MeanValue Theorem (Several Variables)


 Clifford Fletcher
 2 years ago
 Views:
Transcription
1 MeanValue Theorem (Several Variables) 1 MeanValue Theorem (Several Variables) THEOREM THE MEANVALUE THEOREM (SEVERAL VARIABLES) If f is ifferentiable at each point of the line segment ab, then there exists on that line segment a point c between a an b such that f(b) f(a) = f(c) (b a). Proof. As t ranges from 0 to 1, a + t(b a) traces out the line segment ab. The iea of the proof is to apply the onevariable meanvalue theorem to the function g(t) = f(a + t[b a]), t [0, 1]. To show that g is ifferentiable on the open interval (0, 1), we take t (0, 1) an form g(t + h) g(t) = f(a + (t + h)[b a]) f(a + t[b a]) = f(a + t[b a] + h[b a]) f(a + t[b a]) = f(a + t[b a]) h[b a] + o(h[b a]). Since f(a + t[b a]) h(b a) = [ f(a + t[b a]) (b a)]h an the o(h(b a)) term is obviously o(h), we can write g(t + h) g(t) = [ f(a + t[b a]) (b a)]h + o(h). Diviing both sies by h, we see that g is ifferentiable an g (t) = f(a + t[b a]) (b a). The function g is clearly continuous at 0 an at 1. Applying the onevariable meanvalue theorem to g, we can conclue that there exists a number t 0 between 0 an 1 such that g(1) g(0) = g (t 0 )(1 0). Since g(1) = f(b), g(0) = f(a), an g (t 0 ) = f(a + t 0 [b a]) (b a), the above gives f(b) f(a) = f(a + t 0 [b a]) (b a).
2 MeanValue Theorem (Several Variables) 2 Setting c = a + t 0 [b a], we have f(b) f(a) = f(c) (b a). A nonempty open set U (in the plane or in threespace) is sai to be connecte if any two points of U can be joine by a polygonal path that lies entirely in U. THEOREM. Let U be an open connecte set. If f(x) = 0 for all x U, then f is constant in U. Proof. Let a an b be any two points in U. Since U is open an connecte, we can join these points by a polygonal path with vertices a = c 0, c 1,, c n 1, c n = b. By the meanvalue theorem there exist points c 1 on c 0 c 1 such that f(c 1 ) f(c 0 ) = f(c1) (c 1 c 0 ), c 2 on c 1 c 2 such that f(c 2 ) f(c 1 ) = f(c2) (c 2 c 1 ), c 3 on c 2 c 3 such that f(c 3 ) f(c 2 ) = f(c3) (c 3 c 2 ), c n on c n 1 c n such that f(c n ) f(c n 1 ) = f(cn) (c n c n 1 ). If f(x) = 0 for all x in U, then f(c 1 ) f(c 0 ) = 0, f(c 2 ) f(c 1 ) = 0,, f(c n ) f(c n 1 ) = 0 This shows that f(a) = f(c 0 ) = f(c 1 ) = f(c 2 ) = = f(c n 1 ) = f(c n ) = f(b). Since a an b are arbitrary points of U, f must be constant on U. THEOREM. Let U be an open connecte set. If f(x) = g(x) for all x in U, then f an g iffer by a constant on U. Proof. If f(x) = g(x) for all x in U, then [f(x) g(x)] = f(x) g(x) = 0 for all x in U. Therefore, f g must be constant on U.
3 Continuity on a Close Region 3 We have seen that a function continuous on an interval skips no values. (The intermeiatevalue theorem.) There are analogous results for functions of several variables. Here is one of them. THEOREM AN INTERMEDIATEVALUE THEOREM (SEVERAL VARIABLES) Suppose that f is continuous on an open connecte set U an A < C < B. If, somewhere on U, f takes on the value A an, somewhere on U, f takes on the value B, then, somewhere on U, f takes on the value C. Proof. Let a an b be points of U for which f(a) = A an f(b) = B. We must show that there exists a point c in U for which f(c) = C. Since U is polygonally connecte, there is a polygonal path in U r = r(t), t [a, b] that joins a to b. Since r is continuous on [a, b], the composition g(t) = f(r(t)) is also continuous on [a, b]. Since g(a) = f(r(a)) = f(a) = A an g(b) = f(r(b)) = f(b) = B, we know from the intermeiatevalue theorem of one variable that there is a number c in [a, b] for which g(t) = C. Setting c = r(t) we have f(c) = C. Continuity on a Close Region An open connecte set is calle an open region. If we start with an open region an ajoin to it the bounary, then we have what is calle a close region. (A close region is therefore a close set, the interior of which is an open region.) Continuity on a close region Ω requires continuity at the bounary points of Ω as well as the interior points. If x 0 is an interior point of Ω, then all points x sufficiently close to x 0 are in Ω an, by efinition, f is continuous at x 0 if as x approaches x 0, f(x) approaches f(x 0 ).
4 Continuity on a Close Region 4 If x 0 is a bounary point of Ω, then we have to moify the efinition an say: f is continuous at x 0 if as x approaches x 0 within Ω, f(x) approaches f(x 0 ). In terms of ɛ δ, f is continuous at a bounary point x 0 if for each ɛ > 0 there exists δ> 0 such that if x x 0 < δ an x Ω, then f(x) f(x 0 ) < ɛ. (This is completely analogous to onesie continuity at an enpoint of a close interval [a, b].) The intermeiatevalue result that we just prove for open connecte sets can be extene to close regions. THEOREM A SECOND INTERMEDIATEVALUE THEOREM [SEVERAL VARI ABLES] Suppose that f is continuous on a close region Ω an A < C < B. If, somewhere on Ω, f takes on the value A an, somewhere on Ω, f takes on the value B, then, somewhere on Ω, f takes on the value C. Proof. Let a an b be points of Ω for which f(a) = A an f(b) = B. If a an b are both in the interior of Ω, then the result follows from the previous theorem. But one or both of these points coul lie on the bounary of Ω. To take care of that possibility, we can procee as follows. Take ɛ > 0 small enough that A + ɛ < C < B ɛ. By continuity there exist points x 1, x 2 in the interior of Ω for which f(x 1 ) < A + ɛ an B ɛ < f(x 2 ). Then f(x 1 ) < C < f(x 2 ) an the result follows from the previous theorem.
5 Chain Rules 5 Chain Rules For functions of a single variable there is basically only one chain rule. For functions of several variables there are many chain rules. A vectorvalue function is sai to be continuous provie that its components are continuous. If f = f(x, y, z) is a scalarvalue function (a realvalue function), then its graient f is a vectorvalue function. We say that f is continuously ifferentiable on an open set U if f is ifferentiable on U an f is continuous on U. If a curve r lies in the omain of f then we can form the composition (f r)(t) = f(r(t)). The composition f r is a realvalue function of a real variable t. The numbers f(r(t)) are the values taken on by f along the curve r. THEOREM CHAIN RULE (ALONG A CURVE) If f is continuously ifferentiable on an open set U an r = r(t) is a ifferentiable curve that lies entirely in U, then the composition f r is ifferentiable an Proof. We will show that t [(f r)(t)] = f(r(t)) r (t). f(r(t + h)) f(r(t)) lim h 0 h = f(r(t)) r (t). For h 0 an sufficiently small, the line segment that joins r(t) to r(t + h) lies entirely in U. This we know because U is open an r is continuous. For such h, the meanvalue theorem we just prove assures us that there exists a point c(h) between r(t) an r(t + h) such that Diviing both sies by h, we have f(r(t + h)) f(r(t)) = f(c(h)) [r(t + h) r(t)]. f(r(t + h)) f(r(t)) h = f(c(h)) [ r(t + h) r(t) ]. h As h tens to zero, c(h) tens to r(t) an by the continuity of f, f(c(h)) f(r(t)).
6 Chain Rules 6 Since the result follows. r(t + h) r(t) h r (t), Problem 1. Use the chain rule to fin the rate of change of f(x, y) = 1 3 (x3 + y 3 ) with respect to t along the curve r(t) = a cos t i + b sin t j. Solution. The rate of change of f with respect to t along the curve r is the erivative t [f(r(t)]. By the chain rule Here t [f(r(t)] = f(r(t)) r (t). f = x 2 i + y 2 j. With x(t) = a cos t an y(t) = b sin t, we have f(r(t)) = a 2 cos 2 t i + b 2 sin 2 t j. Since r (t) = a sin t i + b cos t j, we see that t [f(r(t)] = f(r(t)) r (t) = (a 2 cos 2 t i + b 2 sin 2 t j) ( a sin t i + b cos t j) = a 3 sin t cos 2 t + b 3 sin 2 t cos t = sin t cos t (b 3 sin t a 3 cos t). Remark. Note that we coul have obtaine the same result without invoking the chain rule by first forming f(r(t)) an then ifferentiating: f(r(t)) = f(x(t), y(t)) = 1 3 ([x(t)]3 + [y(y)] 3 ) = 1 3 (a3 cos 3 t + b 3 sin 3 t) so that t [f(r(t))] = 1 3 [3a3 cos 2 t( sin t) + 3b 3 sin 2 t cos t]
7 Another Formulation of the Chain Rule 7 = sin t cos t (b 3 sin t a 3 cos t). Problem 2. Use the chain rule to fin the rate of change of f(x, y, z) = x 2 y + z cos x with respect to t along the twiste cubic r(t) = ti + t 2 j + t 3 k. Solution. Once again we use the relation t [f(r(t)] = f(r(t)) r (t). This time f = (2xy z sin x, x 2, cos x). With x(t) = t, y(t) = t 2, z(t) = t 3, we have f(r(t)) = (2t 3 t 3 sin t, t 2, cos t). Since r (t) = (1, 2t, 3t 2 ), we have t [f(r(t)] = f(r(t)) r (t). = (2t 3 t 3 sin t, t 2, cos t) (1, 2t, 3t 2 ) = 2t 3 t 3 sin t + 2t 3 + 3t 2 cos t = 4t 3 t 3 sin t + 3t 2 cos t. Another Formulation of the Chain Rule The chain rule for functions of one variable, t [u(x(t))] = u (x(t))x (t), can be written In a similar manner, the relation u t = u x x t. t [f(r(t)] = f(r(t)) r (t)
8 Another Formulation of the Chain Rule 8 can be written With this equation takes the form u = ( x, u t y, = u r t. ) an r t = (x t, y t, z t ), u t = x x t + y y t + z t. In the twovariable case, the zterm rops out an we have Problem 3. Fin u/t if u t = x x t + y y t. u = x 2 y 2 an x = t 2 1, y = 3 sin πt. Solution. Here we are in the twovariable case u t = x x t + y y t. Since we have x = 2x, y u t = 2y an x t = 2t, y t = (2x)(2t) + ( 2y)(3π cos πt) = 4t 3 4t 18π sin πt cos πt. = 3π cos πt, This same result may be obtaine by first writing u irectly as a function of t an then ifferentiating: so that u = x 2 y 2 = (t 1) 2 (3 sin πt) 2 u t = 4t3 4t 18π sin πt cos πt. Problem 4. The upper raius of the frustum of a cone is 10 inches, the lower raius is 12 inches, an the height is 18 inches. At what rate is the volume changing if the upper raius ecreases at the rate of 2 inches per minute, the lower raius increases
9 Other Chain Rules 9 at the rate of 3 inches per minute, an the height ecreases at the rate of 4 inches per minute? Solution. Let x be the upper raius, y the lower raius, an z the height. Then V = 1 3 πz(x2 + xy + y 2 ) so that V x = 1 V πz(2x + y), 3 y = 1 V πz(x + 2y), 3 = 1 3 π(x2 + xy + y 2 ). Since we have here V t = V x x t + V y y t + V z t, Set we fin that V t = 1 πz(2x + y)x 3 t + 1 πz(x + 2y)y 3 t π(x2 + xy + y 2 ) z t. x = 10, y = 12, z = 18, x t = 2, y t V t = π. = 4, z t = 4 The volume ecreases at the rate of 772/3 cubic inches per minute. Other Chain Rules In the setting of functions of several variables there are numerous chain rules. They can all be euce from the theorem prove above an its corollaries. If, for example, u = u(x, y), where x = x(s, t) an y = y(s, t), then s = x x s + y y s an t = x x t + y To obtain the first equation, keep t fixe an ifferentiate u with respect to s accoring to the formula in the chain rule; to obtain the secon equation, keep s fixe an ifferentiate u with respect to t. y t.
10 Other Chain Rules 10 In the figure below we have rawn a tree iagram for the formula. We construct such a tree by branching at each stage from a function to all the variables that irectly etermine it. Each path starting at u an ening at a variable etermines a prouct of (partial) erivatives. The partial erivative of u with respect to each variable is the sum of the proucts generate by all the irect paths to that variable. Suppose, for example, that u = u(x, y, z), where x = x(s, t), y = y(s, t), z = z(s, t). The partials of u with respect to s an t can be rea from the iagram: s = x x s + y y s + s an t = x x t + y y t + Problem 5. (Implicit ifferentiation) Let u = u(x, y, z) be a continuously ifferentiable function, an suppose that the equation u(x, y, z) = 0 efines z implicitly as a ifferentiable function of x an y. Show that if 0, then x = / x / Solution. To be able to apply the chain rule, we write Then Since u(s, t, z(s, t)) = 0 for all s an t, an y = / y /. u = u(x, y, z) with x = s, y = t, z = z(s, t). s = x x s + y y s + s. s = 0. t.
11 A firstorer partial ifferential equation with constant coefficients 11 Since we have If 0, then The formula for y 0 = x 1 + x s y 0 + = 1 an y s = 0, s = x + x = / x / can be obtaine in a similar manner. s = x + x. A firstorer partial ifferential equation with constant coefficients Consier the firstorer partial ifferential equation f(x, y) f(x, y) x y All the solutions of this equation can be foun by geometric consierations. We express = 0. the left member as a ot prouct, an write the equation in the form (3, 2) f(x, y) = 0. This tells us that the graient vector f(x, y) is orthogonal to the vector 3i + 2j at each point (x, y). But we also know that f(x, y) is orthogonal to the level curves of f. Hence these level curves must be straight lines parallel to 3i + 2j. In other wors, the level curves of f are the lines 2x 3y = c. Therefore f(x, y) is constant when 2x 3y is constant. This suggests that f(x, y) = g(2x 3y) for some function g.
12 A firstorer partial ifferential equation with constant coefficients 12 Now we verify that, for each ifferentiable function g, the scalar fiel f efine by this equation oes, inee, satisfy the given PDE. Using the chain rule to compute the partial erivatives of f we fin f x = 2g (2x 3y), f y = 3g (2x 3y), 3 f x + 2 f y = 6g (2x 3y) 6g (2x 3y) = 0. Therefore, f satisfies the PDE as require. Conversely, we can show that every ifferentiable f which satisfies the PDE must necessarily have the form f(x, y) = g(2x 3y) for some g. To o this, we introuce a linear change of variables, x = Au + Bv, y = Cu + Dv. This transforms f(x, y) into a function of u an v, say h(u, v) = f(au + Bv, Cu + Dv). We shall choose the constants A, B, C, D so that h satisfies the simpler equation h(u, v) = 0. Then we shall solve this equation an show that f has the require form. Using the chain rule we fin Since f satisfies h = f x x + f y y = f x A + f y C. f(x, y) f(x, y) x y = 0. we have f/ y = (3/2)( f/ x), so the equation for h/ becomes Therefore, h will satisfy h(u,v) fin h = f x (A 3 2 C). = 0 if we choose A = 3 C. Taking A = 3 an C = 2 we 2 x = 3u + Bv, y = 2u + Dv.
13 A firstorer partial ifferential equation with constant coefficients 13 For this choice of A an C, the function h satisfies h(u,v) of v alone, say h(u, v) = g(v) = 0, so h(u, v) is a function for some function g. To express v in terms of x an y we eliminate u from x = 3u + Bv, y = 2u + Dv an obtain 2x 3y = (2B 3D)v. Now we choose B an D to make 2B 3D = 1, say B = 2, D = 1. For this choice the transformation x = Ax + Bv, y = Cu + Dv. is nonsingular; we have v = 2x 3y, an hence f(x, y) = h(u, v) = g(v) = g(2x 3y). This shows that every ifferentiable solution for has the form f(x, y) f(x, y) x y f(x, y) = g(2x 3y). Exactly the same type of argument proves the following theorem for firstorer equations with constant coefficients. THEOREM Let g be ifferentiable on R, an let f be the scalar fiel efine on R 2 by the equation f(x, y) = g(bx ay), where a an b are constants, not both zero. ifferential equation f(x, y) f(x, y) a + b x y = 0 Then f satisfies the firstorer partial everywhere in R 2. Conversely, every ifferentiable solution of this PDE necessarily has the form for some g. = 0
14 Alembert s Solution of the Wave Equation 14 The oneimensional wave equation Imagine a string of infinite length stretche along the xaxis an allowe to vibrate in the xyplane. We enote by y = f(x, t) the vertical isplacement of the string at the point x at time t. We assume that, at time t = 0, the string is isplace along a prescribe curve, y = F (x). We regar the isplacement f(x, t) as an unknown function of x an t to be etermine. A mathematical moel for this problem (suggeste by physical consierations) is the partial ifferential equation 2 f t 2 = c2 2 f x 2, where c is a positive constant epening on the physical characteristics of the string. This equation is calle the oneimensional wave equation. We will solve this equation subject to certain auxiliary conitions. Since the initial isplacement is the prescribe curve y = F (x), we seek a solution satisfying the conition f(x, 0) = F (x). We also assume that y/ t, the velocity of the vertical isplacement, is prescribe at time t = 0, say D 2 f(x, 0) = G(x), where G is a given function. It seems reasonable to expect that this information shoul suffice to etermine the subsequent motion of the string. We will show that, inee, this is true by etermining the function f in terms of F an G. The solution is expresse in a form given by Jean Alembert ( ), a French mathematician an philosopher. Alembert s Solution of the Wave Equation Theorem. Let F an G be given functions such that G is ifferentiable an F is twice ifferentiable on R. Then the function f given by the formula f(x, t) = F (x + ct) + F (x ct) c x+ct x ct G(s) s
15 Alembert s Solution of the Wave Equation 15 satisfies the oneimensional wave equation 2 f t 2 = c2 2 f x 2 an the initial conitions f(x, 0) = F (x), D 2 f(x, 0) = G(x). Conversely, any function f with equal mixe partials which satisfies these conitions necessarily has this form. Proof. It is a straightforwar to verify that the function f given this way satisfies the wave equation an the given initial conitions. We shall prove the converse. One way to procee is to assume that f is a solution of the wave equation, introuce a linear change of variables, x = Au + Bv, t = Cu + Dv which transforms f(x, t) into a function of u an v, say g(u, v) = f(au + Bv, Cu + Dv), an choose the constants A, B, C, D so that g satisfies the simpler equation 2 g v = 0. Solving this equation for g we fin that g(u, v) = ϕ 1 (u) + ϕ 2 (v), where ϕ 1 (u) is a function of u alone an ϕ 2 (v) is a function of v alone. The constants A, B, C, D can be chosen so that u = x + ct, v = x ct, from which we obtain f(x, t) = ϕ 1 (x + ct) + ϕ 2 (x ct). Then we use the initial conitions to etermine the functions ϕ 1 (x) an ϕ 2 (x) in terms the given functions F an G. We will obtain this form by another metho which makes use of the previous theorem an avois the change of variables. First we rewrite the wave equation in the form L 1 (L 2 f) = 0,
16 Alembert s Solution of the Wave Equation 16 where L 1 an L 2 are the firstorer linear ifferential operators given by L 1 = t c x, L 2 = t + c x. Let f be a solution of L 1 (L 2 f) = 0 an let u(x, t) = L 2 f(x, t). Equation L 1 (L 2 f) = 0 states that u satisfies the firstorer equation L 1 (u) = 0. Hence, by the previous theorem we have u(x, t) = ϕ(x + ct) for some function ϕ. Let Φ be any primitive of ϕ, say Φ(y) = y 0 We will show that L 2 (v) = L 2 (f). We have v(x, t) = 1 Φ(x + ct). 2c ϕ(s) s, an let v x = 1 2c Φ (x + ct) an v t = 1 2 Φ (x + ct), so L 2 v = v t + c v x = Φ (x + ct) = u(x, t) = L 2 f. In other wors, the ifference f v satisfies the firstorer equation L 2 (f v) = 0. By the previous theorem we must have f(x, t) v(x, t) = ψ(x ct) for some function ψ. Therefore f(x, t) = v(x, t) + ψ(x ct) = 1 Φ(x + ct) + ψ(x ct). 2c This proves that f(x, t) = ϕ 1 (x + ct) + ϕ 2 (x ct) with ϕ 1 = 1 2c Φ an ϕ 2 = ψ. Now we use the initial conitions f(x, 0) = F (x), D 2 f(x, 0) = G(x).
17 Alembert s Solution of the Wave Equation 17 (9.13) to etermine the functions ϕ 1 an ϕ 2 in terms of the given functions F an G. The relation f(x, 0) = F (x) implies ϕ 1 (x) + ϕ 2 (x) = F (x). The other initial conition, D 2 f(x, 0) = G(x), implies cϕ 1(x) cϕ 2(x) = G(x). Differentiating we obtain Solving these we fin ϕ 1(x) + ϕ 2(x) = F (x). ϕ 1(x) = 1 2 F (x) + 1 2c G(x), ϕ 2(x) = 1 2 F (x) 1 2c G(x). Integrating these relations we get ϕ 1 (x) ϕ 1 (0) = F (x) F (0) c x 0 G(s) s, ϕ 2 (x) ϕ 2 (0) = F (x) F (0) 2 1 2c x 0 G(s) s. In the first equation we replace x by x+ct; in the secon equation we replace x by x ct. Then we a the two resulting equations an use the fact that ϕ 1 (0) + ϕ 2 (0) = F (0) to obtain f(x, t) = ϕ 1 (x + ct) + ϕ 2 (x + ct) = F (x + ct) + F (x ct) c x+ct x ct G(s) s This completes the proof. EXAMPLE. Assume the initial isplacement is given by the formula 1 + cos πx for 1 x 1 F (x) = 0 for x > 1. Suppose that the initial velocity G(x) = 0 for all x. Then the resulting solution of the wave equation is given by the formula f(x, t) = F (x + ct) + F (x ct). 2
Given three vectors A, B, andc. We list three products with formula (A B) C = B(A C) A(B C); A (B C) =B(A C) C(A B);
1.1.4. Prouct of three vectors. Given three vectors A, B, anc. We list three proucts with formula (A B) C = B(A C) A(B C); A (B C) =B(A C) C(A B); a 1 a 2 a 3 (A B) C = b 1 b 2 b 3 c 1 c 2 c 3 where the
More informationThe Mean Value Theorem
The Mean Value Theorem THEOREM (The Extreme Value Theorem): If f is continuous on a closed interval [a, b], then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers
More informationHere the units used are radians and sin x = sin(x radians). Recall that sin x and cos x are defined and continuous everywhere and
Lecture 9 : Derivatives of Trigonometric Functions (Please review Trigonometry uner Algebra/Precalculus Review on the class webpage.) In this section we will look at the erivatives of the trigonometric
More informationMath 230.01, Fall 2012: HW 1 Solutions
Math 3., Fall : HW Solutions Problem (p.9 #). Suppose a wor is picke at ranom from this sentence. Fin: a) the chance the wor has at least letters; SOLUTION: All wors are equally likely to be chosen. The
More informationLecture L253D Rigid Body Kinematics
J. Peraire, S. Winall 16.07 Dynamics Fall 2008 Version 2.0 Lecture L253D Rigi Boy Kinematics In this lecture, we consier the motion of a 3D rigi boy. We shall see that in the general threeimensional
More informationAnswers to the Practice Problems for Test 2
Answers to the Practice Problems for Test 2 Davi Murphy. Fin f (x) if it is known that x [f(2x)] = x2. By the chain rule, x [f(2x)] = f (2x) 2, so 2f (2x) = x 2. Hence f (2x) = x 2 /2, but the lefthan
More informationf(x) = a x, h(5) = ( 1) 5 1 = 2 2 1
Exponential Functions an their Derivatives Exponential functions are functions of the form f(x) = a x, where a is a positive constant referre to as the base. The functions f(x) = x, g(x) = e x, an h(x)
More informationThe wave equation is an important tool to study the relation between spectral theory and geometry on manifolds. Let U R n be an open set and let
1. The wave equation The wave equation is an important tool to stuy the relation between spectral theory an geometry on manifols. Let U R n be an open set an let = n j=1 be the Eucliean Laplace operator.
More information2 Complex Functions and the CauchyRiemann Equations
2 Complex Functions and the CauchyRiemann Equations 2.1 Complex functions In onevariable calculus, we study functions f(x) of a real variable x. Likewise, in complex analysis, we study functions f(z)
More informationMATH 425, PRACTICE FINAL EXAM SOLUTIONS.
MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator
More informationCHAPTER 5 : CALCULUS
Dr Roger Ni (Queen Mary, University of Lonon)  5. CHAPTER 5 : CALCULUS Differentiation Introuction to Differentiation Calculus is a branch of mathematics which concerns itself with change. Irrespective
More informationSection 3.3. Differentiation of Polynomials and Rational Functions. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section 3.3 Differentiation of Polynomials an Rational Functions In tis section we begin te task of iscovering rules for ifferentiating various classes of
More informationExponential Functions: Differentiation and Integration. The Natural Exponential Function
46_54.q //4 :59 PM Page 5 5 CHAPTER 5 Logarithmic, Eponential, an Other Transcenental Functions Section 5.4 f () = e f() = ln The inverse function of the natural logarithmic function is the natural eponential
More informationTOPIC 4: DERIVATIVES
TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the
More informationMath 241, Exam 1 Information.
Math 241, Exam 1 Information. 9/24/12, LC 310, 11:1512:05. Exam 1 will be based on: Sections 12.112.5, 14.114.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)
More informationLagrangian and Hamiltonian Mechanics
Lagrangian an Hamiltonian Mechanics D.G. Simpson, Ph.D. Department of Physical Sciences an Engineering Prince George s Community College December 5, 007 Introuction In this course we have been stuying
More informationf(x + h) f(x) h as representing the slope of a secant line. As h goes to 0, the slope of the secant line approaches the slope of the tangent line.
Derivative of f(z) Dr. E. Jacobs Te erivative of a function is efine as a limit: f (x) 0 f(x + ) f(x) We can visualize te expression f(x+) f(x) as representing te slope of a secant line. As goes to 0,
More information20. Product rule, Quotient rule
20. Prouct rule, 20.1. Prouct rule Prouct rule, Prouct rule We have seen that the erivative of a sum is the sum of the erivatives: [f(x) + g(x)] = x x [f(x)] + x [(g(x)]. One might expect from this that
More informationPDE and BoundaryValue Problems Winter Term 2014/2015
PDE and BoundaryValue Problems Winter Term 2014/2015 Lecture 15 Saarland University 12. Januar 2015 c Daria Apushkinskaya (UdS) PDE and BVP lecture 15 12. Januar 2015 1 / 42 Purpose of Lesson To show
More information(We assume that x 2 IR n with n > m f g are twice continuously ierentiable functions with Lipschitz secon erivatives. The Lagrangian function `(x y) i
An Analysis of Newton's Metho for Equivalent Karush{Kuhn{Tucker Systems Lus N. Vicente January 25, 999 Abstract In this paper we analyze the application of Newton's metho to the solution of systems of
More informationSection 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate
More informationThe Quick Calculus Tutorial
The Quick Calculus Tutorial This text is a quick introuction into Calculus ieas an techniques. It is esigne to help you if you take the Calculus base course Physics 211 at the same time with Calculus I,
More informationRolle s Theorem. q( x) = 1
Lecture 1 :The Mean Value Theorem We know that constant functions have derivative zero. Is it possible for a more complicated function to have derivative zero? In this section we will answer this question
More informationMSc. Econ: MATHEMATICAL STATISTICS, 1995 MAXIMUMLIKELIHOOD ESTIMATION
MAXIMUMLIKELIHOOD ESTIMATION The General Theory of ML Estimation In orer to erive an ML estimator, we are boun to make an assumption about the functional form of the istribution which generates the
More informationDifferentiation of vectors
Chapter 4 Differentiation of vectors 4.1 Vectorvalued functions In the previous chapters we have considered real functions of several (usually two) variables f : D R, where D is a subset of R n, where
More informationLimits and Continuity
Math 20C Multivariable Calculus Lecture Limits and Continuity Slide Review of Limit. Side limits and squeeze theorem. Continuous functions of 2,3 variables. Review: Limits Slide 2 Definition Given a function
More informationDERIVATIVES AS MATRICES; CHAIN RULE
DERIVATIVES AS MATRICES; CHAIN RULE 1. Derivatives of Realvalued Functions Let s first consider functions f : R 2 R. Recall that if the partial derivatives of f exist at the point (x 0, y 0 ), then we
More informationLecture 14: Section 3.3
Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in
More information3 Contour integrals and Cauchy s Theorem
3 ontour integrals and auchy s Theorem 3. Line integrals of complex functions Our goal here will be to discuss integration of complex functions = u + iv, with particular regard to analytic functions. Of
More informationIntroduction to Integration Part 1: AntiDifferentiation
Mathematics Learning Centre Introuction to Integration Part : AntiDifferentiation Mary Barnes c 999 University of Syney Contents For Reference. Table of erivatives......2 New notation.... 2 Introuction
More informationA QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS
A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors
More informationSolutions to Examples from Related Rates Notes. ds 2 mm/s. da when s 100 mm
Solutions to Examples from Relate Rates Notes 1. A square metal plate is place in a furnace. The quick temperature change causes the metal plate to expan so that its surface area increases an its thickness
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS Contents 1. Moment generating functions 2. Sum of a ranom number of ranom variables 3. Transforms
More informationExample Optimization Problems selected from Section 4.7
Example Optimization Problems selecte from Section 4.7 19) We are aske to fin the points ( X, Y ) on the ellipse 4x 2 + y 2 = 4 that are farthest away from the point ( 1, 0 ) ; as it happens, this point
More informationSolutions to Homework 10
Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x
More informationIntroduction to Algebraic Geometry. Bézout s Theorem and Inflection Points
Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a
More information1 if 1 x 0 1 if 0 x 1
Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or
More informationHOMEWORK 4 SOLUTIONS. All questions are from Vector Calculus, by Marsden and Tromba
HOMEWORK SOLUTIONS All questions are from Vector Calculus, by Marsden and Tromba Question :..6 Let w = f(x, y) be a function of two variables, and let x = u + v, y = u v. Show that Solution. By the chain
More information15.2. FirstOrder Linear Differential Equations. FirstOrder Linear Differential Equations Bernoulli Equations Applications
00 CHAPTER 5 Differential Equations SECTION 5. FirstOrer Linear Differential Equations FirstOrer Linear Differential Equations Bernoulli Equations Applications FirstOrer Linear Differential Equations
More informationMathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 19967 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
More informationCalculating Viscous Flow: Velocity Profiles in Rivers and Pipes
previous inex next Calculating Viscous Flow: Velocity Profiles in Rivers an Pipes Michael Fowler, UVa 9/8/1 Introuction In this lecture, we ll erive the velocity istribution for two examples of laminar
More informationVectors, Gradient, Divergence and Curl.
Vectors, Gradient, Divergence and Curl. 1 Introduction A vector is determined by its length and direction. They are usually denoted with letters with arrows on the top a or in bold letter a. We will use
More informationMAT1A01: Differentiation of Polynomials & Exponential Functions + the Product & Quotient Rules
MAT1A01: Differentiation of Polynomials & Exponential Functions + te Prouct & Quotient Rules Dr Craig 17 April 2013 Reminer Mats Learning Centre: CRing 512 My office: CRing 533A (Stats Dept corrior)
More informationSections 3.1/3.2: Introducing the Derivative/Rules of Differentiation
Sections 3.1/3.2: Introucing te Derivative/Rules of Differentiation 1 Tangent Line Before looking at te erivative, refer back to Section 2.1, looking at average velocity an instantaneous velocity. Here
More informationTo differentiate logarithmic functions with bases other than e, use
To ifferentiate logarithmic functions with bases other than e, use 1 1 To ifferentiate logarithmic functions with bases other than e, use log b m = ln m ln b 1 To ifferentiate logarithmic functions with
More information9.3. Diffraction and Interference of Water Waves
Diffraction an Interference of Water Waves 9.3 Have you ever notice how people relaxing at the seashore spen so much of their time watching the ocean waves moving over the water, as they break repeately
More informationMultiplicity. Chapter 6
Chapter 6 Multiplicity The fundamental theorem of algebra says that any polynomial of degree n 0 has exactly n roots in the complex numbers if we count with multiplicity. The zeros of a polynomial are
More informationClass Meeting # 1: Introduction to PDEs
MATH 18.152 COURSE NOTES  CLASS MEETING # 1 18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck Class Meeting # 1: Introduction to PDEs 1. What is a PDE? We will be studying functions u = u(x
More information88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a
88 CHAPTER. VECTOR FUNCTIONS.4 Curvature.4.1 Definitions and Examples The notion of curvature measures how sharply a curve bends. We would expect the curvature to be 0 for a straight line, to be very small
More informationTOPIC 3: CONTINUITY OF FUNCTIONS
TOPIC 3: CONTINUITY OF FUNCTIONS. Absolute value We work in the field of real numbers, R. For the study of the properties of functions we need the concept of absolute value of a number. Definition.. Let
More information3. INNER PRODUCT SPACES
. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.
More informationRecall that the gradient of a differentiable scalar field ϕ on an open set D in R n is given by the formula:
Chapter 7 Div, grad, and curl 7.1 The operator and the gradient: Recall that the gradient of a differentiable scalar field ϕ on an open set D in R n is given by the formula: ( ϕ ϕ =, ϕ,..., ϕ. (7.1 x 1
More information10.2 Systems of Linear Equations: Matrices
SECTION 0.2 Systems of Linear Equations: Matrices 7 0.2 Systems of Linear Equations: Matrices OBJECTIVES Write the Augmente Matrix of a System of Linear Equations 2 Write the System from the Augmente Matrix
More informationPurpose of the Experiments. Principles and Error Analysis. ε 0 is the dielectric constant,ε 0. ε r. = 8.854 10 12 F/m is the permittivity of
Experiments with Parallel Plate Capacitors to Evaluate the Capacitance Calculation an Gauss Law in Electricity, an to Measure the Dielectric Constants of a Few Soli an Liqui Samples Table of Contents Purpose
More informationA Generalization of Sauer s Lemma to Classes of LargeMargin Functions
A Generalization of Sauer s Lemma to Classes of LargeMargin Functions Joel Ratsaby University College Lonon Gower Street, Lonon WC1E 6BT, Unite Kingom J.Ratsaby@cs.ucl.ac.uk, WWW home page: http://www.cs.ucl.ac.uk/staff/j.ratsaby/
More informationRules for Finding Derivatives
3 Rules for Fining Derivatives It is teious to compute a limit every time we nee to know the erivative of a function. Fortunately, we can evelop a small collection of examples an rules that allow us to
More informationDifferentiability of Exponential Functions
Differentiability of Exponential Functions Philip M. Anselone an John W. Lee Philip Anselone (panselone@actionnet.net) receive his Ph.D. from Oregon State in 1957. After a few years at Johns Hopkins an
More informationDouble Integrals in Polar Coordinates
Double Integrals in Polar Coorinates Part : The Area Di erential in Polar Coorinates We can also aly the change of variable formula to the olar coorinate transformation x = r cos () ; y = r sin () However,
More informationFactoring Dickson polynomials over finite fields
Factoring Dickson polynomials over finite fiels Manjul Bhargava Department of Mathematics, Princeton University. Princeton NJ 08544 manjul@math.princeton.eu Michael Zieve Department of Mathematics, University
More informationMATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.
MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar
More information4.3 Lagrange Approximation
206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average
More informationMannheim curves in the threedimensional sphere
Mannheim curves in the threeimensional sphere anju Kahraman, Mehmet Öner Manisa Celal Bayar University, Faculty of Arts an Sciences, Mathematics Department, Muraiye Campus, 5, Muraiye, Manisa, urkey.
More informationChapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis
Chapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis 2. Polar coordinates A point P in a polar coordinate system is represented by an ordered pair of numbers (r, θ). If r >
More informationFIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper.
FIRST YEAR CALCULUS WWLCHENW L c WWWL W L Chen, 1982, 2008. 2006. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990. It It is is
More informationInverse Trig Functions
Inverse Trig Functions c A Math Support Center Capsule February, 009 Introuction Just as trig functions arise in many applications, so o the inverse trig functions. What may be most surprising is that
More informationTHE PRIME NUMBER THEOREM
THE PRIME NUMBER THEOREM NIKOLAOS PATTAKOS. introduction In number theory, this Theorem describes the asymptotic distribution of the prime numbers. The Prime Number Theorem gives a general description
More informationTwo Fundamental Theorems about the Definite Integral
Two Fundamental Theorems about the Definite Integral These lecture notes develop the theorem Stewart calls The Fundamental Theorem of Calculus in section 5.3. The approach I use is slightly different than
More informationLinear and quadratic Taylor polynomials for functions of several variables.
ams/econ 11b supplementary notes ucsc Linear quadratic Taylor polynomials for functions of several variables. c 010, Yonatan Katznelson Finding the extreme (minimum or maximum) values of a function, is
More information1 VECTOR SPACES AND SUBSPACES
1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such
More informationChapter 2. Parameterized Curves in R 3
Chapter 2. Parameterized Curves in R 3 Def. A smooth curve in R 3 is a smooth map σ : (a, b) R 3. For each t (a, b), σ(t) R 3. As t increases from a to b, σ(t) traces out a curve in R 3. In terms of components,
More informationSolutions for Review Problems
olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector
More informationx a x 2 (1 + x 2 ) n.
Limits and continuity Suppose that we have a function f : R R. Let a R. We say that f(x) tends to the limit l as x tends to a; lim f(x) = l ; x a if, given any real number ɛ > 0, there exists a real number
More information3.8 Finding Antiderivatives; Divergence and Curl of a Vector Field
3.8 Finding Antiderivatives; Divergence and Curl of a Vector Field 77 3.8 Finding Antiderivatives; Divergence and Curl of a Vector Field Overview: The antiderivative in one variable calculus is an important
More informationCollege of the Holy Cross, Spring 2009 Math 373, Partial Differential Equations Midterm 1 Practice Questions
College of the Holy Cross, Spring 29 Math 373, Partial Differential Equations Midterm 1 Practice Questions 1. (a) Find a solution of u x + u y + u = xy. Hint: Try a polynomial of degree 2. Solution. Use
More informationLagrange Multipliers without Permanent Scarring
Lagrange Multipliers without Permanent Scarring Dan Klein Introuction This tutorial assumes that you want to know what Lagrange multipliers are, but are more intereste in getting the intuitions an central
More informationIntroduction to Green s Functions: Lecture notes 1
October 18, 26 Introduction to Green s Functions: Lecture notes 1 Edwin Langmann Mathematical Physics, KTH Physics, AlbaNova, SE16 91 Stockholm, Sweden Abstract In the present notes I try to give a better
More informationFundamental Theorems of Vector Calculus
Fundamental Theorems of Vector Calculus We have studied the techniques for evaluating integrals over curves and surfaces. In the case of integrating over an interval on the real line, we were able to use
More information4.5 Linear Dependence and Linear Independence
4.5 Linear Dependence and Linear Independence 267 32. {v 1, v 2 }, where v 1, v 2 are collinear vectors in R 3. 33. Prove that if S and S are subsets of a vector space V such that S is a subset of S, then
More information1 Derivatives of Piecewise Defined Functions
MATH 1010E University Matematics Lecture Notes (week 4) Martin Li 1 Derivatives of Piecewise Define Functions For piecewise efine functions, we often ave to be very careful in computing te erivatives.
More informationMathematics. Circles. hsn.uk.net. Higher. Contents. Circles 119 HSN22400
hsn.uk.net Higher Mathematics UNIT OUTCOME 4 Circles Contents Circles 119 1 Representing a Circle 119 Testing a Point 10 3 The General Equation of a Circle 10 4 Intersection of a Line an a Circle 1 5 Tangents
More informationDIFFERENTIABILITY OF COMPLEX FUNCTIONS. Contents
DIFFERENTIABILITY OF COMPLEX FUNCTIONS Contents 1. Limit definition of a derivative 1 2. Holomorphic functions, the CauchyRiemann equations 3 3. Differentiability of real functions 5 4. A sufficient condition
More informationSolutions to old Exam 1 problems
Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections
More informationCoupled best proximity point theorems for proximally gmeirkeelertypemappings in partially ordered metric spaces
Abkar et al. Fixe Point Theory an Applications 2015) 2015:107 DOI 10.1186/s1366301503559 R E S E A R C H Open Access Couple best proximity point theorems for proximally gmeirkeelertypemappings in
More informationDigital barrier option contract with exponential random time
IMA Journal of Applie Mathematics Avance Access publishe June 9, IMA Journal of Applie Mathematics ) Page of 9 oi:.93/imamat/hxs3 Digital barrier option contract with exponential ranom time Doobae Jun
More informationAs customary, choice (a) is the correct answer in all the following problems.
PHY2049 Summer 2012 Instructor: Francisco Rojas Exam 1 As customary, choice (a) is the correct answer in all the following problems. Problem 1 A uniformly charge (thin) nonconucting ro is locate on the
More informationNotes on tangents to parabolas
Notes on tangents to parabolas (These are notes for a talk I gave on 2007 March 30.) The point of this talk is not to publicize new results. The most recent material in it is the concept of Bézier curves,
More informationMath 5311 Gateaux differentials and Frechet derivatives
Math 5311 Gateaux differentials and Frechet derivatives Kevin Long January 26, 2009 1 Differentiation in vector spaces Thus far, we ve developed the theory of minimization without reference to derivatives.
More informationMATH 1231 S2 2010: Calculus. Section 1: Functions of severable variables.
MATH 1231 S2 2010: Calculus For use in Dr Chris Tisdell s lectures Section 1: Functions of severable variables. Created and compiled by Chris Tisdell S1: Motivation S2: Function of two variables S3: Visualising
More information2.1 Functions. 2.1 J.A.Beachy 1. from A Study Guide for Beginner s by J.A.Beachy, a supplement to Abstract Algebra by Beachy / Blair
2.1 J.A.Beachy 1 2.1 Functions from A Study Guide for Beginner s by J.A.Beachy, a supplement to Abstract Algebra by Beachy / Blair 21. The Vertical Line Test from calculus says that a curve in the xyplane
More informationSection 12.6: Directional Derivatives and the Gradient Vector
Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate
More informationSection 13.5 Equations of Lines and Planes
Section 13.5 Equations of Lines and Planes Generalizing Linear Equations One of the main aspects of single variable calculus was approximating graphs of functions by lines  specifically, tangent lines.
More information5.3 The Cross Product in R 3
53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or
More informationMA4001 Engineering Mathematics 1 Lecture 10 Limits and Continuity
MA4001 Engineering Mathematics 1 Lecture 10 Limits and Dr. Sarah Mitchell Autumn 2014 Infinite limits If f(x) grows arbitrarily large as x a we say that f(x) has an infinite limit. Example: f(x) = 1 x
More informationInner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
More informationMTH4100 Calculus I. Lecture notes for Week 8. Thomas Calculus, Sections 4.1 to 4.4. Rainer Klages
MTH4100 Calculus I Lecture notes for Week 8 Thomas Calculus, Sections 4.1 to 4.4 Rainer Klages School of Mathematical Sciences Queen Mary University of London Autumn 2009 Theorem 1 (First Derivative Theorem
More informationGeometric Transformations
Geometric Transformations Definitions Def: f is a mapping (function) of a set A into a set B if for every element a of A there exists a unique element b of B that is paired with a; this pairing is denoted
More informationGeneral Theory of Differential Equations Sections 2.8, 3.13.2, 4.1
A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics General Theory of Differential Equations Sections 2.8, 3.13.2, 4.1 Dr. John Ehrke Department of Mathematics Fall 2012 Questions
More informationChapter 6. Linear Transformation. 6.1 Intro. to Linear Transformation
Chapter 6 Linear Transformation 6 Intro to Linear Transformation Homework: Textbook, 6 Ex, 5, 9,, 5,, 7, 9,5, 55, 57, 6(a,b), 6; page 7 In this section, we discuss linear transformations 89 9 CHAPTER
More information12.5 Equations of Lines and Planes
Instructor: Longfei Li Math 43 Lecture Notes.5 Equations of Lines and Planes What do we need to determine a line? D: a point on the line: P 0 (x 0, y 0 ) direction (slope): k 3D: a point on the line: P
More informationMath 209 Solutions to Assignment 7. x + 2y. 1 x + 2y i + 2. f x = cos(y/z)), f y = x z sin(y/z), f z = xy z 2 sin(y/z).
Math 29 Solutions to Assignment 7. Find the gradient vector field of the following functions: a fx, y lnx + 2y; b fx, y, z x cosy/z. Solution. a f x x + 2y, f 2 y x + 2y. Thus, the gradient vector field
More information