# DERIVATIVES AS MATRICES; CHAIN RULE

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 DERIVATIVES AS MATRICES; CHAIN RULE 1. Derivatives of Real-valued Functions Let s first consider functions f : R 2 R. Recall that if the partial derivatives of f exist at the point (x 0, y 0 ), then we can write down the candidate for the tangent plane: (1.1) z z 0 = f x (x 0, y 0 )(x x 0 ) + f y (x 0, y 0 )(y y 0 ). We defined f to be differentiable if this plane really is a tangent plane to the graph of f in the sense that the tangent line to every smooth curve in the graph through the point (x 0, y 0, z 0 ) lies in this plane. As mentioned in class, one can show that if the partial derivatives are continuous, then the function is differentiable. However, while we talked about differentiable functions, we never defined the actual derivative of a function from R 2 to R. Definition 1.1. If f is differentiable at (x 0, y 0 ), then we define the derivative to be f (x 0, y 0 ) = [ f x (x 0, y 0 ) f y (x 0, y 0 ) ]. (If we view this row matrix at a vector, then it is the gradient f(x 0, y 0 ).) Similarly, for a differentiable function f : R n R, the derivative is the row matrix with n entries consisting of the n partial derivatives. E.g., for a function of three variables, we have f (x 0.y 0, z 0 ) = [ f x (x 0, y 0, z 0 ) f y (x 0, y 0, z 0 ) f z (x 0, y 0, z 0 ) ] 1.2. Example. Let f(x, y) = x 2 y 3, and let (x 0, y 0 ) = (2, 1). Then f x = 2xy3 and f y = 3x2 y 2, so f f x (2, 1) = 4 and y (2, 1) = 12. Thus f (2, 1) = [ 4 12 ]. The matrix f (2, 1) defines a linear transformation: L(x, y) = [ 4 12 ] x = 4x + 12y. y Observe that the tangent line may be written as z 4 = 4(x 2) + 12(y 1) z 4 = [ 4 12 ] x 2. y 1 As in this example, for an arbitrary differentiable function f : R 2 R, the tangent plane (Equation 1.1) to the graph at (x 0, y 0, z 0 ) may be written (1.3) z z 0 = f x x0 (x 0, y 0 ) y y 0 1

2 2 DERIVATIVES AS MATRICES; CHAIN RULE If we write then Equation 1.3 may be rewritten as [ x x = and x y] 0 = [ x0 y 0 ] (1.4) z z 0 = f (x 0, y 0 )(x x 0 ). Note the resemblance between this expression for the tangent plane to the graph of a function f : R 2 R 2 and the familiar expression for the tangent line to the graph of a real-valued function of one variable. 2. Functions for which the domain and range are both higher-dimensional. A function f : R n R m consists of m-real-valued functions on R n : f(x 1,..., x n ) = (f 1 (x 1,..., x n ),..., f m (x 1,..., x n )). The real-valued functions f 1,..., f m are called the component functions Example. Define a function f : R 2 R 3 by f(x, y) = (x 2 y, 3xy, 5x + 4y)). Then the component functions are f 1 (x, y) = x 2 y, f 2 (x, y) = 3xy, and f 3 (x, y) = 5x + 4y. Definition 2.1. We say a function f : R n R m is differentiable if each of the component functions is differentiable. In that case, the derivative at a point (a 1,..., a n ) in R n is given by the m n matrix whose ith row is the derivative of the ith component function Example. Define f as in Example 2.1. Let (a 1, a 2 ) = (1, 1). Then f 1 (x, y) = [ 2xy x 2] so f 1(1, 1) = [ 2 1 ]. Similarly and Thus f 2(1, 1) = [ 3 3 ] f 3(1, 1) = [ 5 4 ] f (1, 1) = Exercise. Find the derivatives (as matrices) of each of the following functions at the indicated point: (1) f(x, y, z) = (e 3x y z, x 2 y 2 ) at the point (1, 1, 2) (2) f(x, y) = ((x + y) 3, xsin(y)) at (2, 0). (3) f(t) = (t 2, t 3, t 4 ) at t 0 = 1. (If you view f as a parametrized curve, you have the familiar notion of the tangent vector at the point with parameter t 0 = 1. How does this compare to the derivative that you just computed?)

3 DERIVATIVES AS MATRICES; CHAIN RULE 3 Again consider an arbitrary differentiable function f : R n R m. Denote elements of R n by column vectors and elements of R m by columns Let be a chosen point in R n and set x 1 x =. x n u 1 u =. u m a 1 x 0 =. a n u 0 = f(a 1,..., a n ) (viewed as a column matrix). Then the analog of the tangent plane, or best linear approximation to the graph at (a 1,..., a n ), is given by: (2.4) u u 0 = f (x 0 )(x x 0 ) 2.5. Example. In Example 2.1, f(1, 1) = (1, 3, 9), and the best linear approximation at (1, 1) is given as follows: u u 0 = (x x 0 ) 5 4 I.e., (2.6) u 1 1 u 2 3 = 2 1 2(x 1) + 1(y 1) 3 3 x 1 = 3(x 1) + 3(y 1) y 1 u (x 1) + 4(y 1) where the first equality is the expression for the tangent plane, and the second equality is obtained by multiplying matrices. If we compare the matrices on the left and right sides, the first row tells us that u 1 = 2(x 1) + 1(y 1). Note that this is the equation of the tangent plane to the function f 1 (x, y) = x 2 y at (1, 2). Similarly, the second and third rows give the tangent planes to the second and third component functions of f Exercise. Write down the linear approximation to the graph of each of the functions in Exercise 2.3 at the indicated point. (Your answers should be expressed similarly to Equation 2.6.)

4 4 DERIVATIVES AS MATRICES; CHAIN RULE 2.8. Remark. The most common mistake students make in writing down a derivative matrix is to switch the rows and columns. Note that the rows of the derivative matrix are the derivatives (gradients) of the component functions. The columns correspond to the independent variable; e.g., in the first column we see the partials of the component functions with respect to the first variable. A good way to keep this straight is to view the derivative matrix as the matrix of a linear transformation L (the one that gives us the linear approximation). Since the original function f has domain R n, we want L to have domain R n and range R m as well. That means we need to be able to multiply the derivative matrix by a column with n entries. So the derivative matrix must have n columns. Similarly, for the range to be R m, it must have m rows. In the examples above, we wrote down the derivative (as a matrix) by first computing the partials. Conversely, if you are given the derivative matrix, then you can read off the partial derivatives of all the component functions Example. Suppose f : R 3 R 2 is differentiable at x 0 = (x 0, y 0, z 0 ) and that it s derivative at x 0 is f (x 0, y 0, z 0 ) = Writing (u, v) = f(x, y, z) = (f 1 (x, y, z), f 2 (x, y, z), then at the point x 0, we can read off from the matrix that x f 1(x 0, y 0 z 0 ) = 2. (This is also written as x = 2.) Similarly at x 0, we have y = y f 1 = 5 and etc. z = z f 1 = 1 v x = x f 2 = 3 3. The Chain Rule Recall the chain rule for real-valued functions of one variable: 1. Familiar chain rule. If g : R R is differentiable at x 0 and f : R R is differentiable at y 0 = g(x 0 ), then f g is differentiable at x 0 and (f g) (x 0 ) = f (y 0 )g (x 0 ). Using matrices, the chain rule in higher dimensions looks identical to the familiar chain rule. As before, we use bold face letters like x to denote points (or vectors) in R n. 1. Chain rule in higher dimensions. If g : R n R m is differentiable at x 0 and f : R m R p is differentiable at y 0 = g(x 0 ), then f g is differentiable at x 0 and (f g) (x 0 ) = f (y 0 )g (x 0 ).

5 3.1. Example. Define g : R 2 R 3 by and define f : R 3 R by DERIVATIVES AS MATRICES; CHAIN RULE 5 g(s, t) = (s 2 t, s + 2t 2, st) f(x, y, z) = e 2x y+z. Let s compute the derivative of f g at (s 0, t 0 ) = (1, 1, ). Note that g(1, 1) = (1, 3, 1). The chain rule says that We compute: so Similarly Thus (f g) (1, 1) = f (1, 3, 1)g (1, 1). g (s, t) = 2st s2 1 4t t s g (1, 1, ) = f (1, 3, 1) = [ ] (f g) (1, 1) = [ ] = [ 4 1 ] 1 1 Writing w = f g(s, t), we can read off from this derivative matrix that at (1, 1), w s = 4 and w t = 1. Let s compare this computation with the version of the chain rule given in Section 15.5 of Stewart. Writing w = f(x, y, z) and (x, y, z) = g(s, t), the chain rule in Stewart says that At (s, t) = (1, 1) and (x, y, z) = (1, 3, 1), we get (3.2) w s = w x x s + w y y s + w x z s. w s = 2(2) + ( 1)(1) + (1)(1) = 4. This agrees with what we obtained using the matrices. Notice that the computation in Equation 3.2 is equivalent to multiplying the first (and only) row of the matrix f (1, 3, 1) by the first column of the matrix g (1, 1). Similarly, the formula in Stewart for w t corresponds to multiplying the row of f (1, 3, 1) by the second column of g (1, 1). The matrix multiplication gives us both partials at once. (If you are only interested in one of the partials, then the formula in Stewart is a bit faster. If you want all the partials, the matrix method is more convenient.)

6 6 DERIVATIVES AS MATRICES; CHAIN RULE 3.3. Example. Let g be as in the previous example, and let f : R 3 R 2 be given by f(x, y, z) = (e 2x y+z, xyz). Then f (1, 3, 1) = so (f g) (1, 1) = = Writing (u, v) = f(x, y, z) = (f g)(s, t), we can read off all the partials at (s, t) = (1, 1): s = 4 t = 1 v s = 10 v t = Exercise. Let f : R 2 R 2 be given by f(x, y) = (e x y 2, (x + 1)y 3 ) and let g : R R 2 be given by g(t) = (sin(t), e t ). First use the matrix version of the Chain Rule to find (f g) (0). Then compute (f g) (0) by the method in Section 15.5 and compare your answers Exercise. This exercise refers to problem 26 in Section (same in old edition). (1) Express the given functions as Y = f(u, v, w) and (u, v, w) = g(r, s, t). (2) Write down the derivative matrices for f and g at the indicated point (i.e., (r, s, t) = (1, 0, 1) and (u, v, w) = g(1, 0, 1), which you can compute). (3) Use the matrix version of the Chain Rule to compute the derivative (f g) (1, 0, 1). (4) Read off from your matrix in (3) the partial derivatives that are requested in problem 26.

### Section 12.6: Directional Derivatives and the Gradient Vector

Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate

### (a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0,

Name: Solutions to Practice Final. Consider the line r(t) = 3 + t, t, 6. (a) Find symmetric equations for this line. (b) Find the point where the first line r(t) intersects the surface z = x + y. (a) We

### PROBLEM SET. Practice Problems for Exam #2. Math 2350, Fall Nov. 7, 2004 Corrected Nov. 10 ANSWERS

PROBLEM SET Practice Problems for Exam #2 Math 2350, Fall 2004 Nov. 7, 2004 Corrected Nov. 10 ANSWERS i Problem 1. Consider the function f(x, y) = xy 2 sin(x 2 y). Find the partial derivatives f x, f y,

### The Gradient and Level Sets

The Gradient and Level Sets. Let f(x, y) = x + y. (a) Find the gradient f. Solution. f(x, y) = x, y. (b) Pick your favorite positive number k, and let C be the curve f(x, y) = k. Draw the curve on the

### 88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a

88 CHAPTER. VECTOR FUNCTIONS.4 Curvature.4.1 Definitions and Examples The notion of curvature measures how sharply a curve bends. We would expect the curvature to be 0 for a straight line, to be very small

### Scalar Valued Functions of Several Variables; the Gradient Vector

Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions vector valued function of n variables: Let us consider a scalar (i.e., numerical, rather than y = φ(x = φ(x 1,

### Vectors, Gradient, Divergence and Curl.

Vectors, Gradient, Divergence and Curl. 1 Introduction A vector is determined by its length and direction. They are usually denoted with letters with arrows on the top a or in bold letter a. We will use

### ( 1)2 + 2 2 + 2 2 = 9 = 3 We would like to make the length 6. The only vectors in the same direction as v are those

1.(6pts) Which of the following vectors has the same direction as v 1,, but has length 6? (a), 4, 4 (b),, (c) 4,, 4 (d), 4, 4 (e) 0, 6, 0 The length of v is given by ( 1) + + 9 3 We would like to make

### HOMEWORK 4 SOLUTIONS. All questions are from Vector Calculus, by Marsden and Tromba

HOMEWORK SOLUTIONS All questions are from Vector Calculus, by Marsden and Tromba Question :..6 Let w = f(x, y) be a function of two variables, and let x = u + v, y = u v. Show that Solution. By the chain

### 3.8 Finding Antiderivatives; Divergence and Curl of a Vector Field

3.8 Finding Antiderivatives; Divergence and Curl of a Vector Field 77 3.8 Finding Antiderivatives; Divergence and Curl of a Vector Field Overview: The antiderivative in one variable calculus is an important

### Practice Problems for Midterm 2

Practice Problems for Midterm () For each of the following, find and sketch the domain, find the range (unless otherwise indicated), and evaluate the function at the given point P : (a) f(x, y) = + 4 y,

### Extra Problems for Midterm 2

Extra Problems for Midterm Sudesh Kalyanswamy Exercise (Surfaces). Find the equation of, and classify, the surface S consisting of all points equidistant from (0,, 0) and (,, ). Solution. Let P (x, y,

### SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA

SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA This handout presents the second derivative test for a local extrema of a Lagrange multiplier problem. The Section 1 presents a geometric motivation for the

### Chapter 1 Vectors, lines, and planes

Simplify the following vector expressions: 1. a (a + b). (a + b) (a b) 3. (a b) (a + b) Chapter 1 Vectors, lines, planes 1. Recall that cross product distributes over addition, so a (a + b) = a a + a b.

### 1 3 4 = 8i + 20j 13k. x + w. y + w

) Find the point of intersection of the lines x = t +, y = 3t + 4, z = 4t + 5, and x = 6s + 3, y = 5s +, z = 4s + 9, and then find the plane containing these two lines. Solution. Solve the system of equations

### L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:

### Differentiation of vectors

Chapter 4 Differentiation of vectors 4.1 Vector-valued functions In the previous chapters we have considered real functions of several (usually two) variables f : D R, where D is a subset of R n, where

### A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS

A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors

### Fundamental Theorems of Vector Calculus

Fundamental Theorems of Vector Calculus We have studied the techniques for evaluating integrals over curves and surfaces. In the case of integrating over an interval on the real line, we were able to use

### Linear Systems and Gaussian Elimination

Eivind Eriksen Linear Systems and Gaussian Elimination September 2, 2011 BI Norwegian Business School Contents 1 Linear Systems................................................ 1 1.1 Linear Equations...........................................

### Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

### UNIT 2 MATRICES - I 2.0 INTRODUCTION. Structure

UNIT 2 MATRICES - I Matrices - I Structure 2.0 Introduction 2.1 Objectives 2.2 Matrices 2.3 Operation on Matrices 2.4 Invertible Matrices 2.5 Systems of Linear Equations 2.6 Answers to Check Your Progress

### ME128 Computer-Aided Mechanical Design Course Notes Introduction to Design Optimization

ME128 Computer-ided Mechanical Design Course Notes Introduction to Design Optimization 2. OPTIMIZTION Design optimization is rooted as a basic problem for design engineers. It is, of course, a rare situation

### Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

### 160 CHAPTER 4. VECTOR SPACES

160 CHAPTER 4. VECTOR SPACES 4. Rank and Nullity In this section, we look at relationships between the row space, column space, null space of a matrix and its transpose. We will derive fundamental results

### Differentiability and some of its consequences Definition: A function f : (a, b) R is differentiable at a point x 0 (a, b) if

Differentiability and some of its consequences Definition: A function f : (a, b) R is differentiable at a point x 0 (a, b) if f(x)) f(x 0 ) x x 0 exists. If the it exists for all x 0 (a, b) then f is said

### Practice with Proofs

Practice with Proofs October 6, 2014 Recall the following Definition 0.1. A function f is increasing if for every x, y in the domain of f, x < y = f(x) < f(y) 1. Prove that h(x) = x 3 is increasing, using

### 2D Geometric Transformations. COMP 770 Fall 2011

2D Geometric Transformations COMP 770 Fall 2011 1 A little quick math background Notation for sets, functions, mappings Linear transformations Matrices Matrix-vector multiplication Matrix-matrix multiplication

### Some Notes on Taylor Polynomials and Taylor Series

Some Notes on Taylor Polynomials and Taylor Series Mark MacLean October 3, 27 UBC s courses MATH /8 and MATH introduce students to the ideas of Taylor polynomials and Taylor series in a fairly limited

### Solutions to Linear Algebra Practice Problems 1. form (because the leading 1 in the third row is not to the right of the

Solutions to Linear Algebra Practice Problems. Determine which of the following augmented matrices are in row echelon from, row reduced echelon form or neither. Also determine which variables are free

### Question 2: How do you solve a matrix equation using the matrix inverse?

Question : How do you solve a matrix equation using the matrix inverse? In the previous question, we wrote systems of equations as a matrix equation AX B. In this format, the matrix A contains the coefficients

### TOPIC 4: DERIVATIVES

TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the

### Procedure In each case, draw and extend the given series to the fifth generation, then complete the following tasks:

Math IV Nonlinear Algebra 1.2 Growth & Decay Investigation 1.2 B: Nonlinear Growth Introduction The previous investigation introduced you to a pattern of nonlinear growth, as found in the areas of a series

### Linear and quadratic Taylor polynomials for functions of several variables.

ams/econ 11b supplementary notes ucsc Linear quadratic Taylor polynomials for functions of several variables. c 010, Yonatan Katznelson Finding the extreme (minimum or maximum) values of a function, is

### 1. LINEAR EQUATIONS. A linear equation in n unknowns x 1, x 2,, x n is an equation of the form

1. LINEAR EQUATIONS A linear equation in n unknowns x 1, x 2,, x n is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b, where a 1, a 2,..., a n, b are given real numbers. For example, with x and

### Math 209 Solutions to Assignment 7. x + 2y. 1 x + 2y i + 2. f x = cos(y/z)), f y = x z sin(y/z), f z = xy z 2 sin(y/z).

Math 29 Solutions to Assignment 7. Find the gradient vector field of the following functions: a fx, y lnx + 2y; b fx, y, z x cosy/z. Solution. a f x x + 2y, f 2 y x + 2y. Thus, the gradient vector field

### 4. MATRICES Matrices

4. MATRICES 170 4. Matrices 4.1. Definitions. Definition 4.1.1. A matrix is a rectangular array of numbers. A matrix with m rows and n columns is said to have dimension m n and may be represented as follows:

### Recall that the gradient of a differentiable scalar field ϕ on an open set D in R n is given by the formula:

Chapter 7 Div, grad, and curl 7.1 The operator and the gradient: Recall that the gradient of a differentiable scalar field ϕ on an open set D in R n is given by the formula: ( ϕ ϕ =, ϕ,..., ϕ. (7.1 x 1

### Deriving character tables: Where do all the numbers come from?

3.4. Characters and Character Tables 3.4.1. Deriving character tables: Where do all the numbers come from? A general and rigorous method for deriving character tables is based on five theorems which in

### 2 Topics in 3D Geometry

2 Topics in 3D Geometry In two dimensional space, we can graph curves and lines. In three dimensional space, there is so much extra space that we can graph planes and surfaces in addition to lines and

### the points are called control points approximating curve

Chapter 4 Spline Curves A spline curve is a mathematical representation for which it is easy to build an interface that will allow a user to design and control the shape of complex curves and surfaces.

### MATH 1231 S2 2010: Calculus. Section 1: Functions of severable variables.

MATH 1231 S2 2010: Calculus For use in Dr Chris Tisdell s lectures Section 1: Functions of severable variables. Created and compiled by Chris Tisdell S1: Motivation S2: Function of two variables S3: Visualising

### Differential Equations

Differential Equations A differential equation is an equation that contains an unknown function and one or more of its derivatives. Here are some examples: y = 1, y = x, y = xy y + 2y + y = 0 d 3 y dx

### Solutions for Review Problems

olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector

### Definition A square matrix M is invertible (or nonsingular) if there exists a matrix M 1 such that

0. Inverse Matrix Definition A square matrix M is invertible (or nonsingular) if there exists a matrix M such that M M = I = M M. Inverse of a 2 2 Matrix Let M and N be the matrices: a b d b M =, N = c

### The composition g f of the functions f and g is the function (g f)(x) = g(f(x)). This means, "do the function f to x, then do g to the result.

30 5.6 The chain rule The composition g f of the functions f and g is the function (g f)(x) = g(f(x)). This means, "do the function f to x, then do g to the result." Example. g(x) = x 2 and f(x) = (3x+1).

### Using determinants, it is possible to express the solution to a system of equations whose coefficient matrix is invertible:

Cramer s Rule and the Adjugate Using determinants, it is possible to express the solution to a system of equations whose coefficient matrix is invertible: Theorem [Cramer s Rule] If A is an invertible

### 16.5: CURL AND DIVERGENCE

16.5: URL AN IVERGENE KIAM HEONG KWA 1. url Let F = P i + Qj + Rk be a vector field on a solid region R 3. If all first-order partial derivatives of P, Q, and R exist, then the curl of F on is the vector

### Section 9.5: Equations of Lines and Planes

Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 3-5 odd, 2-37 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that

### MATH SOLUTIONS TO PRACTICE FINAL EXAM. (x 2)(x + 2) (x 2)(x 3) = x + 2. x 2 x 2 5x + 6 = = 4.

MATH 55 SOLUTIONS TO PRACTICE FINAL EXAM x 2 4.Compute x 2 x 2 5x + 6. When x 2, So x 2 4 x 2 5x + 6 = (x 2)(x + 2) (x 2)(x 3) = x + 2 x 3. x 2 4 x 2 x 2 5x + 6 = 2 + 2 2 3 = 4. x 2 9 2. Compute x + sin

### Recall that two vectors in are perpendicular or orthogonal provided that their dot

Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal

### GRA6035 Mathematics. Eivind Eriksen and Trond S. Gustavsen. Department of Economics

GRA635 Mathematics Eivind Eriksen and Trond S. Gustavsen Department of Economics c Eivind Eriksen, Trond S. Gustavsen. Edition. Edition Students enrolled in the course GRA635 Mathematics for the academic

### 2.2 Derivative as a Function

2.2 Derivative as a Function Recall that we defined the derivative as f (a) = lim h 0 f(a + h) f(a) h But since a is really just an arbitrary number that represents an x-value, why don t we just use x

### Math 5311 Gateaux differentials and Frechet derivatives

Math 5311 Gateaux differentials and Frechet derivatives Kevin Long January 26, 2009 1 Differentiation in vector spaces Thus far, we ve developed the theory of minimization without reference to derivatives.

### Math 54. Selected Solutions for Week Is u in the plane in R 3 spanned by the columns

Math 5. Selected Solutions for Week 2 Section. (Page 2). Let u = and A = 5 2 6. Is u in the plane in R spanned by the columns of A? (See the figure omitted].) Why or why not? First of all, the plane in

### Class Meeting # 1: Introduction to PDEs

MATH 18.152 COURSE NOTES - CLASS MEETING # 1 18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck Class Meeting # 1: Introduction to PDEs 1. What is a PDE? We will be studying functions u = u(x

### In this chapter we turn to surfaces in general. We discuss the following topics. Describing surfaces with equations and parametric descriptions.

Chapter 4 Surfaces In this chapter we turn to surfaces in general. We discuss the following topics. Describing surfaces with equations and parametric descriptions. Some constructions of surfaces: surfaces

### Chapter Three. Functions. In this section, we study what is undoubtedly the most fundamental type of relation used in mathematics.

Chapter Three Functions 3.1 INTRODUCTION In this section, we study what is undoubtedly the most fundamental type of relation used in mathematics. Definition 3.1: Given sets X and Y, a function from X to

### 5.1 Derivatives and Graphs

5.1 Derivatives and Graphs What does f say about f? If f (x) > 0 on an interval, then f is INCREASING on that interval. If f (x) < 0 on an interval, then f is DECREASING on that interval. A function has

### LECTURE 1: DIFFERENTIAL FORMS. 1. 1-forms on R n

LECTURE 1: DIFFERENTIAL FORMS 1. 1-forms on R n In calculus, you may have seen the differential or exterior derivative df of a function f(x, y, z) defined to be df = f f f dx + dy + x y z dz. The expression

### 2. Perform elementary row operations to get zeros below the diagonal.

Gaussian Elimination We list the basic steps of Gaussian Elimination, a method to solve a system of linear equations. Except for certain special cases, Gaussian Elimination is still state of the art. After

### Chapter 19. General Matrices. An n m matrix is an array. a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm. The matrix A has n row vectors

Chapter 9. General Matrices An n m matrix is an array a a a m a a a m... = [a ij]. a n a n a nm The matrix A has n row vectors and m column vectors row i (A) = [a i, a i,..., a im ] R m a j a j a nj col

### 2.1 Functions. 2.1 J.A.Beachy 1. from A Study Guide for Beginner s by J.A.Beachy, a supplement to Abstract Algebra by Beachy / Blair

2.1 J.A.Beachy 1 2.1 Functions from A Study Guide for Beginner s by J.A.Beachy, a supplement to Abstract Algebra by Beachy / Blair 21. The Vertical Line Test from calculus says that a curve in the xy-plane

### Inner product. Definition of inner product

Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product

### Math 241, Exam 1 Information.

Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

### Solutions to Linear Algebra Practice Problems

Solutions to Linear Algebra Practice Problems. Find all solutions to the following systems of linear equations. (a) x x + x 5 x x x + x + x 5 (b) x + x + x x + x + x x + x + 8x Answer: (a) We create the

### Microeconomic Theory: Basic Math Concepts

Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts

### H.Calculating Normal Vectors

Appendix H H.Calculating Normal Vectors This appendix describes how to calculate normal vectors for surfaces. You need to define normals to use the OpenGL lighting facility, which is described in Chapter

### We want to define smooth curves: - for defining paths of cameras or objects. - for defining 1D shapes of objects

lecture 10 - cubic curves - cubic splines - bicubic surfaces We want to define smooth curves: - for defining paths of cameras or objects - for defining 1D shapes of objects We want to define smooth surfaces

### Homework #1: Solutions to select problems

Homework #: Solutions to select problems Linear Algebra Summer 20 Math S200X (3) Corrin Clarkson June 6, 20 Section Exercise (42) Find a system of linear equations with three unknowns whose solutions are

### To give it a definition, an implicit function of x and y is simply any relationship that takes the form:

2 Implicit function theorems and applications 21 Implicit functions The implicit function theorem is one of the most useful single tools you ll meet this year After a while, it will be second nature to

### Chapter 4 - Systems of Equations and Inequalities

Math 233 - Spring 2009 Chapter 4 - Systems of Equations and Inequalities 4.1 Solving Systems of equations in Two Variables Definition 1. A system of linear equations is two or more linear equations to

### 1 Conservative vector fields

Math 241 - Calculus III Spring 2012, section CL1 16.5. Conservative vector fields in R 3 In these notes, we discuss conservative vector fields in 3 dimensions, and highlight the similarities and differences

### DIFFERENTIABILITY OF COMPLEX FUNCTIONS. Contents

DIFFERENTIABILITY OF COMPLEX FUNCTIONS Contents 1. Limit definition of a derivative 1 2. Holomorphic functions, the Cauchy-Riemann equations 3 3. Differentiability of real functions 5 4. A sufficient condition

### MATH301 Real Analysis Tutorial Note #3

MATH301 Real Analysis Tutorial Note #3 More Differentiation in Vector-valued function: Last time, we learn how to check the differentiability of a given vector-valued function. Recall a function F: is

### Determine If An Equation Represents a Function

Question : What is a linear function? The term linear function consists of two parts: linear and function. To understand what these terms mean together, we must first understand what a function is. The

### Taylor Polynomials and Taylor Series Math 126

Taylor Polynomials and Taylor Series Math 26 In many problems in science and engineering we have a function f(x) which is too complicated to answer the questions we d like to ask. In this chapter, we will

### Mathematics for Economics (Part I) Note 5: Convex Sets and Concave Functions

Natalia Lazzati Mathematics for Economics (Part I) Note 5: Convex Sets and Concave Functions Note 5 is based on Madden (1986, Ch. 1, 2, 4 and 7) and Simon and Blume (1994, Ch. 13 and 21). Concave functions

### Multiplicity. Chapter 6

Chapter 6 Multiplicity The fundamental theorem of algebra says that any polynomial of degree n 0 has exactly n roots in the complex numbers if we count with multiplicity. The zeros of a polynomial are

### Continuous Functions, Smooth Functions and the Derivative

UCSC AMS/ECON 11A Supplemental Notes # 4 Continuous Functions, Smooth Functions and the Derivative c 2004 Yonatan Katznelson 1. Continuous functions One of the things that economists like to do with mathematical

### 4 Solving Systems of Equations by Reducing Matrices

Math 15 Sec S0601/S060 4 Solving Systems of Equations by Reducing Matrices 4.1 Introduction One of the main applications of matrix methods is the solution of systems of linear equations. Consider for example

### 1.2 Solving a System of Linear Equations

1.. SOLVING A SYSTEM OF LINEAR EQUATIONS 1. Solving a System of Linear Equations 1..1 Simple Systems - Basic De nitions As noticed above, the general form of a linear system of m equations in n variables

### AB2.2: Curves. Gradient of a Scalar Field

AB2.2: Curves. Gradient of a Scalar Field Parametric representation of a curve A a curve C in space can be represented by a vector function r(t) = [x(t), y(t), z(t)] = x(t)i + y(t)j + z(t)k This is called

### Chapter 11 - Curve Sketching. Lecture 17. MATH10070 - Introduction to Calculus. maths.ucd.ie/modules/math10070. Kevin Hutchinson.

Lecture 17 MATH10070 - Introduction to Calculus maths.ucd.ie/modules/math10070 Kevin Hutchinson 28th October 2010 Z Chain Rule (I): If y = f (u) and u = g(x) dy dx = dy du du dx Z Chain rule (II): d dx

### 1.5 Equations of Lines and Planes in 3-D

40 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.16: Line through P 0 parallel to v 1.5 Equations of Lines and Planes in 3-D Recall that given a point P = (a, b, c), one can draw a vector from

### Systems of Linear Equations

Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and

### Sets and functions. {x R : x > 0}.

Sets and functions 1 Sets The language of sets and functions pervades mathematics, and most of the important operations in mathematics turn out to be functions or to be expressible in terms of functions.

### B such that AB = I and BA = I. (We say B is an inverse of A.) Definition A square matrix A is invertible (or nonsingular) if matrix

Matrix inverses Recall... Definition A square matrix A is invertible (or nonsingular) if matrix B such that AB = and BA =. (We say B is an inverse of A.) Remark Not all square matrices are invertible.

### Further Maths Matrix Summary

Further Maths Matrix Summary A matrix is a rectangular array of numbers arranged in rows and columns. The numbers in a matrix are called the elements of the matrix. The order of a matrix is the number

### Limits and Continuity

Math 20C Multivariable Calculus Lecture Limits and Continuity Slide Review of Limit. Side limits and squeeze theorem. Continuous functions of 2,3 variables. Review: Limits Slide 2 Definition Given a function

### Section 13.5 Equations of Lines and Planes

Section 13.5 Equations of Lines and Planes Generalizing Linear Equations One of the main aspects of single variable calculus was approximating graphs of functions by lines - specifically, tangent lines.

### Methods for Finding Bases

Methods for Finding Bases Bases for the subspaces of a matrix Row-reduction methods can be used to find bases. Let us now look at an example illustrating how to obtain bases for the row space, null space,

### α = u v. In other words, Orthogonal Projection

Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v

### 1 2 3 1 1 2 x = + x 2 + x 4 1 0 1

(d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which

### Average rate of change of y = f(x) with respect to x as x changes from a to a + h:

L15-1 Lecture 15: Section 3.4 Definition of the Derivative Recall the following from Lecture 14: For function y = f(x), the average rate of change of y with respect to x as x changes from a to b (on [a,

### Section 5: The Jacobian matrix and applications. S1: Motivation S2: Jacobian matrix + differentiability S3: The chain rule S4: Inverse functions

Section 5: The Jacobian matri and applications. S1: Motivation S2: Jacobian matri + differentiabilit S3: The chain rule S4: Inverse functions Images from Thomas calculus b Thomas, Wier, Hass & Giordano,

### 2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system

1. Systems of linear equations We are interested in the solutions to systems of linear equations. A linear equation is of the form 3x 5y + 2z + w = 3. The key thing is that we don t multiply the variables

### MATH 105: Finite Mathematics 2-6: The Inverse of a Matrix

MATH 05: Finite Mathematics 2-6: The Inverse of a Matrix Prof. Jonathan Duncan Walla Walla College Winter Quarter, 2006 Outline Solving a Matrix Equation 2 The Inverse of a Matrix 3 Solving Systems of