Guide for Beginner s by J.A.Beachy, a supplement to Abstract Algebra by Beachy / Blair
2.1 J.A.Beachy 1 2.1 Functions from A Study Guide for Beginner s by J.A.Beachy, a supplement to Abstract Algebra by Beachy / Blair 21. The Vertical Line Test from calculus says that a curve in the xyplane
More information7  Linear Transformations
7  Linear Transformations Mathematics has as its objects of study sets with various structures. These sets include sets of numbers (such as the integers, rationals, reals, and complexes) whose structure
More informationSolutions to Linear Algebra Practice Problems
Solutions to Linear Algebra Practice Problems. Find all solutions to the following systems of linear equations. (a) x x + x 5 x x x + x + x 5 (b) x + x + x x + x + x x + x + 8x Answer: (a) We create the
More informationSection 1.1. Introduction to R n
The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to
More informationAu = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.
Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry
More information4.5 Linear Dependence and Linear Independence
4.5 Linear Dependence and Linear Independence 267 32. {v 1, v 2 }, where v 1, v 2 are collinear vectors in R 3. 33. Prove that if S and S are subsets of a vector space V such that S is a subset of S, then
More informationr (t) = 2r(t) + sin t θ (t) = r(t) θ(t) + 1 = 1 1 θ(t) 1 9.4.4 Write the given system in matrix form x = Ax + f ( ) sin(t) x y 1 0 5 z = dy cos(t)
Solutions HW 9.4.2 Write the given system in matrix form x = Ax + f r (t) = 2r(t) + sin t θ (t) = r(t) θ(t) + We write this as ( ) r (t) θ (t) = ( ) ( ) 2 r(t) θ(t) + ( ) sin(t) 9.4.4 Write the given system
More information1 VECTOR SPACES AND SUBSPACES
1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such
More information1 Eigenvalues and Eigenvectors
Math 20 Chapter 5 Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors. Definition: A scalar λ is called an eigenvalue of the n n matrix A is there is a nontrivial solution x of Ax = λx. Such an x
More informationInner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
More informationMA106 Linear Algebra lecture notes
MA106 Linear Algebra lecture notes Lecturers: Martin Bright and Daan Krammer Warwick, January 2011 Contents 1 Number systems and fields 3 1.1 Axioms for number systems......................... 3 2 Vector
More informationTHE DIMENSION OF A VECTOR SPACE
THE DIMENSION OF A VECTOR SPACE KEITH CONRAD This handout is a supplementary discussion leading up to the definition of dimension and some of its basic properties. Let V be a vector space over a field
More informationMATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.
MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar
More informationAn important class of codes are linear codes in the vector space Fq n, where F q is a finite field of order q.
Chapter 3 Linear Codes An important class of codes are linear codes in the vector space Fq n, where F q is a finite field of order q. Definition 3.1 (Linear code). A linear code C is a code in Fq n for
More informationLS.6 Solution Matrices
LS.6 Solution Matrices In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. You need to get used to the terminology. As before, we state the definitions
More informationLecture 14: Section 3.3
Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in
More informationChapter 6. Orthogonality
6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be
More informationPROVING STATEMENTS IN LINEAR ALGEBRA
Mathematics V2010y Linear Algebra Spring 2007 PROVING STATEMENTS IN LINEAR ALGEBRA Linear algebra is different from calculus: you cannot understand it properly without some simple proofs. Knowing statements
More informationVector and Matrix Norms
Chapter 1 Vector and Matrix Norms 11 Vector Spaces Let F be a field (such as the real numbers, R, or complex numbers, C) with elements called scalars A Vector Space, V, over the field F is a nonempty
More informationVector Spaces 4.4 Spanning and Independence
Vector Spaces 4.4 and Independence October 18 Goals Discuss two important basic concepts: Define linear combination of vectors. Define Span(S) of a set S of vectors. Define linear Independence of a set
More informationMATH 551  APPLIED MATRIX THEORY
MATH 55  APPLIED MATRIX THEORY FINAL TEST: SAMPLE with SOLUTIONS (25 points NAME: PROBLEM (3 points A web of 5 pages is described by a directed graph whose matrix is given by A Do the following ( points
More informationLEARNING OBJECTIVES FOR THIS CHAPTER
CHAPTER 2 American mathematician Paul Halmos (1916 2006), who in 1942 published the first modern linear algebra book. The title of Halmos s book was the same as the title of this chapter. FiniteDimensional
More informationMATH 110 Spring 2015 Homework 6 Solutions
MATH 110 Spring 2015 Homework 6 Solutions Section 2.6 2.6.4 Let α denote the standard basis for V = R 3. Let α = {e 1, e 2, e 3 } denote the dual basis of α for V. We would first like to show that β =
More information3. INNER PRODUCT SPACES
. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.
More informationSummary of week 8 (Lectures 22, 23 and 24)
WEEK 8 Summary of week 8 (Lectures 22, 23 and 24) This week we completed our discussion of Chapter 5 of [VST] Recall that if V and W are inner product spaces then a linear map T : V W is called an isometry
More informationRecall that two vectors in are perpendicular or orthogonal provided that their dot
Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal
More informationsome algebra prelim solutions
some algebra prelim solutions David Morawski August 19, 2012 Problem (Spring 2008, #5). Show that f(x) = x p x + a is irreducible over F p whenever a F p is not zero. Proof. First, note that f(x) has no
More informationLinear Algebra Review. Vectors
Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka kosecka@cs.gmu.edu http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa Cogsci 8F Linear Algebra review UCSD Vectors The length
More informationSection 2.1. Section 2.2. Exercise 6: We have to compute the product AB in two ways, where , B =. 2 1 3 5 A =
Section 2.1 Exercise 6: We have to compute the product AB in two ways, where 4 2 A = 3 0 1 3, B =. 2 1 3 5 Solution 1. Let b 1 = (1, 2) and b 2 = (3, 1) be the columns of B. Then Ab 1 = (0, 3, 13) and
More information9 Multiplication of Vectors: The Scalar or Dot Product
Arkansas Tech University MATH 934: Calculus III Dr. Marcel B Finan 9 Multiplication of Vectors: The Scalar or Dot Product Up to this point we have defined what vectors are and discussed basic notation
More informationRecall the basic property of the transpose (for any A): v A t Aw = v w, v, w R n.
ORTHOGONAL MATRICES Informally, an orthogonal n n matrix is the ndimensional analogue of the rotation matrices R θ in R 2. When does a linear transformation of R 3 (or R n ) deserve to be called a rotation?
More informationMath 4310 Handout  Quotient Vector Spaces
Math 4310 Handout  Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable
More informationNOTES ON LINEAR TRANSFORMATIONS
NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all
More informationImages and Kernels in Linear Algebra By Kristi Hoshibata Mathematics 232
Images and Kernels in Linear Algebra By Kristi Hoshibata Mathematics 232 In mathematics, there are many different fields of study, including calculus, geometry, algebra and others. Mathematics has been
More informationMath 2280 Section 002 [SPRING 2013] 1
Math 2280 Section 002 [SPRING 2013] 1 Today well learn about a method for solving systems of differential equations, the method of elimination, that is very similar to the elimination methods we learned
More informationα = u v. In other words, Orthogonal Projection
Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v
More informationPOWER SETS AND RELATIONS
POWER SETS AND RELATIONS L. MARIZZA A. BAILEY 1. The Power Set Now that we have defined sets as best we can, we can consider a sets of sets. If we were to assume nothing, except the existence of the empty
More information10.3 POWER METHOD FOR APPROXIMATING EIGENVALUES
55 CHAPTER NUMERICAL METHODS. POWER METHOD FOR APPROXIMATING EIGENVALUES In Chapter 7 we saw that the eigenvalues of an n n matrix A are obtained by solving its characteristic equation n c n n c n n...
More informationUniversity of Lille I PC first year list of exercises n 7. Review
University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients
More informationNOTES on LINEAR ALGEBRA 1
School of Economics, Management and Statistics University of Bologna Academic Year 205/6 NOTES on LINEAR ALGEBRA for the students of Stats and Maths This is a modified version of the notes by Prof Laura
More informationQuick Reference Guide to Linear Algebra in Quantum Mechanics
Quick Reference Guide to Linear Algebra in Quantum Mechanics Scott N. Walck September 2, 2014 Contents 1 Complex Numbers 2 1.1 Introduction............................ 2 1.2 Real Numbers...........................
More informationProblems for Advanced Linear Algebra Fall 2012
Problems for Advanced Linear Algebra Fall 2012 Class will be structured around students presenting complete solutions to the problems in this handout. Please only agree to come to the board when you are
More informationBasic Terminology for Systems of Equations in a Nutshell. E. L. Lady. 3x 1 7x 2 +4x 3 =0 5x 1 +8x 2 12x 3 =0.
Basic Terminology for Systems of Equations in a Nutshell E L Lady A system of linear equations is something like the following: x 7x +4x =0 5x +8x x = Note that the number of equations is not required
More informationTv = Tu 1 + + Tu N. (u 1,...,u M, v 1,...,v N ) T(Sv) = S(Tv) = Sλv = λ(sv).
54 CHAPTER 5. EIGENVALUES AND EIGENVECTORS 5.6 Solutions 5.1 Suppose T L(V). Prove that if U 1,...,U M are subspaces of V invariant under T, then U 1 + + U M is invariant under T. Suppose v = u 1 + + u
More informationINTRODUCTORY LINEAR ALGEBRA WITH APPLICATIONS B. KOLMAN, D. R. HILL
SOLUTIONS OF THEORETICAL EXERCISES selected from INTRODUCTORY LINEAR ALGEBRA WITH APPLICATIONS B. KOLMAN, D. R. HILL Eighth Edition, Prentice Hall, 2005. Dr. Grigore CĂLUGĂREANU Department of Mathematics
More informationMAT 242 Test 2 SOLUTIONS, FORM T
MAT 242 Test 2 SOLUTIONS, FORM T 5 3 5 3 3 3 3. Let v =, v 5 2 =, v 3 =, and v 5 4 =. 3 3 7 3 a. [ points] The set { v, v 2, v 3, v 4 } is linearly dependent. Find a nontrivial linear combination of these
More informationIntroduction to Algebraic Geometry. Bézout s Theorem and Inflection Points
Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a
More informationMATH 2030: SYSTEMS OF LINEAR EQUATIONS. ax + by + cz = d. )z = e. while these equations are not linear: xy z = 2, x x = 0,
MATH 23: SYSTEMS OF LINEAR EQUATIONS Systems of Linear Equations In the plane R 2 the general form of the equation of a line is ax + by = c and that the general equation of a plane in R 3 will be we call
More information5. Linear algebra I: dimension
5. Linear algebra I: dimension 5.1 Some simple results 5.2 Bases and dimension 5.3 Homomorphisms and dimension 1. Some simple results Several observations should be made. Once stated explicitly, the proofs
More information1 Introduction to Matrices
1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns
More informationMetric Spaces. Chapter 7. 7.1. Metrics
Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some
More information4.6 Null Space, Column Space, Row Space
NULL SPACE, COLUMN SPACE, ROW SPACE Null Space, Column Space, Row Space In applications of linear algebra, subspaces of R n typically arise in one of two situations: ) as the set of solutions of a linear
More information1. Let P be the space of all polynomials (of one real variable and with real coefficients) with the norm
Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 0050615 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok
More informationLectures notes on orthogonal matrices (with exercises) 92.222  Linear Algebra II  Spring 2004 by D. Klain
Lectures notes on orthogonal matrices (with exercises) 92.222  Linear Algebra II  Spring 2004 by D. Klain 1. Orthogonal matrices and orthonormal sets An n n realvalued matrix A is said to be an orthogonal
More informationInterpolating Polynomials Handout March 7, 2012
Interpolating Polynomials Handout March 7, 212 Again we work over our favorite field F (such as R, Q, C or F p ) We wish to find a polynomial y = f(x) passing through n specified data points (x 1,y 1 ),
More informationMATH10212 Linear Algebra. Systems of Linear Equations. Definition. An ndimensional vector is a row or a column of n numbers (or letters): a 1.
MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0534405967. Systems of Linear Equations Definition. An ndimensional vector is a row or a column
More informationISOMETRIES OF R n KEITH CONRAD
ISOMETRIES OF R n KEITH CONRAD 1. Introduction An isometry of R n is a function h: R n R n that preserves the distance between vectors: h(v) h(w) = v w for all v and w in R n, where (x 1,..., x n ) = x
More informationPolynomials can be added or subtracted simply by adding or subtracting the corresponding terms, e.g., if
1. Polynomials 1.1. Definitions A polynomial in x is an expression obtained by taking powers of x, multiplying them by constants, and adding them. It can be written in the form c 0 x n + c 1 x n 1 + c
More information1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two nonzero vectors u and v,
1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It
More informationLinear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007)
MAT067 University of California, Davis Winter 2007 Linear Maps Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) As we have discussed in the lecture on What is Linear Algebra? one of
More informationMarkov Chains, part I
Markov Chains, part I December 8, 2010 1 Introduction A Markov Chain is a sequence of random variables X 0, X 1,, where each X i S, such that P(X i+1 = s i+1 X i = s i, X i 1 = s i 1,, X 0 = s 0 ) = P(X
More informationTHREE DIMENSIONAL GEOMETRY
Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,
More informationMath 312 Homework 1 Solutions
Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please
More informationFacts About Eigenvalues
Facts About Eigenvalues By Dr David Butler Definitions Suppose A is an n n matrix An eigenvalue of A is a number λ such that Av = λv for some nonzero vector v An eigenvector of A is a nonzero vector v
More informationGRA6035 Mathematics. Eivind Eriksen and Trond S. Gustavsen. Department of Economics
GRA635 Mathematics Eivind Eriksen and Trond S. Gustavsen Department of Economics c Eivind Eriksen, Trond S. Gustavsen. Edition. Edition Students enrolled in the course GRA635 Mathematics for the academic
More informationNotes on Orthogonal and Symmetric Matrices MENU, Winter 2013
Notes on Orthogonal and Symmetric Matrices MENU, Winter 201 These notes summarize the main properties and uses of orthogonal and symmetric matrices. We covered quite a bit of material regarding these topics,
More informationNumerical Analysis Lecture Notes
Numerical Analysis Lecture Notes Peter J. Olver 6. Eigenvalues and Singular Values In this section, we collect together the basic facts about eigenvalues and eigenvectors. From a geometrical viewpoint,
More informationThese axioms must hold for all vectors ū, v, and w in V and all scalars c and d.
DEFINITION: A vector space is a nonempty set V of objects, called vectors, on which are defined two operations, called addition and multiplication by scalars (real numbers), subject to the following axioms
More information( ) which must be a vector
MATH 37 Linear Transformations from Rn to Rm Dr. Neal, WKU Let T : R n R m be a function which maps vectors from R n to R m. Then T is called a linear transformation if the following two properties are
More informationChapter 15 Introduction to Linear Programming
Chapter 15 Introduction to Linear Programming An Introduction to Optimization Spring, 2014 WeiTa Chu 1 Brief History of Linear Programming The goal of linear programming is to determine the values of
More informationDefinition 12 An alternating bilinear form on a vector space V is a map B : V V F such that
4 Exterior algebra 4.1 Lines and 2vectors The time has come now to develop some new linear algebra in order to handle the space of lines in a projective space P (V ). In the projective plane we have seen
More informationSec 4.1 Vector Spaces and Subspaces
Sec 4. Vector Spaces and Subspaces Motivation Let S be the set of all solutions to the differential equation y + y =. Let T be the set of all 2 3 matrices with real entries. These two sets share many common
More informationFourier series. Jan Philip Solovej. English summary of notes for Analysis 1. May 8, 2012
Fourier series Jan Philip Solovej English summary of notes for Analysis 1 May 8, 2012 1 JPS, Fourier series 2 Contents 1 Introduction 2 2 Fourier series 3 2.1 Periodic functions, trigonometric polynomials
More informationLinear Algebra. A vector space (over R) is an ordered quadruple. such that V is a set; 0 V ; and the following eight axioms hold:
Linear Algebra A vector space (over R) is an ordered quadruple (V, 0, α, µ) such that V is a set; 0 V ; and the following eight axioms hold: α : V V V and µ : R V V ; (i) α(α(u, v), w) = α(u, α(v, w)),
More informationMATH 240 Fall, Chapter 1: Linear Equations and Matrices
MATH 240 Fall, 2007 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 9th Ed. written by Prof. J. Beachy Sections 1.1 1.5, 2.1 2.3, 4.2 4.9, 3.1 3.5, 5.3 5.5, 6.1 6.3, 6.5, 7.1 7.3 DEFINITIONS
More informationSection 6.1  Inner Products and Norms
Section 6.1  Inner Products and Norms Definition. Let V be a vector space over F {R, C}. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F,
More informationInner product. Definition of inner product
Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product
More informationEigenvalues, Eigenvectors, Matrix Factoring, and Principal Components
Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components The eigenvalues and eigenvectors of a square matrix play a key role in some important operations in statistics. In particular, they
More information10.3 POWER METHOD FOR APPROXIMATING EIGENVALUES
58 CHAPTER NUMERICAL METHODS. POWER METHOD FOR APPROXIMATING EIGENVALUES In Chapter 7 you saw that the eigenvalues of an n n matrix A are obtained by solving its characteristic equation n c nn c nn...
More information17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function
17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function, : V V R, which is symmetric, that is u, v = v, u. bilinear, that is linear (in both factors):
More informationAdditional Topics in Linear Algebra Supplementary Material for Math 540. Joseph H. Silverman
Additional Topics in Linear Algebra Supplementary Material for Math 540 Joseph H Silverman Email address: jhs@mathbrownedu Mathematics Department, Box 1917 Brown University, Providence, RI 02912 USA Contents
More information