To differentiate logarithmic functions with bases other than e, use


 Eleanore Lyons
 1 years ago
 Views:
Transcription
1 To ifferentiate logarithmic functions with bases other than e, use 1
2 1 To ifferentiate logarithmic functions with bases other than e, use log b m = ln m ln b
3 1 To ifferentiate logarithmic functions with bases other than e, use log b m = ln m ln b Example Fin the erivative of y = log 2 (5x 3 ).
4 1 To ifferentiate logarithmic functions with bases other than e, use log b m = ln m ln b Example Fin the erivative of y = log 2 (5x 3 ). Solution y x = x ( ) ln 5x 3 ln 2
5 1 To ifferentiate logarithmic functions with bases other than e, use log b m = ln m ln b Example Fin the erivative of y = log 2 (5x 3 ). Solution y x = x ( ) ln 5x 3 ln 2 = x ( 1 ln 2 ln 5x3 )
6 1 To ifferentiate logarithmic functions with bases other than e, use log b m = ln m ln b Example Fin the erivative of y = log 2 (5x 3 ). Solution y x = x ( ) ln 5x 3 ln 2 = x ( 1 ln 2 ln 5x3 ) = 1 ln 2 (ln ln x) x properties of log
7 1 To ifferentiate logarithmic functions with bases other than e, use log b m = ln m ln b Example Fin the erivative of y = log 2 (5x 3 ). Solution y x = x ( ) ln 5x 3 ln 2 = x ( 1 ln 2 ln 5x3 ) = = 1 ln 2 1 ln 2 (ln ln x) x ( ) x properties of log
8 1 To ifferentiate logarithmic functions with bases other than e, use log b m = ln m ln b Example Fin the erivative of y = log 2 (5x 3 ). Solution y x = x ( ) ln 5x 3 ln 2 = x ( 1 ln 2 ln 5x3 ) = = 1 ln 2 1 ln 2 (ln ln x) x ( ) x properties of log = 3 x ln 2
9 2 Exponential functions of other bases To ifferentiate f (x) = b x where b e
10 2 Exponential functions of other bases To ifferentiate f (x) = b x where b e Metho 1 Express b x using exponential with base e. Metho 2 Use a technique calle logarithmic ifferentiation.
11 2 Exponential functions of other bases To ifferentiate f (x) = b x where b e Metho 1 Express b x using exponential with base e. y = b x Metho 2 Use a technique calle logarithmic ifferentiation.
12 2 Exponential functions of other bases To ifferentiate f (x) = b x where b e Metho 1 Express b x using exponential with base e. y = b x ln y = ln b x = x ln b Metho 2 Use a technique calle logarithmic ifferentiation.
13 2 Exponential functions of other bases To ifferentiate f (x) = b x where b e Metho 1 Express b x using exponential with base e. y = b x ln y = ln b x = x ln b (ln b)x y = e Metho 2 Use a technique calle logarithmic ifferentiation.
14 2 Exponential functions of other bases To ifferentiate f (x) = b x where b e Metho 1 Express b x using exponential with base e. y = b x ln y = ln b x = x ln b (ln b)x y = e Metho 2 Use a technique calle logarithmic ifferentiation. Both methos nee chain rule.
15 3 Chapter 9: More Differentiation Chain Rule Implicit Differentiation More Curve Sketching More Extremum Problems Objectives To use Chain Rule to o ifferentiation. To use Implicit Differentiation to fin y x. To apply ifferentiation.
16 4 Up to this moment, can ifferentiate simple functions like (1) f (x) = x (2) f (x) = x 1 x + 1 (3) f (x) = sin x (4) f (x) = e x + 2 tan x (5) f (x) = ln x cos x ex x using simple rules an formulas erive in the last few chapters.
17 5 How about (1) g(x) = sin(x 2 )? (2) g(x) = e x2 +1? (3) g(x) = ln(1 + 2x)?
18 5 How about (1) g(x) = sin(x 2 )? (2) g(x) = e x2 +1? (3) g(x) = ln(1 + 2x)? Nee the chain rule most important rule for fining erivatives, use for ifferentiating composite functions.
19 5 How about (1) g(x) = sin(x 2 )? g(x) = sin f (x) where f (x) = x 2 (2) g(x) = e x2 +1? (3) g(x) = ln(1 + 2x)? Nee the chain rule most important rule for fining erivatives, use for ifferentiating composite functions.
20 5 How about (1) g(x) = sin(x 2 )? g(x) = sin f (x) where f (x) = x 2 (2) g(x) = e x2 +1? g(x) = e f (x) where f (x) = x (3) g(x) = ln(1 + 2x)? Nee the chain rule most important rule for fining erivatives, use for ifferentiating composite functions.
21 5 How about (1) g(x) = sin(x 2 )? g(x) = sin f (x) where f (x) = x 2 (2) g(x) = e x2 +1? g(x) = e f (x) where f (x) = x (3) g(x) = ln(1 + 2x)? g(x) = ln f (x) where f (x) = 1 + 2x Nee the chain rule most important rule for fining erivatives, use for ifferentiating composite functions.
22 Composition of Functions Recall (g f )(x) = g ( f (x) ) 6
23 6 Composition of Functions Recall (g f )(x) = g ( f (x) ) Example Let f (x) = sin x an g(x) = x 2. Fin (1) ( f g)(x) (2) (g f )(x)
24 6 Composition of Functions Recall (g f )(x) = g ( f (x) ) Example Let f (x) = sin x an g(x) = x 2. Fin (1) ( f g)(x) Solution ( f g)(x) = f ( g(x) ) (2) (g f )(x)
25 6 Composition of Functions Recall (g f )(x) = g ( f (x) ) Example Let f (x) = sin x an g(x) = x 2. Fin (1) ( f g)(x) Solution ( f g)(x) = f ( g(x) ) = f (x 2 ) (2) (g f )(x)
26 6 Composition of Functions Recall (g f )(x) = g ( f (x) ) Example Let f (x) = sin x an g(x) = x 2. Fin (1) ( f g)(x) Solution ( f g)(x) = f ( g(x) ) = f (x 2 ) = sin(x 2 ) = sin x 2 (2) (g f )(x)
27 6 Composition of Functions Recall (g f )(x) = g ( f (x) ) Example Let f (x) = sin x an g(x) = x 2. Fin (1) ( f g)(x) Solution ( f g)(x) = f ( g(x) ) = f (x 2 ) = sin(x 2 ) = sin x 2 (2) (g f )(x) Solution (g f )(x) = g ( f (x) )
28 6 Composition of Functions Recall (g f )(x) = g ( f (x) ) Example Let f (x) = sin x an g(x) = x 2. Fin (1) ( f g)(x) Solution ( f g)(x) = f ( g(x) ) = f (x 2 ) = sin(x 2 ) = sin x 2 (2) (g f )(x) Solution (g f )(x) = g ( f (x) ) = g(sin x)
29 6 Composition of Functions Recall (g f )(x) = g ( f (x) ) Example Let f (x) = sin x an g(x) = x 2. Fin (1) ( f g)(x) Solution ( f g)(x) = f ( g(x) ) = f (x 2 ) = sin(x 2 ) = sin x 2 (2) (g f )(x) Solution (g f )(x) = g ( f (x) ) = g(sin x) = (sin x) 2 = sin 2 x
30 7 Composition of Functions Recall (g f )(x) = g ( f (x) ) Example Express e x2 +1 as composition of two functions.
31 7 Composition of Functions Recall (g f )(x) = g ( f (x) ) Example Express e x2 +1 as composition of two functions. Solution Let f (x) = x an
32 7 Composition of Functions Recall (g f )(x) = g ( f (x) ) Example Express e x2 +1 as composition of two functions. Solution Let f (x) = x an e x2 +1 = e f (x)
33 7 Composition of Functions Recall (g f )(x) = g ( f (x) ) Example Express e x2 +1 as composition of two functions. Solution Let f (x) = x an g(x) = e x. Then e x2 +1 = e f (x)
34 7 Composition of Functions Recall (g f )(x) = g ( f (x) ) Example Express e x2 +1 as composition of two functions. Solution Let f (x) = x an g(x) = e x. Then e x2 +1 = e f (x) = g ( f (x) )
35 8 Chain Rule If y is a ifferentiable function of u an u is a ifferentiable function of x, then y is a ifferentiable function of x an
36 8 Chain Rule If y is a ifferentiable function of u an u is a ifferentiable function of x, then y is a ifferentiable function of x an y x = y u u x
37 8 Chain Rule If y is a ifferentiable function of u an u is a ifferentiable function of x, then y is a ifferentiable function of x an y x = y u u x Iea of proof y x = lim x 0 y x lim h 0 f (x + h) f (x) h
38 8 Chain Rule If y is a ifferentiable function of u an u is a ifferentiable function of x, then y is a ifferentiable function of x an y x = y u u x Iea of proof y x = lim x 0 y x lim h 0 f (x + h) f (x) h ( y = lim x 0 u u ) x
39 8 Chain Rule If y is a ifferentiable function of u an u is a ifferentiable function of x, then y is a ifferentiable function of x an y x = y u u x Iea of proof y x = lim x 0 y x lim h 0 f (x + h) f (x) h ( y = lim x 0 u u ) x = lim u 0 y u lim x 0 u x
40 8 Chain Rule If y is a ifferentiable function of u an u is a ifferentiable function of x, then y is a ifferentiable function of x an y x = y u u x Iea of proof y x = lim x 0 y x lim h 0 f (x + h) f (x) h ( y = lim x 0 u u ) x = lim u 0 = y u u x y u lim x 0 u x
41 9 Chain Rule in alternative form Put y = f (u) an u = g(x).
42 9 Chain Rule in alternative form Put y = f (u) an u = g(x). Then y = ( f g)(x) (composition of functions)
43 9 Chain Rule in alternative form Put y = f (u) an u = g(x). Then y = ( f g)(x) (composition of functions) ( f g) (x) = y x
44 9 Chain Rule in alternative form Put y = f (u) an u = g(x). Then y = ( f g)(x) (composition of functions) ( f g) (x) = y x = y u u x
45 9 Chain Rule in alternative form Put y = f (u) an u = g(x). Then y = ( f g)(x) (composition of functions) ( f g) (x) = y x = y u u x = f (u) g (x)
46 9 Chain Rule in alternative form Put y = f (u) an u = g(x). Then y = ( f g)(x) (composition of functions) ( f g) (x) = y x = y u u x = f (u) g (x) ( f g) (x) = f ( g(x) ) g (x)
47 10 Example Fin x (x2 + 5) 3 (1) without using chain rule; (2) using chain rule.
48 10 Example Fin x (x2 + 5) 3 (1) without using chain rule; (2) using chain rule. Solution (1) (without chain rule) Expaning (x 2 + 5) 3 = (x 2 ) 3 + 3(x 2 ) 2 (5) + 3(x 2 )(5 2 ) = x x x
49 10 Example Fin x (x2 + 5) 3 (1) without using chain rule; (2) using chain rule. Solution (1) (without chain rule) Expaning (x 2 + 5) 3 = (x 2 ) 3 + 3(x 2 ) 2 (5) + 3(x 2 )(5 2 ) Differentiating term by term: = x x x x (x2 + 5) 3 = x (x6 + 15x x ) = 6x x x = 6x x x
50 11 Example Fin x (x2 + 5) 3 (2) using chain rule. Solution (2) (using chain rule)
51 11 Example Fin x (x2 + 5) 3 (2) using chain rule. Solution (2) (using chain rule) Put u = x 2 + 5
52 11 Example Fin x (x2 + 5) 3 (2) using chain rule. Solution (2) (using chain rule) Put u = x an y = u 3.
53 11 Example Fin x (x2 + 5) 3 (2) using chain rule. Solution (2) (using chain rule) Put u = x an y = u 3. Then y = (x 2 + 5) 3.
54 11 Example Fin x (x2 + 5) 3 (2) using chain rule. Solution (2) (using chain rule) Put u = x an y = u 3. Then y = (x 2 + 5) 3. x (x2 + 5) 3 = y x
55 11 Example Fin x (x2 + 5) 3 (2) using chain rule. Solution (2) (using chain rule) Put u = x an y = u 3. Then y = (x 2 + 5) 3. x (x2 + 5) 3 = y x = y u u x chain rule
56 11 Example Fin x (x2 + 5) 3 (2) using chain rule. Solution (2) (using chain rule) Put u = x an y = u 3. Then y = (x 2 + 5) 3. x (x2 + 5) 3 = y x = y u u x = u u3 x (x2 + 5) chain rule
57 11 Example Fin x (x2 + 5) 3 (2) using chain rule. Solution (2) (using chain rule) Put u = x an y = u 3. Then y = (x 2 + 5) 3. x (x2 + 5) 3 = y x = y u u x = u u3 = 3u 2 2x x (x2 + 5) chain rule
58 11 Example Fin x (x2 + 5) 3 (2) using chain rule. Solution (2) (using chain rule) Put u = x an y = u 3. Then y = (x 2 + 5) 3. x (x2 + 5) 3 = y x = y u u x = u u3 = 3u 2 2x x (x2 + 5) = 3(x 2 + 5) 2 (2x) chain rule
59 11 Example Fin x (x2 + 5) 3 (2) using chain rule. Solution (2) (using chain rule) Put u = x an y = u 3. Then y = (x 2 + 5) 3. x (x2 + 5) 3 = y x = y u u x = u u3 = 3u 2 2x x (x2 + 5) = 3(x 2 + 5) 2 (2x) = 6x(x 2 + 5) 2 chain rule
60 Metho 1 Answer is 6x x x Metho 2 Answer is 6x(x 2 + 5) 2 12 Remark 1 The above two results are the same.
61 Metho 1 Answer is 6x x x Metho 2 Answer is 6x(x 2 + 5) 2 12 Remark 1 The above two results are the same. Remark 2 If change the function to y = (x 2 + 5) 1 3, first metho can t be applie.
62 Metho 1 Answer is 6x x x Metho 2 Answer is 6x(x 2 + 5) 2 12 Remark 1 The above two results are the same. Remark 2 If change the function to y = (x 2 + 5) 1 3, first metho can t be applie. Metho 1 (x 2 + 5) 3 = (x 2 ) 3 + 3(x 2 ) 2 (5) + 3(x 2 )(5 2 ) + 5 3
63 Metho 1 Answer is 6x x x Metho 2 Answer is 6x(x 2 + 5) 2 12 Remark 1 The above two results are the same. Remark 2 If change the function to y = (x 2 + 5) 3, 1 first metho can t be applie. Metho 1 (x 2 + 5) 3 = (x 2 ) 3 + 3(x 2 ) 2 (5) + 3(x 2 )(5 2 ) (x 2 + 5) 1 3 no way to expan
64 Metho 1 Answer is 6x x x Metho 2 Answer is 6x(x 2 + 5) 2 12 Remark 1 The above two results are the same. Remark 2 If change the function to y = (x 2 + 5) 3, 1 first metho can t be applie. Metho 1 (x 2 + 5) 3 = (x 2 ) 3 + 3(x 2 ) 2 (5) + 3(x 2 )(5 2 ) (x 2 + 5) 1 3 no way to expan Metho 2 Put u = x an y = u 3. Then y = (x 2 + 5) 3.
65 Metho 1 Answer is 6x x x Metho 2 Answer is 6x(x 2 + 5) 2 12 Remark 1 The above two results are the same. Remark 2 If change the function to y = (x 2 + 5) 3, 1 first metho can t be applie. Metho 1 (x 2 + 5) 3 = (x 2 ) 3 + 3(x 2 ) 2 (5) + 3(x 2 )(5 2 ) (x 2 + 5) 1 3 no way to expan Metho 2 Put u = x an y = u 3. Then y = (x 2 + 5) 3. Put u = x an y = u 1 3. Then y = (x 2 + 5) 3. 1
66 Metho 1 Answer is 6x x x 12 Metho 2 Answer is 6x(x 2 + 5) 2 Remark 1 The above two results are the same. Remark 2 If change the function to y = (x 2 + 5) 3, 1 first metho can t be applie. Metho 1 (x 2 + 5) 3 = (x 2 ) 3 + 3(x 2 ) 2 (5) + 3(x 2 )(5 2 ) (x 2 + 5) 1 3 no way to expan Metho 2 Put u = x an y = u 3. Then y = (x 2 + 5) 3. Put u = x an y = u 1 3. Then y = (x 2 + 5) 3. 1 Secon metho makes use of the chain rule together with the power rule.
67 13 Simple Form x xr = rx r 1 x x sin x = cos x cos x = sin x x tan x = sec2 x x ex = e x x ln x = 1 x General Form x [ f (x)]r = r[ f (x)] r 1 x f (x) x sin[ f (x)] = cos[ f (x)] x f (x) x cos[ f (x)] = sin[ f (x)] x f (x) x tan[ f (x)] = sec2 [ f (x)] x x e f (x) = e f (x) ln[ f (x)] = 1 f (x) x f (x) x f (x) x f (x)
68 14 (3) x cos[ f (x)] = sin[ f (x)] x f (x) Proof
69 14 (3) x cos[ f (x)] = sin[ f (x)] x f (x) Proof Put u = f (x) an y = cos u.
70 14 (3) Proof x cos[ f (x)] = sin[ f (x)] x f (x) Put u = f (x) an y = cos u. Then y = cos f (x) an so
71 14 (3) Proof x cos[ f (x)] = sin[ f (x)] x f (x) Put u = f (x) an y = cos u. Then y = cos f (x) an so y cos[ f (x)] = x x
72 14 (3) Proof x cos[ f (x)] = sin[ f (x)] x f (x) Put u = f (x) an y = cos u. Then y = cos f (x) an so y cos[ f (x)] = x x = y u u x chain rule
73 14 (3) Proof x cos[ f (x)] = sin[ f (x)] x f (x) Put u = f (x) an y = cos u. Then y = cos f (x) an so y cos[ f (x)] = x x = y u u x = u cos u u x chain rule
74 14 (3) Proof x cos[ f (x)] = sin[ f (x)] x f (x) Put u = f (x) an y = cos u. Then y = cos f (x) an so y cos[ f (x)] = x x = y u u x = u cos u u x = sin u u x chain rule
75 14 (3) Proof x cos[ f (x)] = sin[ f (x)] x f (x) Put u = f (x) an y = cos u. Then y = cos f (x) an so y cos[ f (x)] = x x = y u u x = u cos u u x = sin u u x = sin[ f (x)] chain rule x f (x)
76 15 (6) x ln[ f (x)] = 1 f (x) x f (x) Proof
77 15 (6) x ln[ f (x)] = 1 f (x) x f (x) Proof Put u = f (x) an y = ln u.
78 15 (6) x ln[ f (x)] = 1 f (x) x f (x) Proof Put u = f (x) an y = ln u. Then y = ln f (x) an so
79 15 (6) x ln[ f (x)] = 1 f (x) x f (x) Proof Put u = f (x) an y = ln u. Then y = ln f (x) an so y ln[ f (x)] = x x
80 15 (6) x ln[ f (x)] = 1 f (x) x f (x) Proof Put u = f (x) an y = ln u. Then y = ln f (x) an so y ln[ f (x)] = x x = y u u x chain rule
81 15 (6) x ln[ f (x)] = 1 f (x) x f (x) Proof Put u = f (x) an y = ln u. Then y = ln f (x) an so y ln[ f (x)] = x x = y u u x = u ln u u x chain rule
82 15 (6) x ln[ f (x)] = 1 f (x) x f (x) Proof Put u = f (x) an y = ln u. Then y = ln f (x) an so y ln[ f (x)] = x x = y u u x = u = 1 u u x ln u u x chain rule
83 15 (6) x ln[ f (x)] = 1 f (x) x f (x) Proof Put u = f (x) an y = ln u. Then y = ln f (x) an so y ln[ f (x)] = x x = y u u x = u = 1 u u x = 1 f (x) ln u u x x f (x) chain rule
84 16 Simple Form General Form x xr = rx r 1
85 16 Simple Form x xr = rx r 1 General Form x [ f (x)]r = r[ f (x)] r 1 x f (x)
86 16 Simple Form x xr = rx r 1 x sin x = cos x General Form x [ f (x)]r = r[ f (x)] r 1 x f (x)
87 16 Simple Form x xr = rx r 1 x sin x = cos x General Form x [ f (x)]r = r[ f (x)] r 1 x sin[ f (x)] = x f (x)
88 16 Simple Form x xr = rx r 1 x sin x = cos x General Form x [ f (x)]r = r[ f (x)] r 1 x f (x) x sin[ f (x)] = cos[ f (x)] x f (x)
89 16 Simple Form x xr = rx r 1 x x sin x = cos x cos x = sin x General Form x [ f (x)]r = r[ f (x)] r 1 x f (x) x sin[ f (x)] = cos[ f (x)] x f (x)
90 16 Simple Form x xr = rx r 1 x x sin x = cos x cos x = sin x General Form x [ f (x)]r = r[ f (x)] r 1 x f (x) x sin[ f (x)] = cos[ f (x)] x f (x) x cos[ f (x)] =
91 16 Simple Form x xr = rx r 1 x x sin x = cos x cos x = sin x General Form x [ f (x)]r = r[ f (x)] r 1 x f (x) x sin[ f (x)] = cos[ f (x)] x f (x) x cos[ f (x)] = sin[ f (x)] x f (x)
92 16 Simple Form x xr = rx r 1 x x sin x = cos x cos x = sin x x tan x = sec2 x General Form x [ f (x)]r = r[ f (x)] r 1 x f (x) x sin[ f (x)] = cos[ f (x)] x f (x) x cos[ f (x)] = sin[ f (x)] x f (x)
93 16 Simple Form x xr = rx r 1 x x sin x = cos x cos x = sin x x tan x = sec2 x General Form x [ f (x)]r = r[ f (x)] r 1 x f (x) x sin[ f (x)] = cos[ f (x)] x f (x) x cos[ f (x)] = sin[ f (x)] x f (x) x tan[ f (x)] =
94 16 Simple Form x xr = rx r 1 x x sin x = cos x cos x = sin x x tan x = sec2 x General Form x [ f (x)]r = r[ f (x)] r 1 x f (x) x sin[ f (x)] = cos[ f (x)] x f (x) x cos[ f (x)] = sin[ f (x)] x f (x) x tan[ f (x)] = sec2 [ f (x)] x f (x)
95 16 Simple Form x xr = rx r 1 x x sin x = cos x cos x = sin x x tan x = sec2 x x ex = e x General Form x [ f (x)]r = r[ f (x)] r 1 x f (x) x sin[ f (x)] = cos[ f (x)] x f (x) x cos[ f (x)] = sin[ f (x)] x f (x) x tan[ f (x)] = sec2 [ f (x)] x f (x)
96 16 Simple Form x xr = rx r 1 x x sin x = cos x cos x = sin x x tan x = sec2 x x ex = e x General Form x [ f (x)]r = r[ f (x)] r 1 x f (x) x sin[ f (x)] = cos[ f (x)] x f (x) x cos[ f (x)] = sin[ f (x)] x f (x) x tan[ f (x)] = sec2 [ f (x)] x e f (x) = x f (x)
97 16 Simple Form x xr = rx r 1 x x sin x = cos x cos x = sin x x tan x = sec2 x x ex = e x General Form x [ f (x)]r = r[ f (x)] r 1 x f (x) x sin[ f (x)] = cos[ f (x)] x f (x) x cos[ f (x)] = sin[ f (x)] x f (x) x tan[ f (x)] = sec2 [ f (x)] x e f (x) = e f (x) x f (x) x f (x)
98 16 Simple Form x xr = rx r 1 x x sin x = cos x cos x = sin x x tan x = sec2 x x ex = e x x ln x = 1 x General Form x [ f (x)]r = r[ f (x)] r 1 x f (x) x sin[ f (x)] = cos[ f (x)] x f (x) x cos[ f (x)] = sin[ f (x)] x f (x) x tan[ f (x)] = sec2 [ f (x)] x e f (x) = e f (x) x f (x) x f (x)
99 16 Simple Form x xr = rx r 1 x x sin x = cos x cos x = sin x x tan x = sec2 x x ex = e x x ln x = 1 x General Form x [ f (x)]r = r[ f (x)] r 1 x f (x) x sin[ f (x)] = cos[ f (x)] x f (x) x cos[ f (x)] = sin[ f (x)] x f (x) x tan[ f (x)] = sec2 [ f (x)] x x e f (x) = e f (x) ln[ f (x)] = x f (x) x f (x)
100 16 Simple Form x xr = rx r 1 x x sin x = cos x cos x = sin x x tan x = sec2 x x ex = e x x ln x = 1 x General Form x [ f (x)]r = r[ f (x)] r 1 x f (x) x sin[ f (x)] = cos[ f (x)] x f (x) x cos[ f (x)] = sin[ f (x)] x f (x) x tan[ f (x)] = sec2 [ f (x)] x x e f (x) = e f (x) ln[ f (x)] = 1 f (x) x f (x) x f (x) x f (x)
101 17 Example Fin y x for the following: (1) y = sin(x 2 + 1) (2) y = e x3 +2 (3) y = ln(x 4 3x + 2) (4) y = e x5 +tan x 5 (5) y = ln[sin 2 (2x + 3)] (6) y = 1 (x 2 3e4x+1 + 3) 40 (7) y = e x+1 ln(x 2 + 1)
102 18 Example Fin y x for the following: (1) y = sin(x 2 + 1)
103 18 Example Fin y x for the following: (1) y = sin(x 2 + 1) Solution y x = x sin(x2 + 1)
104 18 Example Fin y x for the following: (1) y = sin(x 2 + 1) Solution y x = x sin(x2 + 1) = cos(x 2 + 1) x (x2 + 1)
105 18 Example Fin y x for the following: (1) y = sin(x 2 + 1) Solution y x = x sin(x2 + 1) = cos(x 2 + 1) = 2x cos(x 2 + 1) x (x2 + 1)
106 18 Example Fin y x for the following: (1) y = sin(x 2 + 1) Solution (2) y = e x3 +2 y x = x sin(x2 + 1) = cos(x 2 + 1) = 2x cos(x 2 + 1) x (x2 + 1)
107 18 Example Fin y x for the following: (1) y = sin(x 2 + 1) Solution (2) y = e x3 +2 Solution y x y x = x sin(x2 + 1) = cos(x 2 + 1) = 2x cos(x 2 + 1) = x ex3 +2 x (x2 + 1)
108 18 Example Fin y x for the following: (1) y = sin(x 2 + 1) Solution (2) y = e x3 +2 Solution y x y x = x sin(x2 + 1) = cos(x 2 + 1) = 2x cos(x 2 + 1) = x ex3 +2 = e x3 +2 x (x3 + 2) x (x2 + 1)
109 18 Example Fin y x for the following: (1) y = sin(x 2 + 1) Solution (2) y = e x3 +2 Solution y x y x = x sin(x2 + 1) = cos(x 2 + 1) = 2x cos(x 2 + 1) = x ex3 +2 = e x3 +2 = 3x 2 e x3 +2 x (x3 + 2) x (x2 + 1)
110 Example Fin y x for the following: 19 (3) y = ln(x 4 3x + 2)
111 Example Fin y x for the following: 19 (3) y = ln(x 4 3x + 2) Solution y x = x ln(x4 3x + 2)
112 Example Fin y x for the following: 19 (3) y = ln(x 4 3x + 2) Solution y x = x ln(x4 3x + 2) = 1 x 4 3x + 2 x (x4 3x + 2)
113 Example Fin y x for the following: 19 (3) y = ln(x 4 3x + 2) Solution y x = x ln(x4 3x + 2) = 1 x 4 3x + 2 x (x4 3x + 2) = 4x 3 3 x 4 3x + 2
114 Example Fin y x for the following: 19 (3) y = ln(x 4 3x + 2) Solution y x = x ln(x4 3x + 2) = 1 x 4 3x + 2 x (x4 3x + 2) = 4x 3 3 x 4 3x + 2 (4) y = e x5 +tan x 5
115 Example Fin y x for the following: 19 (3) y = ln(x 4 3x + 2) Solution y x = x ln(x4 3x + 2) = 1 x 4 3x + 2 x (x4 3x + 2) = 4x 3 3 x 4 3x + 2 (4) y = e x5 +tan x 5 Solution y x = x ex5 +tan x 5
116 Example Fin y x for the following: 19 (3) y = ln(x 4 3x + 2) Solution y x = x ln(x4 3x + 2) = 1 x 4 3x + 2 x (x4 3x + 2) = 4x 3 3 x 4 3x + 2 (4) y = e x5 +tan x 5 Solution y x = x ex5 +tan x 5 = e x5 +tan x 5 x (x5 + tan x 5 )
117 Example Fin y x for the following: 19 (3) y = ln(x 4 3x + 2) Solution y x = x ln(x4 3x + 2) = 1 x 4 3x + 2 x (x4 3x + 2) = 4x 3 3 x 4 3x + 2 (4) y = e x5 +tan x 5 Solution y x = x ex5 +tan x 5 = e x5 +tan x 5 x (x5 + tan x 5 ) = e x5 +tan x 5 (5x 4 + x tan (x5 ) o in your hea)
118 Example Fin y x for the following: 19 (3) y = ln(x 4 3x + 2) Solution y x = x ln(x4 3x + 2) = 1 x 4 3x + 2 x (x4 3x + 2) = 4x 3 3 x 4 3x + 2 (4) y = e x5 +tan x 5 Solution y x = x ex5 +tan x 5 = e x5 +tan x 5 x (x5 + tan x 5 ) = e x5 +tan x 5 (5x 4 + x tan (x5 ) o in your hea) = e x5 +tan x 5 (5x 4 + sec 2 x 5 x x5 )
119 Example Fin y x for the following: 19 (3) y = ln(x 4 3x + 2) Solution y x = x ln(x4 3x + 2) = 1 x 4 3x + 2 x (x4 3x + 2) = 4x 3 3 x 4 3x + 2 (4) y = e x5 +tan x 5 Solution y x = x ex5 +tan x 5 = e x5 +tan x 5 x (x5 + tan x 5 ) = e x5 +tan x 5 (5x 4 + x tan (x5 ) o in your hea) = e x5 +tan x 5 (5x 4 + sec 2 x 5 x x5 ) = e x5 +tan x 5 (5x 4 + 5x 4 sec 2 x 5 )
120 Example Fin y x for the following: 19 (3) y = ln(x 4 3x + 2) Solution y x = x ln(x4 3x + 2) = 1 x 4 3x + 2 x (x4 3x + 2) = 4x 3 3 x 4 3x + 2 (4) y = e x5 +tan x 5 Solution y x = x ex5 +tan x 5 = e x5 +tan x 5 x (x5 + tan x 5 ) = e x5 +tan x 5 (5x 4 + x tan (x5 ) o in your hea) = e x5 +tan x 5 (5x 4 + sec 2 x 5 x x5 ) = e x5 +tan x 5 (5x 4 + 5x 4 sec 2 x 5 ) = 5x 4 (1 + sec 2 x 5 )e x5 +tan x 5
Approximating functions by Taylor Polynomials.
Chapter 4 Approximating functions by Taylor Polynomials. 4.1 Linear Approximations We have already seen how to approximate a function using its tangent line. This was the key idea in Euler s method. If
More informationIntroduction to Differential Calculus. Christopher Thomas
Mathematics Learning Centre Introduction to Differential Calculus Christopher Thomas c 1997 University of Sydney Acknowledgements Some parts of this booklet appeared in a similar form in the booklet Review
More informationx 2 if 2 x < 0 4 x if 2 x 6
Piecewisedefined Functions Example Consider the function f defined by x if x < 0 f (x) = x if 0 x < 4 x if x 6 Piecewisedefined Functions Example Consider the function f defined by x if x < 0 f (x) =
More informationMEP Y9 Practice Book A
1 Base Arithmetic 1.1 Binary Numbers We normally work with numbers in base 10. In this section we consider numbers in base 2, often called binary numbers. In base 10 we use the digits 0, 1, 2, 3, 4, 5,
More informationx 2 x 2 cos 1 x x2, lim 1. If x > 0, multiply all three parts by x > 0, we get: x x cos 1 x x, lim lim x cos 1 lim = 5 lim sin 5x
Homework 4 3.4,. Show that x x cos x x holds for x 0. Solution: Since cos x, multiply all three parts by x > 0, we get: x x cos x x, and since x 0 x x 0 ( x ) = 0, then by Sandwich theorem, we get: x 0
More informationYou know from calculus that functions play a fundamental role in mathematics.
CHPTER 12 Functions You know from calculus that functions play a fundamental role in mathematics. You likely view a function as a kind of formula that describes a relationship between two (or more) quantities.
More informationhow to use dual base log log slide rules
how to use dual base log log slide rules by Professor Maurice L. Hartung The University of Chicago Pickett The World s Most Accurate Slide Rules Pickett, Inc. Pickett Square Santa Barbara, California 93102
More informationMUSTHAVE MATH TOOLS FOR GRADUATE STUDY IN ECONOMICS
MUSTHAVE MATH TOOLS FOR GRADUATE STUDY IN ECONOMICS William Neilson Department of Economics University of Tennessee Knoxville September 29 289 by William Neilson web.utk.edu/~wneilson/mathbook.pdf Acknowledgments
More informationGuide for Texas Instruments TI83, TI83 Plus, or TI84 Plus Graphing Calculator
Guide for Texas Instruments TI83, TI83 Plus, or TI84 Plus Graphing Calculator This Guide is designed to offer stepbystep instruction for using your TI83, TI83 Plus, or TI84 Plus graphing calculator
More informationMatthias Beck Gerald Marchesi Dennis Pixton Lucas Sabalka
Matthias Beck Gerald Marchesi Dennis Pixton Lucas Sabalka Version.5 Matthias Beck A First Course in Complex Analysis Version.5 Gerald Marchesi Department of Mathematics Department of Mathematical Sciences
More informationSimple trigonometric substitutions with broad results
Simple trigonometric substitutions with broad results Vardan Verdiyan, Daniel Campos Salas Often, the key to solve some intricate algebraic inequality is to simplify it by employing a trigonometric substitution.
More informationProperties of BMO functions whose reciprocals are also BMO
Properties of BMO functions whose reciprocals are also BMO R. L. Johnson and C. J. Neugebauer The main result says that a nonnegative BMOfunction w, whose reciprocal is also in BMO, belongs to p> A p,and
More informationDoug Ravenel. October 15, 2008
Doug Ravenel University of Rochester October 15, 2008 s about Euclid s Some s about primes that every mathematician should know (Euclid, 300 BC) There are infinitely numbers. is very elementary, and we
More information(0, 0) : order 1; (0, 1) : order 4; (0, 2) : order 2; (0, 3) : order 4; (1, 0) : order 2; (1, 1) : order 4; (1, 2) : order 2; (1, 3) : order 4.
11.01 List the elements of Z 2 Z 4. Find the order of each of the elements is this group cyclic? Solution: The elements of Z 2 Z 4 are: (0, 0) : order 1; (0, 1) : order 4; (0, 2) : order 2; (0, 3) : order
More informationPreliminary Version: December 1998
On the Number of Prime Numbers less than a Given Quantity. (Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse.) Bernhard Riemann [Monatsberichte der Berliner Akademie, November 859.] Translated
More informationRevised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m)
Chapter 23 Squares Modulo p Revised Version of Chapter 23 We learned long ago how to solve linear congruences ax c (mod m) (see Chapter 8). It s now time to take the plunge and move on to quadratic equations.
More information1. Graphing Linear Inequalities
Notation. CHAPTER 4 Linear Programming 1. Graphing Linear Inequalities x apple y means x is less than or equal to y. x y means x is greater than or equal to y. x < y means x is less than y. x > y means
More informationAN INTRODUCTION TO OMINIMAL GEOMETRY. Michel COSTE Institut de Recherche Mathématique de Rennes michel.coste@univrennes1.fr
AN INTRODUCTION TO OMINIMAL GEOMETRY Michel COSTE Institut de Recherche Mathématique de Rennes michel.coste@univrennes1.fr November 1999 Preface These notes have served as a basis for a course in Pisa
More informationA Modern Course on Curves and Surfaces. Richard S. Palais
A Modern Course on Curves and Surfaces Richard S. Palais Contents Lecture 1. Introduction 1 Lecture 2. What is Geometry 4 Lecture 3. Geometry of InnerProduct Spaces 7 Lecture 4. Linear Maps and the Euclidean
More informationCritical points of once continuously differentiable functions are important because they are the only points that can be local maxima or minima.
Lecture 0: Convexity and Optimization We say that if f is a once continuously differentiable function on an interval I, and x is a point in the interior of I that x is a critical point of f if f (x) =
More informationODD PERFECT NUMBERS ARE GREATER THAN 10 1500
MATHEMATICS OF COMPUTATION Volume 00, Number 0, Pages 000 000 S 00255718(XX)00000 ODD PERFECT NUMBERS ARE GREATER THAN 10 1500 PASCAL OCHEM AND MICHAËL RAO Abstract. Brent, Cohen, and te Riele proved
More informationInversion. Chapter 7. 7.1 Constructing The Inverse of a Point: If P is inside the circle of inversion: (See Figure 7.1)
Chapter 7 Inversion Goal: In this chapter we define inversion, give constructions for inverses of points both inside and outside the circle of inversion, and show how inversion could be done using Geometer
More informationWHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?
WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly
More informationWHAT IS '''SIGNIFICANT LEARNING"?
WHAT IS '''SIGNIFICANT LEARNING"? Dr. L. Dee Fink Director, Instructional Development Program University of Oklahoma Author of Creating Significant Learning Experiences (JosseyBass, 2003) One of the first
More informationFast Greeks by algorithmic differentiation
The Journal of Computational Finance (3 35) Volume 14/Number 3, Spring 2011 Fast Greeks by algorithmic differentiation Luca Capriotti Quantitative Strategies, Investment Banking Division, Credit Suisse
More informationThe Backpropagation Algorithm
7 The Backpropagation Algorithm 7. Learning as gradient descent We saw in the last chapter that multilayered networks are capable of computing a wider range of Boolean functions than networks with a single
More informationFoundations of Data Science 1
Foundations of Data Science John Hopcroft Ravindran Kannan Version /4/204 These notes are a first draft of a book being written by Hopcroft and Kannan and in many places are incomplete. However, the notes
More informationHow do we determine which molecule is more basic?
How do we determine which molecule is more basic? One way to determine is by considering molecules structure, because structure can affect basicity of a molecule. Let s start with this concept. Higher
More information= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that
Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without
More information(LMCS, p. 317) V.1. First Order Logic. This is the most powerful, most expressive logic that we will examine.
(LMCS, p. 317) V.1 First Order Logic This is the most powerful, most expressive logic that we will examine. Our version of firstorder logic will use the following symbols: variables connectives (,,,,
More information