Separable First Order Differential Equations


 Lynn Robertson
 2 years ago
 Views:
Transcription
1 Separable First Order Differential Equations Form of Separable Equations which take the form = gx hy or These are differential equations = gxĥy, where gx is a continuous function of x and hy is a continuously differentiable function of y to guarantee unique solutions. The two forms agree if ĥy = /hy. In differential form we can rewrite such an equation as hy = gx thus separating the y dependence from the x dependence. We have alrea encountered the simplest example, i.e., the homogeneous first order linear equation + px y = 0. We can rewrite this in the form = px. y Method of Solution Integrating both sides of hy = gx we have y hr dr = x gs ds + c, where c is an arbitrary constant. Then, letting Hy = y hr dr and Gx = x gs ds, we have Hy = Gx + c or Hy Gx c = 0. This is a parametric equation for y in terms of x; if it can be solved for y to give, explicitly, y = yx, c = H Gx + c,
2 then we have an explicit formula for the general solution. Example Consider the differential equation = xy + x + y +. Here we can factor the right hand side: xy + x + y + = x + y +. So we have and, on integration, we have Then, much as before, = x + y + log y + = x + x + y + = ± exp + ĉ. + ĉ x + x + ± eĉ exp = c exp so that the general solution becomes yx, c = c exp x +. = Example This becomes Consider the differential equation = y x + 3 x +. y = x + 3 x +. At this point we need to pause and provide a
3 Reminder: Partial Fractions Decomposition When we need to integrate a function which is a quotient of two polynomials, i.e., fx = b x n + b x n + + b n a 0 x n + a x n + a n x + a n, a 0 0, we first need to transform fx into another form. This is done by the procedure of partial fractions decomposition. The first step is to factor the denominator. Assuming it has distinct roots r, r, r n the denominator takes the form a 0 x r x r x r n. We then try to write c fx = + c + + c n. x r x r x r n Recombining the right hand side into a single fraction with a common denominator we have fx = c x r x r n + + c n x r x r n. x r x r x r n The numerator shown here, and the expression a 0 b x n + b x n + + b n must be the same. Equating the coefficients of corresponding powers of x gives n linear equations in the n unknowns c, c., c n which can be solved to obtain the desired expression c x r + c x r + + c n x r n. If one of the roots, say r, is a double root, we try instead for an expression fx = c x + d x r + c x r + + for a triple root we use c x + d x + e x r 3, etc. c n x r n ; As an example we construct the partial fractions decomposition of fx = x x + x x + 8 x + 4 = x x + x + x +. 3
4 Since r = is a double root, we try to achieve the form fx = c x + d x + + c x +. Recombining these two fractions into a single fraction we obtain fx = c x + d x + + c x + x + x + = c + c x + c + d + 4c x + d + 4c x + x +. Comparing this with the original formula for fx and equating coefficients of corresponding powers of x we arrive at three equations: i : c + c = ; ii : c + d + 4 c = ; iii : d + 4 c =. Substituting equation iii into equation ii we find c = 3. Using this in equation i we obtain c = 4 and then using this in equation iii we find d = 4. Accordingly, we have fx = x x + x x + 8 x + 4 = 3 x x + x +. Example Continued We return to our unfinished differential equations example. To apply partial fractions decomposition to that case we note that x + 3 x + = x + x +. So we try x + 3 x + = c x + + c x + = c x + + c x + x + 3 x + = c + c x + c + c. x + 3 x + 4
5 Thus we need c + c = 0, c + c =. This is easily solved to give c =, c =. Consequently we may now rewrite our differential equation in the form Integrating, we have y = x +. x + y = log x + log x + + ĉ. Renaming ĉ as log c, we have x + y = log. c x + Again absorbing the signs into the constant c we have, renaming c if necessary, yx, c =. log x + c x + We cannot always assume that we will be able to solve the integrated equation Hy = Gx + c to get an explicit formula for the general solution yx, c. Example 3 We consider the differential equation = sinx logy. Rewriting this as logy = sinx and integrating we obtain y logy y = cosx + c, y > 0 which is not directly solvable in the form y = yx, c. This, of course, is one of the reasons why numerical approximation methods are as 5
6 valuable as they are. The equation shown is far from useless, however. For example, suppose we want the value of c corresponding to the initial condition y0 =. Substituting y = and x = 0 into the implicit formula shown we have log = cos0 + c c = log. The solution yx of the initial value problem is then the solution of the equation hx, y = y logy y + cosx log + = 0, an example of what we have called a parametric equation, and we can obtain individual values of yx by substituting values of x into this equation and then solving numerically, by Newton s formula or the fixed point iteration method, for y. Thus if we take x =., start with the value obtained from the initial condition at y = 0 and apply Newton s method y k+ = y k y k logy k y k + cos. log + / logy k we obtain almost instantly y. =.007. Then with x =. and starting value.007 we obtain y. =.085. We can continue in this way to build a table of values for the solution near x =. Homogeneous First Order Equations to be homogeneous of degree n if A function fx, y is said fαx, αy α n fx, y for all values of x, y and α. A first order differential equation = fx, y is said to be of homogeneous type if fx, y is homogeneous of degree 0, i.e., fαx, αy α 0 fx, y = fx, y. for all values of x, y and α. 6
7 Example 4 then fαx, αy If fx, y = xy + y xy = αxαy + αy αx αy = α xy + y α x y = xy + y x y = fx, y, showing fx, y to be homogeneous of degree zero in this case. The present homogeneous case should not be confused with the linear homogeneous case where fx, y = px y; indeed, if it were true that pαx αy = px y, then we would have pαx = α px and since this must be true for all x and α, we would necessarily have, with α replaced by x and x replaced by : px = px = x p which implies px = p x, i.e., px is a multiple of. This would x correspond to the case = a x y for which we alrea know that the solution is yx, c = c expa log x = x a. Method of Solution Equations of homogeneous type can be solved, at least in principle, by making use of a change of variable which reduces the equation to a separable first order equation. 7
8 Starting with fx, y homogeneous of degree zero in the differential equation = fx, y we set y = x v and obtain Then or d x v = x dv x dv hv dv = + v = fx, x v = f, v. = f, v v, f, v v dv = x. Integrating, we have, with Hv an antiderivative of hv = Hv = log x + ĉ = log x + log c = logc x. f,v v, Assuming we can find an inverse function, H, for Hv, we obtain v = H logc x and then, since y = x v, we have as the general solution yx, c = x H logc x. Example 5 Setting y = x v, we have Consider the differential equation x dv + 4x + 3y 3x + y = 0. + v = 4 + 3v 3 + v. 8
9 Transposing v and adding fractions we have x dv = 4 + 3v 3 + v v = 4 + 3v + v3 + v 3 + v = v + 6v + 4 x dv v + v + =. 3 + v 3 + v Changing to differential form this is 3 + v v + v + dv = x. Then, applying the method of partial fractions, Integrating, we have This gives v + + v + dv = x. log v + + log v + = log x + ĉ. log v + v + = log cx = log c x. Thus we have v + v + = ± c x. Letting a = ± c be a constant of arbitrary sign, we have v + 3 v + + a x = 0. Solving this quadratic equation for v in terms of x and a, vx, a = 3 ± a x 9
10 Remembering that y = x v, in terms of the original dependent variable y the solution is yx, a = x 3 ± 4a However, it would be misleading to give the impression that matters always work out so that the solution can be obtained in closed form. In fact this is often not the case as we see in the next example. Example 6 Setting y = x v we have or x dv = + v v This is the same as We consider the very simple differential equation = x + y x y. x. x dv + v = x + x v x x v = + v v v = + v v v v v + v dv = x or + v dv v + v dv = x. Then, integrating, we have tan v log + v = log x + c. = + v v. In this case there is essentially no hope of solving for v to obtained v = vx, c with vx, c an expression in terms of elementary functions; the best we can do is to say that the general solution yx, c = x vx, c satisfies the parametric equation tan y x log + y 0 x = log x + c.
11 QuickCheck Exercises. Find the solution of the initial value problem = + y x π, y 3π 4. Find the general solution of = x + y xy + x =. as the solution of a parametric equation hx, y, c = 0. Then find the value of c corresponding to the initial condition y =. Find a four decimal place approximation to y.. 3. Find the solution of = y y x satisfying the initial condition y = The velocity, vt, of a certain mass sliding along a surface with friction satisfies dv dt + v + v = 0. If the initial velocity is v0 = 0 meters per second, when is the velocity reduced to meter per second?
A Brief Review of Elementary Ordinary Differential Equations
1 A Brief Review of Elementary Ordinary Differential Equations At various points in the material we will be covering, we will need to recall and use material normally covered in an elementary course on
More informationThe Method of Partial Fractions Math 121 Calculus II Spring 2015
Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method
More informationIntegrals of Rational Functions
Integrals of Rational Functions Scott R. Fulton Overview A rational function has the form where p and q are polynomials. For example, r(x) = p(x) q(x) f(x) = x2 3 x 4 + 3, g(t) = t6 + 4t 2 3, 7t 5 + 3t
More information1 Lecture: Integration of rational functions by decomposition
Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.
More informationx 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1
Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs
More information5 Indefinite integral
5 Indefinite integral The most of the mathematical operations have inverse operations: the inverse operation of addition is subtraction, the inverse operation of multiplication is division, the inverse
More informationFirst Order NonLinear Equations
First Order NonLinear Equations We will briefly consider nonlinear equations. In general, these may be much more difficult to solve than linear equations, but in some cases we will still be able to solve
More informationSolving DEs by Separation of Variables.
Solving DEs by Separation of Variables. Introduction and procedure Separation of variables allows us to solve differential equations of the form The steps to solving such DEs are as follows: dx = gx).
More informationIntroduction to polynomials
Worksheet 4.5 Polynomials Section 1 Introduction to polynomials A polynomial is an expression of the form p(x) = p 0 + p 1 x + p 2 x 2 + + p n x n, (n N) where p 0, p 1,..., p n are constants and x os
More information1.7. Partial Fractions. 1.7.1. Rational Functions and Partial Fractions. A rational function is a quotient of two polynomials: R(x) = P (x) Q(x).
.7. PRTIL FRCTIONS 3.7. Partial Fractions.7.. Rational Functions and Partial Fractions. rational function is a quotient of two polynomials: R(x) = P (x) Q(x). Here we discuss how to integrate rational
More informationPartial Fraction Decomposition for Inverse Laplace Transform
Partial Fraction Decomposition for Inverse Laplace Transform Usually partial fractions method starts with polynomial long division in order to represent a fraction as a sum of a polynomial and an another
More informationEXAM. Practice Questions for Exam #2. Math 3350, Spring April 3, 2004 ANSWERS
EXAM Practice Questions for Exam #2 Math 3350, Spring 2004 April 3, 2004 ANSWERS i Problem 1. Find the general solution. A. D 3 (D 2)(D 3) 2 y = 0. The characteristic polynomial is λ 3 (λ 2)(λ 3) 2. Thus,
More informationTo give it a definition, an implicit function of x and y is simply any relationship that takes the form:
2 Implicit function theorems and applications 21 Implicit functions The implicit function theorem is one of the most useful single tools you ll meet this year After a while, it will be second nature to
More informationDifferential Equations
Differential Equations A differential equation is an equation that contains an unknown function and one or more of its derivatives. Here are some examples: y = 1, y = x, y = xy y + 2y + y = 0 d 3 y dx
More informationPartial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:
Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than
More informationMath 201 Lecture 23: Power Series Method for Equations with Polynomial
Math 201 Lecture 23: Power Series Method for Equations with Polynomial Coefficients Mar. 07, 2012 Many examples here are taken from the textbook. The first number in () refers to the problem number in
More informationDifferentiation and Integration
This material is a supplement to Appendix G of Stewart. You should read the appendix, except the last section on complex exponentials, before this material. Differentiation and Integration Suppose we have
More informationReview for Calculus Rational Functions, Logarithms & Exponentials
Definition and Domain of Rational Functions A rational function is defined as the quotient of two polynomial functions. F(x) = P(x) / Q(x) The domain of F is the set of all real numbers except those for
More informationPartial Fractions. p(x) q(x)
Partial Fractions Introduction to Partial Fractions Given a rational function of the form p(x) q(x) where the degree of p(x) is less than the degree of q(x), the method of partial fractions seeks to break
More informationWorksheet 4.7. Polynomials. Section 1. Introduction to Polynomials. A polynomial is an expression of the form
Worksheet 4.7 Polynomials Section 1 Introduction to Polynomials A polynomial is an expression of the form p(x) = p 0 + p 1 x + p 2 x 2 + + p n x n (n N) where p 0, p 1,..., p n are constants and x is a
More informationTOPIC 3: CONTINUITY OF FUNCTIONS
TOPIC 3: CONTINUITY OF FUNCTIONS. Absolute value We work in the field of real numbers, R. For the study of the properties of functions we need the concept of absolute value of a number. Definition.. Let
More informationTest # 2 Review. function y sin6x such that dx. per second. Find dy. f(x) 3x 2 6x 8 using the limiting process. dt = 2 centimeters. dt when x 7.
Name: Class: Date: ID: A Test # 2 Review Short Answer 1. Find the slope m of the line tangent to the graph of the function g( x) 9 x 2 at the point 4, 7ˆ. 2. A man 6 feet tall walks at a rate of 2 ft per
More information3.8 Finding Antiderivatives; Divergence and Curl of a Vector Field
3.8 Finding Antiderivatives; Divergence and Curl of a Vector Field 77 3.8 Finding Antiderivatives; Divergence and Curl of a Vector Field Overview: The antiderivative in one variable calculus is an important
More informationDefinition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: f (x) =
Vertical Asymptotes Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: lim f (x) = x a lim f (x) = lim x a lim f (x) = x a
More informationZero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.
MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called
More informationSolving Quadratic Equations
9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation
More informationEquations, Inequalities & Partial Fractions
Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities
More informationPartial Fractions. (x 1)(x 2 + 1)
Partial Fractions Adding rational functions involves finding a common denominator, rewriting each fraction so that it has that denominator, then adding. For example, 3x x 1 3x(x 1) (x + 1)(x 1) + 1(x +
More informationNonlinear Algebraic Equations Example
Nonlinear Algebraic Equations Example Continuous Stirred Tank Reactor (CSTR). Look for steady state concentrations & temperature. s r (in) p,i (in) i In: N spieces with concentrations c, heat capacities
More informationLimit processes are the basis of calculus. For example, the derivative. f f (x + h) f (x)
SEC. 4.1 TAYLOR SERIES AND CALCULATION OF FUNCTIONS 187 Taylor Series 4.1 Taylor Series and Calculation of Functions Limit processes are the basis of calculus. For example, the derivative f f (x + h) f
More informationZeros of Polynomial Functions
Review: Synthetic Division Find (x 25x  5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 35x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 35x 2 + x + 2. Zeros of Polynomial Functions Introduction
More informationLearning Objectives for Math 165
Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given
More informationLimits and Continuity
Math 20C Multivariable Calculus Lecture Limits and Continuity Slide Review of Limit. Side limits and squeeze theorem. Continuous functions of 2,3 variables. Review: Limits Slide 2 Definition Given a function
More information4.3 Lagrange Approximation
206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average
More informationNotes and questions to aid Alevel Mathematics revision
Notes and questions to aid Alevel Mathematics revision Robert Bowles University College London October 4, 5 Introduction Introduction There are some students who find the first year s study at UCL and
More information1 Introduction to Differential Equations
1 Introduction to Differential Equations A differential equation is an equation that involves the derivative of some unknown function. For example, consider the equation f (x) = 4x 3. (1) This equation
More informationChapter Usual types of questions Tips What can go ugly 1 Algebraic Fractions
C3 Cheat Sheet Last Updated: 9 th Nov 2015 Chapter Usual types of questions Tips What can go ugly 1 Algebraic Fractions Almost always adding or subtracting fractions. Factorise everything in each fraction
More informationSection 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section 4.4 Using the Fundamental Theorem As we saw in Section 4.3, using the Fundamental Theorem of Integral Calculus reduces the problem of evaluating a
More informationcorrectchoice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:
Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that
More informationGRE Prep: Precalculus
GRE Prep: Precalculus Franklin H.J. Kenter 1 Introduction These are the notes for the Precalculus section for the GRE Prep session held at UCSD in August 2011. These notes are in no way intended to teach
More information2 Integrating Both Sides
2 Integrating Both Sides So far, the only general method we have for solving differential equations involves equations of the form y = f(x), where f(x) is any function of x. The solution to such an equation
More informationNonlinear Algebraic Equations. Lectures INF2320 p. 1/88
Nonlinear Algebraic Equations Lectures INF2320 p. 1/88 Lectures INF2320 p. 2/88 Nonlinear algebraic equations When solving the system u (t) = g(u), u(0) = u 0, (1) with an implicit Euler scheme we have
More informationSolving First Order ODEs. Table of contents
Solving First Order ODEs Table of contents Solving First Order ODEs............................................... 1 1. Introduction...................................................... 1 Side: Two ways
More information5.4 The Quadratic Formula
Section 5.4 The Quadratic Formula 481 5.4 The Quadratic Formula Consider the general quadratic function f(x) = ax + bx + c. In the previous section, we learned that we can find the zeros of this function
More informationtegrals as General & Particular Solutions
tegrals as General & Particular Solutions dy dx = f(x) General Solution: y(x) = f(x) dx + C Particular Solution: dy dx = f(x), y(x 0) = y 0 Examples: 1) dy dx = (x 2)2 ;y(2) = 1; 2) dy ;y(0) = 0; 3) dx
More informationFinding Antiderivatives and Evaluating Integrals
Chapter 5 Finding Antiderivatives and Evaluating Integrals 5. Constructing Accurate Graphs of Antiderivatives Motivating Questions In this section, we strive to understand the ideas generated by the following
More informationSecond Order Linear Differential Equations
CHAPTER 2 Second Order Linear Differential Equations 2.. Homogeneous Equations A differential equation is a relation involving variables x y y y. A solution is a function f x such that the substitution
More informationSome Notes on Taylor Polynomials and Taylor Series
Some Notes on Taylor Polynomials and Taylor Series Mark MacLean October 3, 27 UBC s courses MATH /8 and MATH introduce students to the ideas of Taylor polynomials and Taylor series in a fairly limited
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Math 110 Review for Final Examination 2012 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Match the equation to the correct graph. 1) y = 
More informationRecognizing Types of First Order Differential Equations E. L. Lady
Recognizing Types of First Order Differential Equations E. L. Lady Every first order differential equation to be considered here can be written can be written in the form P (x, y)+q(x, y)y =0. This means
More information6.4 Logarithmic Equations and Inequalities
6.4 Logarithmic Equations and Inequalities 459 6.4 Logarithmic Equations and Inequalities In Section 6.3 we solved equations and inequalities involving exponential functions using one of two basic strategies.
More informationBlue Pelican Calculus First Semester
Blue Pelican Calculus First Semester Teacher Version 1.01 Copyright 20112013 by Charles E. Cook; Refugio, Tx Edited by Jacob Cobb (All rights reserved) Calculus AP Syllabus (First Semester) Unit 1: Function
More informationTechniques of Integration
CHPTER 7 Techniques of Integration 7.. Substitution Integration, unlike differentiation, is more of an artform than a collection of algorithms. Many problems in applied mathematics involve the integration
More informationD f = (2, ) (x + 1)(x 3) (b) g(x) = x 1 solution: We need the thing inside the root to be greater than or equal to 0. So we set up a sign table.
. Find the domains of the following functions: (a) f(x) = ln(x ) We need x > 0, or x >. Thus D f = (, ) (x + )(x 3) (b) g(x) = x We need the thing inside the root to be greater than or equal to 0. So we
More informationTechniques of Differentiation Selected Problems. Matthew Staley
Techniques of Differentiation Selected Problems Matthew Staley September 10, 011 Techniques of Differentiation: Selected Problems 1. Find /dx: (a) y =4x 7 dx = d dx (4x7 ) = (7)4x 6 = 8x 6 (b) y = 1 (x4
More informationNonconstant Coefficients
Chapter 7 Nonconstant Coefficients We return to secondorder linear ODEs, but with nonconstant coefficients. That is, we consider 7.1 y +pty +qty = 0, with not both pt and qt constant. The theory developed
More information3.1. RATIONAL EXPRESSIONS
3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers
More information3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style
Solving linear equations 3.1 Introduction Many problems in engineering reduce to the solution of an equation or a set of equations. An equation is a type of mathematical expression which contains one or
More informationLinear and quadratic Taylor polynomials for functions of several variables.
ams/econ 11b supplementary notes ucsc Linear quadratic Taylor polynomials for functions of several variables. c 010, Yonatan Katznelson Finding the extreme (minimum or maximum) values of a function, is
More informationPolynomials can be added or subtracted simply by adding or subtracting the corresponding terms, e.g., if
1. Polynomials 1.1. Definitions A polynomial in x is an expression obtained by taking powers of x, multiplying them by constants, and adding them. It can be written in the form c 0 x n + c 1 x n 1 + c
More informationPractice Problems for Midterm 2
Practice Problems for Midterm () For each of the following, find and sketch the domain, find the range (unless otherwise indicated), and evaluate the function at the given point P : (a) f(x, y) = + 4 y,
More informationDefinition 2.1 The line x = a is a vertical asymptote of the function y = f(x) if y approaches ± as x approaches a from the right or left.
Vertical and Horizontal Asymptotes Definition 2.1 The line x = a is a vertical asymptote of the function y = f(x) if y approaches ± as x approaches a from the right or left. This graph has a vertical asymptote
More informationTOPIC 4: DERIVATIVES
TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the
More information(Refer Slide Time: 00:00:56 min)
Numerical Methods and Computation Prof. S.R.K. Iyengar Department of Mathematics Indian Institute of Technology, Delhi Lecture No # 3 Solution of Nonlinear Algebraic Equations (Continued) (Refer Slide
More informationSolving Logarithmic Equations
Solving Logarithmic Equations Deciding How to Solve Logarithmic Equation When asked to solve a logarithmic equation such as log (x + 7) = or log (7x + ) = log (x + 9), the first thing we need to decide
More information6 Further differentiation and integration techniques
56 6 Further differentiation and integration techniques Here are three more rules for differentiation and two more integration techniques. 6.1 The product rule for differentiation Textbook: Section 2.7
More informationTaylor Polynomials and Taylor Series Math 126
Taylor Polynomials and Taylor Series Math 26 In many problems in science and engineering we have a function f(x) which is too complicated to answer the questions we d like to ask. In this chapter, we will
More informationSecond Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0.
Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients We will now turn our attention to nonhomogeneous second order linear equations, equations with the standard
More information1.3 Algebraic Expressions
1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,
More informationZeros of a Polynomial Function
Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we
More information2 A Differential Equations Primer
A Differential Equations Primer Homer: Keep your head down, follow through. [Bart putts and misses] Okay, that didn't work. This time, move your head and don't follow through. From: The Simpsons.1 Introduction
More informationSection 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate
More information3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes
Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general
More informationMain page. Given f ( x, y) = c we differentiate with respect to x so that
Further Calculus Implicit differentiation Parametric differentiation Related rates of change Small variations and linear approximations Stationary points Curve sketching  asymptotes Curve sketching the
More informationChapter. Equation Calculations
Chapter Equation Calculations Your graphic calculator can solve the following three types of equations: Linear equations with two to six unknowns Quadratic equations Cubic equations 7 71 Before Beginning
More informationLecture 5 : Continuous Functions Definition 1 We say the function f is continuous at a number a if
Lecture 5 : Continuous Functions Definition We say the function f is continuous at a number a if f(x) = f(a). (i.e. we can make the value of f(x) as close as we like to f(a) by taking x sufficiently close
More informationSituation: Dividing Linear Expressions
Situation: Dividing Linear Expressions Date last revised: June 4, 203 Michael Ferra, Nicolina Scarpelli, Mary Ellen Graves, and Sydney Roberts Prompt: An Algebra II class has been examining the product
More informationSection 12.6: Directional Derivatives and the Gradient Vector
Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate
More informationOn closedform solutions to a class of ordinary differential equations
International Journal of Advanced Mathematical Sciences, 2 (1 (2014 5770 c Science Publishing Corporation www.sciencepubco.com/index.php/ijams doi: 10.14419/ijams.v2i1.1556 Research Paper On closedform
More informationMultiplicity. Chapter 6
Chapter 6 Multiplicity The fundamental theorem of algebra says that any polynomial of degree n 0 has exactly n roots in the complex numbers if we count with multiplicity. The zeros of a polynomial are
More informationProblems for Quiz 14
Problems for Quiz 14 Math 3. Spring, 7. 1. Consider the initial value problem (IVP defined by the partial differential equation (PDE u t = u xx u x + u, < x < 1, t > (1 with boundary conditions and initial
More informationPROBLEM SET. Practice Problems for Exam #2. Math 2350, Fall Nov. 7, 2004 Corrected Nov. 10 ANSWERS
PROBLEM SET Practice Problems for Exam #2 Math 2350, Fall 2004 Nov. 7, 2004 Corrected Nov. 10 ANSWERS i Problem 1. Consider the function f(x, y) = xy 2 sin(x 2 y). Find the partial derivatives f x, f y,
More informationUNIT  I LESSON  1 The Solution of Numerical Algebraic and Transcendental Equations
UNIT  I LESSON  1 The Solution of Numerical Algebraic and Transcendental Equations Contents: 1.0 Aims and Objectives 1.1 Introduction 1.2 Bisection Method 1.2.1 Definition 1.2.2 Computation of real root
More informationMath 20D Midterm Exam Practice Problems Solutions
Math 20D Midterm Exam Practice Problems Solutions 1. A tank contains G gallons of fresh water. A solution with a concentration of m lb of salt per gallon is pumped into the tank at a rate of r gallons
More information11. Nonlinear equations with one variable
EE103 (Fall 201112) 11. Nonlinear equations with one variable definition and examples bisection method Newton s method secant method 111 Definition and examples x is a zero (or root) of a function f
More informationJUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson
JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials
More informationCLASS NOTES. We bring down (copy) the leading coefficient below the line in the same column.
SYNTHETIC DIVISION CLASS NOTES When factoring or evaluating polynomials we often find that it is convenient to divide a polynomial by a linear (first degree) binomial of the form x k where k is a real
More informationRecitation 4. 24xy for 0 < x < 1, 0 < y < 1, x + y < 1 0 elsewhere
Recitation. Exercise 3.5: If the joint probability density of X and Y is given by xy for < x
More informationREVIEW EXERCISES DAVID J LOWRY
REVIEW EXERCISES DAVID J LOWRY Contents 1. Introduction 1 2. Elementary Functions 1 2.1. Factoring and Solving Quadratics 1 2.2. Polynomial Inequalities 3 2.3. Rational Functions 4 2.4. Exponentials and
More informationIntroduction to Algebraic Geometry. Bézout s Theorem and Inflection Points
Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a
More informationMATH 425, PRACTICE FINAL EXAM SOLUTIONS.
MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator
More informationQuadratic Functions. Copyright Cengage Learning. All rights reserved.
Quadratic Functions 4 Copyright Cengage Learning. All rights reserved. Solving by the Quadratic Formula 2 Example 1 Using the quadratic formula Solve the following quadratic equations. Round your answers
More informationFinding y p in ConstantCoefficient Nonhomogenous Linear DEs
Finding y p in ConstantCoefficient Nonhomogenous Linear DEs Introduction and procedure When solving DEs of the form the solution looks like ay + by + cy =, y = y c + y p where y c is the complementary
More informationZeros of Polynomial Functions
Zeros of Polynomial Functions Objectives: 1.Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions 2.Find rational zeros of polynomial functions 3.Find conjugate
More informationdx x 2 1 x 3 x 1 dx x 2 Integration Review 12/12/13 Current Integration Strategies: NIKE  Just Do It! Recognize & Memorize! Manipulate 1) Strategy:
AP Calculus Mathematician: Integration Review 1/1/13 Current Integration Strategies: NIKE  Just Do It! Recognize & Memorize! Manipulate 1) Strategy: 3 x 1 ) Strategy: 1 x 3 x 1 x 3) Strategy: 3 x 4 4)
More informationMULTIVARIATE PROBABILITY DISTRIBUTIONS
MULTIVARIATE PROBABILITY DISTRIBUTIONS. PRELIMINARIES.. Example. Consider an experiment that consists of tossing a die and a coin at the same time. We can consider a number of random variables defined
More informationFactoring Cubic Polynomials
Factoring Cubic Polynomials Robert G. Underwood 1. Introduction There are at least two ways in which using the famous Cardano formulas (1545) to factor cubic polynomials present more difficulties than
More informationMechanics 1: Conservation of Energy and Momentum
Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation
More information6 Rational Inequalities, (In)equalities with Absolute value; Exponents and Logarithms
AAU  Business Mathematics I Lecture #6, March 16, 2009 6 Rational Inequalities, (In)equalities with Absolute value; Exponents and Logarithms 6.1 Rational Inequalities: x + 1 x 3 > 1, x + 1 x 2 3x + 5
More information1 Lecture 19: Implicit differentiation
Lecture 9: Implicit differentiation. Outline The technique of implicit differentiation Tangent lines to a circle Examples.2 Implicit differentiation Suppose we have two quantities or variables x and y
More information