f(x) = a x, h(5) = ( 1) 5 1 = 2 2 1

Save this PDF as:

Size: px
Start display at page:

Download "f(x) = a x, h(5) = ( 1) 5 1 = 2 2 1"

Transcription

1 Exponential Functions an their Derivatives Exponential functions are functions of the form f(x) = a x, where a is a positive constant referre to as the base. The functions f(x) = x, g(x) = e x, an h(x) = ( 1) x are all exponential functions. Of course, if we choose x to be a nonnegative integer, then a x has a special interpretation. Consier h(x) above; if we evaluate h at x = 5, we have h(5) = ( 1) 5 1 = In a sense, x just counts how many copies of the 1/ appear. It is extremely important to istinguish between exponential functions an polynomial functions. For example, let s compare the exponential function f(x) = x to the polynomial function p(x) = x. These two functions are completely ifferent: while f(x) raises the constant to the variable power x, p(x) raises the variable x to the constant power. In other wors, exponential functions have constant bases but variable powers, while polynomial functions have variable bases but constant powers. It will be extremely helpful to unerstan the general shape of the graph of an exponential function. The following graph illustrates several exponential functions with bases a > 1: 1

2 The graph below illustrates some exponential functions with bases 0 < a < 1: Properties of Exponential Functions Exponential functions have many of the same properties that we are use to seeing when working with polynomials. The following list etails the omain, range, an rules for combining exponential functions. Let a > 0, b > 0, a a x is continuous. a x has omain (, ) 3. a x has range (0, ) 4. If a > 1, then a x is an increasing function. 5. If 0 < a < 1, then a x is an ecreasing function. 6. a x+y = a x a y 7. a x y = ax a y 8. (a x ) y = a xy 9. (ab) x = a x b x

3 Calculus Properties of Exponential Functions Of course, we woul like to know what calculus has to say about exponential functions. In particular, we woul like to unerstan: 1. limits,. erivatives, an 3. integrals of exponential functions. Limits of Exponential Functions Throughout the rest of the section, assume that a > 0. Since exponential functions are continuous, finite limits agree with function values: lim x c ax = a c, for any real number c. We woul like to unerstan limits at infinity as well. following fact base on the graphs above: 1. If a > 1, then (a) lim x ax = (b) lim x ax = 0. If 0 < a < 1, then (a) lim x ax = 0 (b) lim x ax = You may have alreay guesse the thus Since 1/ < 1, we know that lim 3 ( 1) x. x lim x (1) x = 0; lim 3 ( 1) x = lim x x 3 lim x = ( lim x 3) 0 = 3, (1 ) x since the limit of a constant is the constant. Thus the line y = 3 is a horizontal asymptote of 3 (1/) x. 3

4 Derivative of the Natural Exponential Function We will actually put off learning about the erivatives of most exponential functions until section 3.4; however, in this section, we will learn the erivative of one special exponential function, e x, which we call the natural exponential function. Derivative of e x. The number e is the number so that x ex = e x. In other wors, e x is a function that escribes its own rate of change. x ex/. Since the form of our function is not the same as the form of the rule we ve just learne, we must think of it as a prouct, quotient, or composition. Clearly e x/ is a composition function; so we ll ifferentiate using the chain rule. Recall that we must fin the insie function g(x) an the outsie function f(x); then the chain rule says that x f(g(x)) = g (x)f (g(x)). Let s set up the chart: f(x) = e x f (x) = e x f (g(x)) = e x/ g(x) = x g (x) = 1 So x ex/ = 1 ex/. x ex sin x. Again, we realize that this function is a composition, so that we must use the chain rule to fin its erivative. Thinking of g(x) as the insie function an f(x) as the outsie function, we have f(x) = e x f (x) = e x f (g(x)) = e x sin x g(x) = x sin x g (x) =? Of course, to fin the erivative of x sin x, we ll nee to use the prouct rule: Finishing off the chart, we have x sin x = sin x + x cos x. x f(x) = e x f (x) = e x f (g(x)) = e x sin x g(x) = x sin x g (x) = sin x + x cos x. 4

5 Using the chain rule we see that x f(g(x)) = g (x)f (g(x)), x ex sin x = (sin x + x cos x)e x sin x. x. x eee We have yet another composition function to ifferentiate. Let s set up the chart for the chain rule: f(x) = e x f (x) = e x f (g(x)) = e eex g(x) = e ex g (x) =? Unfortunately, we on t know how to ifferentiate g(x) immeiately; we ll have to apply the chain rule again: out(x) = e x out (x) = e x out (in(x)) = e ex in(x) = e x in (x) = e x Thus returning to the original chart, we have g (x) = e x e ex ; f(x) = e x f (x) = e x f (g(x)) = e eex g(x) = e ex g (x) = e x e ex, so that x x eee = e x e ex e eex. Integral of the Natural Exponential Function The rule for integrating e x shoul be clear from the the rule for ifferentiating it: e x x = e x + C. e sin x x. Clearly, we will nee to use u-substitution to evaluate the integral. The most natural substitution to make seems to be u = so that u = csc x x. 5

6 Consiering the original integral, however, it appears that we have an issue with this substitution: e sin x x. How o we replace the factor of 1/ sin x? Perhaps rewriting the original function will help. We know that 1 = csc x, sin x so e sin x x = csc xe x. Now we can replace all of the terms containing xs with terms containing us! We have e sin x x = csc xe x = e u u = e u + C = e + C. Thus e sin x x = e + C. 6

To differentiate logarithmic functions with bases other than e, use

To ifferentiate logarithmic functions with bases other than e, use 1 1 To ifferentiate logarithmic functions with bases other than e, use log b m = ln m ln b 1 To ifferentiate logarithmic functions with

Answers to the Practice Problems for Test 2

Answers to the Practice Problems for Test 2 Davi Murphy. Fin f (x) if it is known that x [f(2x)] = x2. By the chain rule, x [f(2x)] = f (2x) 2, so 2f (2x) = x 2. Hence f (2x) = x 2 /2, but the lefthan

2 Integrating Both Sides

2 Integrating Both Sides So far, the only general method we have for solving differential equations involves equations of the form y = f(x), where f(x) is any function of x. The solution to such an equation

WARM UP EXERCSE. 2-1 Polynomials and Rational Functions

WARM UP EXERCSE Roots, zeros, and x-intercepts. x 2! 25 x 2 + 25 x 3! 25x polynomial, f (a) = 0! (x - a)g(x) 1 2-1 Polynomials and Rational Functions Students will learn about: Polynomial functions Behavior

The wave equation is an important tool to study the relation between spectral theory and geometry on manifolds. Let U R n be an open set and let

1. The wave equation The wave equation is an important tool to stuy the relation between spectral theory an geometry on manifols. Let U R n be an open set an let = n j=1 be the Eucliean Laplace operator.

REVIEW EXERCISES DAVID J LOWRY

REVIEW EXERCISES DAVID J LOWRY Contents 1. Introduction 1 2. Elementary Functions 1 2.1. Factoring and Solving Quadratics 1 2.2. Polynomial Inequalities 3 2.3. Rational Functions 4 2.4. Exponentials and

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:

Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that

Differentiability of Exponential Functions

Differentiability of Exponential Functions Philip M. Anselone an John W. Lee Philip Anselone (panselone@actionnet.net) receive his Ph.D. from Oregon State in 1957. After a few years at Johns Hopkins an

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve

SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives

Examples of Tasks from CCSS Edition Course 3, Unit 5

Examples of Tasks from CCSS Edition Course 3, Unit 5 Getting Started The tasks below are selected with the intent of presenting key ideas and skills. Not every answer is complete, so that teachers can

1 High-Dimensional Space

Contents High-Dimensional Space. Properties of High-Dimensional Space..................... 4. The High-Dimensional Sphere......................... 5.. The Sphere an the Cube in Higher Dimensions...........

Understanding Basic Calculus

Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other

To define function and introduce operations on the set of functions. To investigate which of the field properties hold in the set of functions

Chapter 7 Functions This unit defines and investigates functions as algebraic objects. First, we define functions and discuss various means of representing them. Then we introduce operations on functions

Rolle s Theorem. q( x) = 1

Lecture 1 :The Mean Value Theorem We know that constant functions have derivative zero. Is it possible for a more complicated function to have derivative zero? In this section we will answer this question

FIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper.

FIRST YEAR CALCULUS WWLCHENW L c WWWL W L Chen, 1982, 2008. 2006. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990. It It is is

6.1 The Greatest Common Factor; Factoring by Grouping

386 CHAPTER 6 Factoring and Applications 6.1 The Greatest Common Factor; Factoring by Grouping OBJECTIVES 1 Find the greatest common factor of a list of terms. 2 Factor out the greatest common factor.

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:

SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS

(Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic

Calculus. Contents. Paul Sutcliffe. Office: CM212a.

Calculus Paul Sutcliffe Office: CM212a. www.maths.dur.ac.uk/~dma0pms/calc/calc.html Books One and several variables calculus, Salas, Hille & Etgen. Calculus, Spivak. Mathematical methods in the physical

FACTORING POLYNOMIALS

296 (5-40) Chapter 5 Exponents and Polynomials where a 2 is the area of the square base, b 2 is the area of the square top, and H is the distance from the base to the top. Find the volume of a truncated

GROUPS ACTING ON A SET

GROUPS ACTING ON A SET MATH 435 SPRING 2012 NOTES FROM FEBRUARY 27TH, 2012 1. Left group actions Definition 1.1. Suppose that G is a group and S is a set. A left (group) action of G on S is a rule for

Chapter 13: Basic ring theory

Chapter 3: Basic ring theory Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 42, Spring 24 M. Macauley (Clemson) Chapter 3: Basic ring

FACTORING SPARSE POLYNOMIALS

FACTORING SPARSE POLYNOMIALS Theorem 1 (Schinzel): Let r be a positive integer, and fix non-zero integers a 0,..., a r. Let F (x 1,..., x r ) = a r x r + + a 1 x 1 + a 0. Then there exist finite sets S

INTRODUCTORY SET THEORY

M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H-1088 Budapest, Múzeum krt. 6-8. CONTENTS 1. SETS Set, equal sets, subset,

An important theme in this book is to give constructive definitions of mathematical objects. Thus, for instance, if you needed to evaluate.

Chapter 10 Series and Approximations An important theme in this book is to give constructive definitions of mathematical objects. Thus, for instance, if you needed to evaluate 1 0 e x2 dx, you could set

Polynomials and Factoring

Lesson 2 Polynomials and Factoring A polynomial function is a power function or the sum of two or more power functions, each of which has a nonnegative integer power. Because polynomial functions are built

Factoring and Applications

Factoring and Applications What is a factor? The Greatest Common Factor (GCF) To factor a number means to write it as a product (multiplication). Therefore, in the problem 48 3, 4 and 8 are called the

Factoring Algebra- Chapter 8B Assignment Sheet

Name: Factoring Algebra- Chapter 8B Assignment Sheet Date Section Learning Targets Assignment Tues 2/17 Find the prime factorization of an integer Find the greatest common factor (GCF) for a set of monomials.

There are two different ways you can interpret the information given in a demand curve.

Econ 500 Microeconomic Review Deman What these notes hope to o is to o a quick review of supply, eman, an equilibrium, with an emphasis on a more quantifiable approach. Deman Curve (Big icture) The whole

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

Optimal Control Policy of a Production and Inventory System for multi-product in Segmented Market

RATIO MATHEMATICA 25 (2013), 29 46 ISSN:1592-7415 Optimal Control Policy of a Prouction an Inventory System for multi-prouct in Segmente Market Kuleep Chauhary, Yogener Singh, P. C. Jha Department of Operational

1 Introduction to the Recommendations and their Application Principles

1 Introuction to the Recommenations an their Application Principles 1.1 National an International Regulations for Piling Wors (1) Since the implementation ofdin EN 1997-1:2009-09: Eurocoe 7: Geotechnical

Nonhomogeneous Linear Equations

Nonhomogeneous Linear Equations In this section we learn how to solve second-order nonhomogeneous linear differential equations with constant coefficients, that is, equations of the form ay by cy G x where

COLLEGE ALGEBRA. Paul Dawkins

COLLEGE ALGEBRA Paul Dawkins Table of Contents Preface... iii Outline... iv Preliminaries... Introduction... Integer Exponents... Rational Exponents... 9 Real Exponents...5 Radicals...6 Polynomials...5

Copyrighted Material. Chapter 1 DEGREE OF A CURVE

Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two

x 2 if 2 x < 0 4 x if 2 x 6

Piecewise-defined Functions Example Consider the function f defined by x if x < 0 f (x) = x if 0 x < 4 x if x 6 Piecewise-defined Functions Example Consider the function f defined by x if x < 0 f (x) =

Introduction to Partial Differential Equations. John Douglas Moore

Introduction to Partial Differential Equations John Douglas Moore May 2, 2003 Preface Partial differential equations are often used to construct models of the most basic theories underlying physics and

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

In the above, the number 19 is an example of a number because its only positive factors are one and itself.

Math 100 Greatest Common Factor and Factoring by Grouping (Review) Factoring Definition: A factor is a number, variable, monomial, or polynomial which is multiplied by another number, variable, monomial,

Don't Forget the Differential Equations: Finishing 2005 BC4

connect to college success Don't Forget the Differential Equations: Finishing 005 BC4 Steve Greenfield available on apcentral.collegeboard.com connect to college success www.collegeboard.com The College

The Division Algorithm for Polynomials Handout Monday March 5, 2012

The Division Algorithm for Polynomials Handout Monday March 5, 0 Let F be a field (such as R, Q, C, or F p for some prime p. This will allow us to divide by any nonzero scalar. (For some of the following,

FACTORING OUT COMMON FACTORS

278 (6 2) Chapter 6 Factoring 6.1 FACTORING OUT COMMON FACTORS In this section Prime Factorization of Integers Greatest Common Factor Finding the Greatest Common Factor for Monomials Factoring Out the

3 1. Note that all cubes solve it; therefore, there are no more

Math 13 Problem set 5 Artin 11.4.7 Factor the following polynomials into irreducible factors in Q[x]: (a) x 3 3x (b) x 3 3x + (c) x 9 6x 6 + 9x 3 3 Solution: The first two polynomials are cubics, so if

~ EQUIVALENT FORMS ~

~ EQUIVALENT FORMS ~ Critical to understanding mathematics is the concept of equivalent forms. Equivalent forms are used throughout this course. Throughout mathematics one encounters equivalent forms of

Lecture 3: Derivatives and extremes of functions

Lecture 3: Derivatives and extremes of functions Lejla Batina Institute for Computing and Information Sciences Digital Security Version: spring 2011 Lejla Batina Version: spring 2011 Wiskunde 1 1 / 16

AP Calculus BC 2004 Scoring Guidelines

AP Calculus BC Scoring Guidelines The materials included in these files are intended for noncommercial use by AP teachers for course and exam preparation; permission for any other use must be sought from

POLYNOMIALS and FACTORING

POLYNOMIALS and FACTORING Exponents ( days); 1. Evaluate exponential expressions. Use the product rule for exponents, 1. How do you remember the rules for exponents?. How do you decide which rule to use

1.3. Maximum or Minimum of a Quadratic Function. Investigate A

< P1-6 photo of a large arched bridge, similar to the one on page 292 or p 360-361of the fish book> Maximum or Minimum of a Quadratic Function 1.3 Some bridge arches are defined by quadratic functions.

Putnam Notes Polynomials and palindromes

Putnam Notes Polynomials and palindromes Polynomials show up one way or another in just about every area of math. You will hardly ever see any math competition without at least one problem explicitly concerning

Exam 1 Sample Question SOLUTIONS. y = 2x

Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can

Polynomial Degree and Finite Differences

CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson you will learn the terminology associated with polynomials use the finite differences method to determine the degree of a polynomial

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear

Roots of Polynomials

Roots of Polynomials (Com S 477/577 Notes) Yan-Bin Jia Sep 24, 2015 A direct corollary of the fundamental theorem of algebra is that p(x) can be factorized over the complex domain into a product a n (x

Factoring. Factoring Monomials Monomials can often be factored in more than one way.

Factoring Factoring is the reverse of multiplying. When we multiplied monomials or polynomials together, we got a new monomial or a string of monomials that were added (or subtracted) together. For example,

Search Advertising Based Promotion Strategies for Online Retailers

Search Avertising Base Promotion Strategies for Online Retailers Amit Mehra The Inian School of Business yeraba, Inia Amit Mehra@isb.eu ABSTRACT Web site aresses of small on line retailers are often unknown

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.

This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra

Introduction to Differential Calculus. Christopher Thomas

Mathematics Learning Centre Introduction to Differential Calculus Christopher Thomas c 1997 University of Sydney Acknowledgements Some parts of this booklet appeared in a similar form in the booklet Review

Section 2.4: Equations of Lines and Planes

Section.4: Equations of Lines and Planes An equation of three variable F (x, y, z) 0 is called an equation of a surface S if For instance, (x 1, y 1, z 1 ) S if and only if F (x 1, y 1, z 1 ) 0. x + y

Chapter 7 Outline Math 236 Spring 2001

Chapter 7 Outline Math 236 Spring 2001 Note 1: Be sure to read the Disclaimer on Chapter Outlines! I cannot be responsible for misfortunes that may happen to you if you do not. Note 2: Section 7.9 will

it is easy to see that α = a

21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore

A Comparison of Performance Measures for Online Algorithms

A Comparison of Performance Measures for Online Algorithms Joan Boyar 1, Sany Irani 2, an Kim S. Larsen 1 1 Department of Mathematics an Computer Science, University of Southern Denmark, Campusvej 55,

Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations

Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate

Second-Order Linear Differential Equations

Second-Order Linear Differential Equations A second-order linear differential equation has the form 1 Px d 2 y dx 2 dy Qx dx Rxy Gx where P, Q, R, and G are continuous functions. We saw in Section 7.1

Objective: Use calculator to comprehend transformations.

math111 (Bradford) Worksheet #1 Due Date: Objective: Use calculator to comprehend transformations. Here is a warm up for exploring manipulations of functions. specific formula for a function, say, Given

Factoring Polynomials

Factoring Polynomials Sue Geller June 19, 2006 Factoring polynomials over the rational numbers, real numbers, and complex numbers has long been a standard topic of high school algebra. With the advent

CURRENCY OPTION PRICING II

Jones Grauate School Rice University Masa Watanabe INTERNATIONAL FINANCE MGMT 657 Calibrating the Binomial Tree to Volatility Black-Scholes Moel for Currency Options Properties of the BS Moel Option Sensitivity

Random Variate Generation (Part 3)

Random Variate Generation (Part 3) Dr.Çağatay ÜNDEĞER Öğretim Görevlisi Bilkent Üniversitesi Bilgisayar Mühendisliği Bölümü &... e-mail : cagatay@undeger.com cagatay@cs.bilkent.edu.tr Bilgisayar Mühendisliği

MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu

Integer Polynomials June 9, 007 Yufei Zhao yufeiz@mit.edu We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing

CURVES ANDRÉ NEVES. that is, the curve α has finite length. v = p q p q. a i.e., the curve of smallest length connecting p to q is a straight line.

CURVES ANDRÉ NEVES 1. Problems (1) (Ex 1 of 1.3 of Do Crmo) Show tht the tngent line to the curve α(t) (3t, 3t 2, 2t 3 ) mkes constnt ngle with the line z x, y. (2) (Ex 6 of 1.3 of Do Crmo) Let α(t) (e

Chebyshev Expansions

Chapter 3 Chebyshev Expansions The best is the cheapest. Benjamin Franklin 3.1 Introduction In Chapter, approximations were considered consisting of expansions around a specific value of the variable (finite

Liquid Pricing for Digital Infrastructure Services

iqui Pricing for Digital Infrastructure Services Subhajyoti Banyopahyay * an sing Kenneth Cheng Department of Decision an Information Sciences Warrington College of Business Aministration University of

SOLVING POLYNOMIAL EQUATIONS

C SOLVING POLYNOMIAL EQUATIONS We will assume in this appendix that you know how to divide polynomials using long division and synthetic division. If you need to review those techniques, refer to an algebra

Lecture 6: Finite Fields (PART 3) PART 3: Polynomial Arithmetic. Theoretical Underpinnings of Modern Cryptography

Lecture 6: Finite Fields (PART 3) PART 3: Polynomial Arithmetic Theoretical Underpinnings of Modern Cryptography Lecture Notes on Computer and Network Security by Avi Kak (kak@purdue.edu) January 29, 2015

The finite field with 2 elements The simplest finite field is

The finite field with 2 elements The simplest finite field is GF (2) = F 2 = {0, 1} = Z/2 It has addition and multiplication + and defined to be 0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 0 0 0 = 0 0 1 = 0

Dynamic Network Security Deployment Under Partial Information

Dynamic Network Security Deployment Uner Partial nformation nvite Paper) George Theoorakopoulos EPFL Lausanne, Switzerlan Email: george.theoorakopoulos @ epfl.ch John S. Baras University of Marylan College

Math 53 Worksheet Solutions- Minmax and Lagrange

Math 5 Worksheet Solutions- Minmax and Lagrange. Find the local maximum and minimum values as well as the saddle point(s) of the function f(x, y) = e y (y x ). Solution. First we calculate the partial

Factor and Solve Polynomial Equations. In Chapter 4, you learned how to factor the following types of quadratic expressions.

5.4 Factor and Solve Polynomial Equations Before You factored and solved quadratic equations. Now You will factor and solve other polynomial equations. Why? So you can find dimensions of archaeological

Parameterized Algorithms for d-hitting Set: the Weighted Case Henning Fernau. Univ. Trier, FB 4 Abteilung Informatik 54286 Trier, Germany

Parameterize Algorithms for -Hitting Set: the Weighte Case Henning Fernau Trierer Forschungsberichte; Trier: Technical Reports Informatik / Mathematik No. 08-6, July 2008 Univ. Trier, FB 4 Abteilung Informatik

5.1 FACTORING OUT COMMON FACTORS

C H A P T E R 5 Factoring he sport of skydiving was born in the 1930s soon after the military began using parachutes as a means of deploying troops. T Today, skydiving is a popular sport around the world.

Chapter 7. Functions and onto. 7.1 Functions

Chapter 7 Functions and onto This chapter covers functions, including function composition and what it means for a function to be onto. In the process, we ll see what happens when two dissimilar quantifiers

x 2 x 2 cos 1 x x2, lim 1. If x > 0, multiply all three parts by x > 0, we get: x x cos 1 x x, lim lim x cos 1 lim = 5 lim sin 5x

Homework 4 3.4,. Show that x x cos x x holds for x 0. Solution: Since cos x, multiply all three parts by x > 0, we get: x x cos x x, and since x 0 x x 0 ( x ) = 0, then by Sandwich theorem, we get: x 0

Erasure Codes Made So Simple, You ll Really Like Them

Erasure Codes Made So Simple, You ll Really Like Them W. David Schwaderer August 7, 214 schwaderer_1@comcast.net Santa Clara, CA 1 Agenda Errors Versus Erasures HDD Bit Error Rate Implications RAID 4,

Digital barrier option contract with exponential random time

IMA Journal of Applie Mathematics Avance Access publishe June 9, IMA Journal of Applie Mathematics ) Page of 9 oi:.93/imamat/hxs3 Digital barrier option contract with exponential ranom time Doobae Jun

INTERPOLATION. Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y).

INTERPOLATION Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y). As an example, consider defining and x 0 =0, x 1 = π 4, x

3.6 The Real Zeros of a Polynomial Function

SECTION 3.6 The Real Zeros of a Polynomial Function 219 3.6 The Real Zeros of a Polynomial Function PREPARING FOR THIS SECTION Before getting started, review the following: Classification of Numbers (Appendix,

Approximating functions by Taylor Polynomials.

Chapter 4 Approximating functions by Taylor Polynomials. 4.1 Linear Approximations We have already seen how to approximate a function using its tangent line. This was the key idea in Euler s method. If

SPECIAL PRODUCTS AND FACTORS

CHAPTER 442 11 CHAPTER TABLE OF CONTENTS 11-1 Factors and Factoring 11-2 Common Monomial Factors 11-3 The Square of a Monomial 11-4 Multiplying the Sum and the Difference of Two Terms 11-5 Factoring the

Zeros of Polynomial Functions

Review: Synthetic Division Find (x 2-5x - 5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 3-5x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 3-5x 2 + x + 2. Zeros of Polynomial Functions Introduction

Factoring Methods. Example 1: 2x + 2 2 * x + 2 * 1 2(x + 1)

Factoring Methods When you are trying to factor a polynomial, there are three general steps you want to follow: 1. See if there is a Greatest Common Factor 2. See if you can Factor by Grouping 3. See if

Course Notes for Math 162: Mathematical Statistics Approximation Methods in Statistics

Course Notes for Math 16: Mathematical Statistics Approximation Methods in Statistics Adam Merberg and Steven J. Miller August 18, 6 Abstract We introduce some of the approximation methods commonly used

IEOR 6711: Stochastic Models, I Fall 2012, Professor Whitt, Final Exam SOLUTIONS

IEOR 6711: Stochastic Models, I Fall 2012, Professor Whitt, Final Exam SOLUTIONS There are four questions, each with several parts. 1. Customers Coming to an Automatic Teller Machine (ATM) (30 points)

Predicate Logic. Example: All men are mortal. Socrates is a man. Socrates is mortal.

Predicate Logic Example: All men are mortal. Socrates is a man. Socrates is mortal. Note: We need logic laws that work for statements involving quantities like some and all. In English, the predicate is

Mathematics Placement

Mathematics Placement The ACT COMPASS math test is a self-adaptive test, which potentially tests students within four different levels of math including pre-algebra, algebra, college algebra, and trigonometry.

x), etc. In general, we have

BASIC CALCULUS REFRESHER. Introduction. Ismor Fischer, Ph.D. Dept. of Statistics UW-Madison This is a very condensed and simplified version of basic calculus, which is a prerequisite for many courses in

PROBLEM SET 6: POLYNOMIALS

PROBLEM SET 6: POLYNOMIALS 1. introduction In this problem set we will consider polynomials with coefficients in K, where K is the real numbers R, the complex numbers C, the rational numbers Q or any other

2.1 Complexity Classes

15-859(M): Randomized Algorithms Lecturer: Shuchi Chawla Topic: Complexity classes, Identity checking Date: September 15, 2004 Scribe: Andrew Gilpin 2.1 Complexity Classes In this lecture we will look

Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder).

Math 50, Chapter 8 (Page 1 of 20) 8.1 Common Factors Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder). Find all the factors of a. 44 b. 32

Stock Market Value Prediction Using Neural Networks

Stock Market Value Preiction Using Neural Networks Mahi Pakaman Naeini IT & Computer Engineering Department Islamic Aza University Paran Branch e-mail: m.pakaman@ece.ut.ac.ir Hamireza Taremian Engineering