# Physics Notes Class 11 CHAPTER 11 THERMAL PROPERTIES OF MATTER

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 1 P a g e Physics Notes Class 11 CHAPTER 11 THERMAL PROPERTIES OF MATTER The branch dealing with measurement of temperature is called thremometry and the devices used to measure temperature are called thermometers. Heat Heat is a form of energy called thermal energy which flows from a higher temperature body to a lower temperature body when they are placed in contact. Heat or thermal energy of a body is the sum of kinetic energies of all its constituent particles, on account of translational, vibrational and rotational motion. The SI unit of heat energy is joule (J). The practical unit of heat energy is calorie. 1 cal = 4.18 J 1 calorie is the quantity of heat required to raise the temperature of 1 g of water by 1 C. Mechanical energy or work (W) can be converted into heat (Q) by 1 W = JQ where J = Joule s mechanical equivalent of heat. J is a conversion factor (not a physical quantity) and its value is J/cal. Temperature Temperature of a body is the degree of hotness or coldness of the body. A device which is used to measure the temperature, is called a thermometer. Highest possible temperature achieved in laboratory is about 108 while lowest possible temperature attained is 10-8 K. Branch of Physics dealing with production and measurement temperature close to 0 K is known as cryagenics, while that deaf with the measurement of very high temperature is called pyromet Temperature of the core of the sun is 107 K while that of its surface 6000 K. NTP or STP implies K (0 C = 32 F). Different Scale of Temperature

2 2 P a g e 1. Celsius Scale In this scale of temperature, the melting point ice is taken as 0 C and the boiling point of water as 100 C and space between these two points is divided into 100 equal parts 2. Fahrenheit Scale In this scale of temperature, the melt point of ice is taken as 32 F and the boiling point of water as 211 and the space between these two points is divided into 180 equal parts. 3. Kelvin Scale In this scale of temperature, the melting pouxl ice is taken as 273 K and the boiling point of water as 373 K the space between these two points is divided into 100 equal pss Relation between Different Scales of Temperatures Thermometric Property The property of an object which changes with temperature, is call thermometric property. Different thermometric properties thermometers have been given below (i) Pressure of a Gas at Constant Volume where p, p 100. and p t, are pressure of a gas at constant volume 0 C, 100 C and t C. A constant volume gas thermometer can measure tempera from 200 C to 500 C. (ii) Electrical Resistance of Metals R t = R 0 (1 + αt + βt 2 ) where α and β are constants for a metal. As β is too small therefore we can take R t = R 0 (1 + αt)

3 3 P a g e where, α = temperature coefficient of resistance and R 0 and R t, are electrical resistances at 0 C and t C. where R 1 and R 2 are electrical resistances at temperatures t 1 and t 2. where R 100 is the resistance at 100 C. Platinum resistance thermometer can measure temperature from 200 C to 1200 C. (iii) Length of Mercury Column in a Capillary Tube l t = l 0 (1 + αt) where α = coefficient of linear expansion and l 0, l t are lengths of mercury column at 0 C and t C. Thermo Electro Motive Force When two junctions of a thermocouple are kept at different temperatures, then a thermo-emf is produced between the junctions, which changes with temperature difference between the junctions. Thermo-emf E = at + bt 2 where a and b are constants for the pair of metals. Unknown temperature of hot junction when cold junction is at 0 C. Where E 100 is the thermo-emf when hot junction is at 100 C. A thermo-couple thermometer can measure temperature from 200 C to 1600 C. Thermal Equilibrium When there is no transfer of heat between two bodies in contact, the the bodies are called in thermal equilibrium.

4 4 P a g e Zeroth Law of Thermodynamics If two bodies A and B are separately in thermal equilibrium with thirtli body C, then bodies A and B will be in thermal equilibrium with each other. Triple Point of Water The values of pressure and temperature at which water coexists inequilibrium in all three states of matter, i.e., ice, water and vapour called triple point of water. Triple point of water is 273 K temperature and 0.46 cm of mere pressure. Specific Heat The amount of heat required to raise the temperature of unit mass the substance through 1 C is called its specific heat. It is denoted by c or s. Its SI unit is joule/kilogram- C'(J/kg- C). Its dimensions is [L 2 T -2 θ -1 ]. The specific heat of water is 4200 J kg -1 C -1 or 1 cal g -1 C -1, which high compared with most other substances. Gases have two types of specific heat 1. The specific heat capacity at constant volume (C v ). 2. The specific heat capacity at constant pressure (C r ). Specific heat at constant pressure (C p ) is greater than specific heat constant volume (C V ), i.e., C p > C V. For molar specific heats C p C V = R where R = gas constant and this relation is called Mayer s formula. The ratio of two principal sepecific heats of a gas is represented by γ. The value of y depends on atomicity of the gas. Amount of heat energy required to change the temperature of any substance is given by Q = mcδt

5 5 P a g e where, m = mass of the substance, c = specific heat of the substance and Δt = change in temperature. Thermal (Heat) Capacity Heat capacity of any body is equal to the amount of heat energy required to increase its temperature through 1 C. Heat capacity = me where c = specific heat of the substance of the body and m = mass of the body. Its SI unit is joule/kelvin (J/K). Water Equivalent It is the quantity of water whose thermal capacity is same as the heat capacity of the body. It is denoted by W. W = ms = heat capacity of the body. Latent Heat The heat energy absorbed or released at constant temperature per unit mass for change of state is called latent heat. Heat energy absorbed or released during change of state is given by Q = ml where m = mass of the substance and L = latent heat. Its unit is cal/g or J/kg and its dimension is [L 2 T -2 ]. For water at its normal boiling point or condensation temperature (100 C), the latent heat of vaporisation is L = 540 cal/g = 40.8 kj/ mol = 2260 kj/kg For water at its normal freezing temperature or melting point (0 C), the latent heat of fusion is L = 80 cal/ g = 60 kj/mol = 336 kj/kg

6 6 P a g e It is more painful to get burnt by steam rather than by boiling was 100 C gets converted to water at 100 C, then it gives out 536 heat. So, it is clear that steam at 100 C has more heat than wat 100 C (i.e., boiling of water). After snow falls, the temperature of the atmosphere becomes very This is because the snow absorbs the heat from the atmosphere to down. So, in the mountains, when snow falls, one does not feel too but when ice melts, he feels too cold. There is more shivering effect of ice cream on teeth as compare that of water (obtained from ice). This is because when ice cream down, it absorbs large amount of heat from teeth. Melting Conversion of solid into liquid state at constant temperature is melting. Evaporation Conversion of liquid into vapour at all temperatures (even below boiling point) is called evaporation. Boiling When a liquid is heated gradually, at a particular temperature saturated vapour pressure of the liquid becomes equal to atmospheric pressure, now bubbles of vapour rise to the surface d liquid. This process is called boiling of the liquid. The temperature at which a liquid boils, is called boiling point The boiling point of water increases with increase in pre sure decreases with decrease in pressure. Sublimation The conversion of a solid into vapour state is called sublimation. Hoar Frost The conversion of vapours into solid state is called hoar fr.. Calorimetry This is the branch of heat transfer that deals with the measorette heat. The heat is usually measured in calories or kilo calories. Principle of Calorimetry When a hot body is mixed with a cold body, then heat lost by ha is equal to the heat gained by cold body.

7 7 P a g e Heat lost = Heat gain Thermal Expansion Increase in size on heating is called thermal expansion. There are three types of thermal expansion. 1. Expansion of solids 2. Expansion of liquids 3. Expansion of gases Expansion of Solids Three types of expansion -takes place in solid. Linear Expansion Expansion in length on heating is called linear expansion. Increase in length l 2 = l 1 (1 + α Δt) where, l l and l 2 are initial and final lengths,δt = change in temperature and α = coefficient of linear expansion. Coefficient of linear expansion α = (Δl/l * Δt) where 1= real length and Δl = change in length and Δt= change in temperature. Superficial Expansion Expansion in area on heating is called superficial expansion. Increase in area A 2 = A 1 (1 + β Δt) where, A 1 and A 2 are initial and final areas and β is a coefficient of superficial expansion. Coefficient of superficial expansion β = (ΔA/A * Δt) where. A = area, AA = change in area and At = change in temperature. Cubical Expansion Expansion in volume on heating is called cubical expansion. Increase in volume V 2 = V 1 (1 + γδt)

8 8 P a g e where V 1 and V 2 are initial and final volumes and γ is a coefficient of cubical expansion. Coefficient of cubical expansion where V = real volume, AV =change in volume and Δt = change in temperature. Relation between coefficients of linear, superficial and cubical expansions β = 2α and γ = 3α Or α:β:γ = 1:2:3 2. Expansion of Liquids In liquids only expansion in volume takes place on heating. (i) Apparent Expansion of Liquids When expansion of th container containing liquid, on heating is not taken into accoun then observed expansion is called apparent expansion of liquids. Coefficient of apparent expansion of a liquid (ii) Real Expansion of Liquids When expansion of the container, containing liquid, on heating is also taken into account, then observed expansion is called real expansion of liquids. Coefficient of real expansion of a liquid Both, y r, and y a are measured in C -1. We can show that y r = y a + y g where, y r, and y a are coefficient of real and apparent expansion of liquids and y g is coefficient of cubical expansion of the container. Anamalous Expansion of Water When temperature of water is increased from 0 C, then its vol decreases upto 4 C, becomes minimum at 4 C and then increases. behaviour of water around 4 C is called, anamalous expansion water. 3. Expansion of Gases

9 9 P a g e There are two types of coefficient of expansion in gases (i) Volume Coefficient (γv) At constant pressure, the change in volume per unit volume per degree celsius is called volume coefficient. where V 0, V 1, and V 2 are volumes of the gas at 0 C, t 1 C and t 2 C. (ii) Pressure Coefficient (γ p ) At constant volume, the change in pressure per unit pressure per degree celsius is called pressure coefficient. where p 0, p 1 and p 2 are pressure of the gas at 0 C, t 1 C and t 2 C. Practical Applications of Expansion 1. When rails are laid down on the ground, space is left between the end of two rails. 2. The transmission cables are not tightly fixed to the poles. 3. The iron rim to be put on a cart wheel is always of slightly smaller diameter than that of wheel. 4. A glass stopper jammed in the neck of a glass bottle can be taken out by warming the neck of the bottles. Important Points Due to increment in its time period a pendulum clock becomes slow in summer and will lose time. Loss of time in a time period ΔT =(1/2)α ΔθT Loss of time in any given time interval t can be given by ΔT =(1/2)α Δθt At some higher temperature a scale will expand and scale reading will be lesser than true values, so that true value = scale reading (1 + α Δt) Here, Δt is the temperature difference. However, at lower temperature scale reading will be more or true value will be less.

### Temperature Scales. temperature scales Celsius Fahrenheit Kelvin

Ch. 10-11 Concept Ch. 10 #1, 3, 7, 8, 9, 11 Ch11, # 3, 6, 11 Problems Ch10 # 3, 5, 11, 17, 21, 24, 25, 29, 33, 37, 39, 43, 47, 59 Problems: CH 11 # 1, 2, 3a, 4, 5, 6, 9, 13, 15, 22, 25, 27, 28, 35 Temperature

### Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Thermodynamics study and application of thermal energy temperature quantity

### Final Exam. Wednesday, December 10. 1:30 4:30 pm. University Centre Rooms

16.102 Final Exam Wednesday, December 10 1:30 4:30 pm University Centre Rooms 210 224 30 questions, multiple choice The whole course, equal weighting Formula sheet provided 26 Lab and Tutorial Marks Final

### Chemistry 13: States of Matter

Chemistry 13: States of Matter Name: Period: Date: Chemistry Content Standard: Gases and Their Properties The kinetic molecular theory describes the motion of atoms and molecules and explains the properties

### Thermodynamics is the study of heat. It s what comes into play when you drop an ice cube

Chapter 12 You re Getting Warm: Thermodynamics In This Chapter Converting between temperature scales Working with linear expansion Calculating volume expansion Using heat capacities Understanding latent

### Temperature. Temperature

Chapter 8 Temperature Temperature a number that corresponds to the warmth or coldness of an object measured by a thermometer is a per-particle property no upper limit definite limit on lower end Temperature

### Energy. Work. Potential Energy. Kinetic Energy. Learning Check 2.1. Energy. Energy. makes objects move. makes things stop. is needed to do work.

Chapter 2 Energy and Matter Energy 2.1 Energy Energy makes objects move. makes things stop. is needed to do work. 1 2 Work Potential Energy Work is done when you climb. you lift a bag of groceries. you

### The Equipartition Theorem

The Equipartition Theorem Degrees of freedom are associated with the kinetic energy of translations, rotation, vibration and the potential energy of vibrations. A result from classical statistical mechanics

### 2. Room temperature: C. Kelvin. 2. Room temperature:

Temperature I. Temperature is the quantity that tells how hot or cold something is compared with a standard A. Temperature is directly proportional to the average kinetic energy of molecular translational

### Chapter 10 Temperature and Heat

Chapter 10 Temperature and Heat What are temperature and heat? Are they the same? What causes heat? What Is Temperature? How do we measure temperature? What are we actually measuring? Temperature and Its

### Heat and Temperature. Temperature Scales. Thermometers and Temperature Scales

Heat and Temperature Thermometers and Temperature Scales The mercury-based one you see here relies on the fact that mercury expands at a predictable rate with temperature. The scale of the thermometer

### KINETIC THEORY AND THERMODYNAMICS

KINETIC THEORY AND THERMODYNAMICS 1. Basic ideas Kinetic theory based on experiments, which proved that a) matter contains particles and quite a lot of space between them b) these particles always move

### Name: Class: Date: 10. Some substances, when exposed to visible light, absorb more energy as heat than other substances absorb.

Name: Class: Date: ID: A PS Chapter 13 Review Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. In all cooling

### Energy Matters Heat. Changes of State

Energy Matters Heat Changes of State Fusion If we supply heat to a lid, such as a piece of copper, the energy supplied is given to the molecules. These start to vibrate more rapidly and with larger vibrations

### Temperature, Expansion, Ideal Gas Law

Temperature, Expansion, Ideal Gas Law Physics 1425 Lecture 30 Michael Fowler, UVa Everything s Made of Atoms This idea was only fully accepted about 100 years ago in part because of Einstein s analysis

### THERMOCHEMISTRY & DEFINITIONS

THERMOCHEMISTRY & DEFINITIONS Thermochemistry is the study of the study of relationships between chemistry and energy. All chemical changes and many physical changes involve exchange of energy with the

### Phys222 W11 Quiz 1: Chapters 19-21 Keys. Name:

Name:. In order for two objects to have the same temperature, they must a. be in thermal equilibrium.

### Chapter 16 Temperature and Heat

The determination of temperature has long been recognized as a problem of the greatest importance in physical science. It has accordingly been made a subject of most careful attention, and, especially

### PARADISE VALLEY COMMUNITY COLLEGE PHYSICS 101 - INTRODUCTION TO PHYSICS LABORATORY. Calorimetry

PARADISE VALLEY COMMUNITY COLLEGE PHYSICS 101 - INTRODUCTION TO PHYSICS LABORATORY Calorimetry Equipment Needed: Large styrofoam cup, thermometer, hot water, cold water, ice, beaker, graduated cylinder,

### FXA 2008. Candidates should be able to : Define and apply the concept of specific heat capacity. Select and apply the equation : E = mcδθ

UNIT G484 Module 3 4.3.3 Thermal Properties of Materials 1 Candidates should be able to : Define and apply the concept of specific heat capacity. Select and apply the equation : E = mcδθ The MASS (m) of

### UNIT 6a TEST REVIEW. 1. A weather instrument is shown below.

UNIT 6a TEST REVIEW 1. A weather instrument is shown below. Which weather variable is measured by this instrument? 1) wind speed 3) cloud cover 2) precipitation 4) air pressure 2. Which weather station

### ConcepTest 17.1Degrees

ConcepTest 17.1Degrees Which is the largest unit: one Celsius degree, one Kelvin degree, or one Fahrenheit degree? 1) one Celsius degree 2) one Kelvin degree 3) one Fahrenheit degree 4) both one Celsius

### Chapter 10: Temperature and Heat

Chapter 10: Temperature and Heat 1. The temperature of a substance is A. proportional to the average kinetic energy of the molecules in a substance. B. equal to the kinetic energy of the fastest moving

### ENERGY. Thermochemistry. Heat. Temperature & Heat. Thermometers & Temperature. Temperature & Heat. Energy is the capacity to do work.

ENERGY Thermochemistry Energy is the capacity to do work. Chapter 6 Kinetic Energy thermal, mechanical, electrical, sound Potential Energy chemical, gravitational, electrostatic Heat Heat, or thermal energy,

### CHAPTER 14 THE CLAUSIUS-CLAPEYRON EQUATION

CHAPTER 4 THE CAUIU-CAPEYRON EQUATION Before starting this chapter, it would probably be a good idea to re-read ections 9. and 9.3 of Chapter 9. The Clausius-Clapeyron equation relates the latent heat

### Heat as Energy Transfer. Heat is energy transferred from one object to another because of a difference in temperature

Unit of heat: calorie (cal) Heat as Energy Transfer Heat is energy transferred from one object to another because of a difference in temperature 1 cal is the amount of heat necessary to raise the temperature

### Chapter 4 Practice Quiz

Chapter 4 Practice Quiz 1. Label each box with the appropriate state of matter. A) I: Gas II: Liquid III: Solid B) I: Liquid II: Solid III: Gas C) I: Solid II: Liquid III: Gas D) I: Gas II: Solid III:

### Preview of Period 5: Thermal Energy, the Microscopic Picture

Preview of Period 5: Thermal Energy, the Microscopic Picture 5.1 Temperature and Molecular Motion What is evaporative cooling? 5.2 Temperature and Phase Changes How much energy is required for a phase

### Type: Single Date: Homework: READ 12.8, Do CONCEPT Q. # (14) Do PROBLEMS (40, 52, 81) Ch. 12

Type: Single Date: Objective: Latent Heat Homework: READ 12.8, Do CONCEPT Q. # (14) Do PROBLEMS (40, 52, 81) Ch. 12 AP Physics B Date: Mr. Mirro Heat and Phase Change When bodies are heated or cooled their

### Name Date Class THERMOCHEMISTRY. SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510)

17 THERMOCHEMISTRY SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510) This section explains the relationship between energy and heat, and distinguishes between heat capacity and specific heat.

### 1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic

### Chapter 12 - Liquids and Solids

Chapter 12 - Liquids and Solids 12-1 Liquids I. Properties of Liquids and the Kinetic Molecular Theory A. Fluids 1. Substances that can flow and therefore take the shape of their container B. Relative

### Answer, Key Homework 6 David McIntyre 1

Answer, Key Homework 6 David McIntyre 1 This print-out should have 0 questions, check that it is complete. Multiple-choice questions may continue on the next column or page: find all choices before making

### Chapter 10 Temperature and Heat

Chapter 10 Temperature and Heat GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms, and use it an

### 3.3 Phase Changes Charactaristics of Phase Changes phase change

When at least two states of the same substance are present, scientists describe each different state as a phase. A phase change is the reversible physical change that occurs when a substance changes from

### Kinetic Molecular Theory (con t) Kinetic Molecular Theory Gas Liquid Solid 1. Slightly 2. High 3. Does not expand to

Kinetic Energy and (Kelvin) Temperature Temperature is a Kinetic Energy and (Kelvin) Temperature(2) The Kelvin temperature scale is called the Absolute Zero - Zero degrees on the 1. Highly 2. Low 3. Fills

### Chapter 2 Matter and Energy

1 Chapter 2 Matter and Energy Matter Matter is the material that makes up all things is anything that has mass and occupies space is classified as either pure substances or mixtures Pure Substances A pure

### 13.1 The Nature of Gases. What is Kinetic Theory? Kinetic Theory and a Model for Gases. Chapter 13: States of Matter. Principles of Kinetic Theory

Chapter 13: States of Matter The Nature of Gases The Nature of Gases kinetic molecular theory (KMT), gas pressure (pascal, atmosphere, mm Hg), kinetic energy The Nature of Liquids vaporization, evaporation,

### Thermochemistry. r2 d:\files\courses\1110-20\99heat&thermorans.doc. Ron Robertson

Thermochemistry r2 d:\files\courses\1110-20\99heat&thermorans.doc Ron Robertson I. What is Energy? A. Energy is a property of matter that allows work to be done B. Potential and Kinetic Potential energy

### Test 5 Review questions. 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will

Name: Thursday, December 13, 2007 Test 5 Review questions 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will 1. decrease 2. increase 3. remain the same 2. The graph below

### HEAT UNIT 1.1 KINETIC THEORY OF GASES. 1.1.1 Introduction. 1.1.2 Postulates of Kinetic Theory of Gases

UNIT HEAT. KINETIC THEORY OF GASES.. Introduction Molecules have a diameter of the order of Å and the distance between them in a gas is 0 Å while the interaction distance in solids is very small. R. Clausius

### Evolution of the Thermometer

Evolution of the Thermometer A thermometer is a device that gauges temperature by measuring a temperature-dependent property, such as the expansion of a liquid in a sealed tube. The Greco-Roman physician

### Calorimetry: Determining the Heat of Fusion of Ice and the Heat of Vaporization of Liquid Nitrogen - Chemistry I Acc

Calorimetry: Determining the Heat of Fusion of Ice and the Heat of Vaporization of Liquid Nitrogen - Chemistry I Acc O B J E C T I V E 1. Using a simple calorimeter, Determine the heat of fusion of ice

### States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.

CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. ideal gas

### Basic Concepts of Thermodynamics

Basic Concepts of Thermodynamics Every science has its own unique vocabulary associated with it. recise definition of basic concepts forms a sound foundation for development of a science and prevents possible

Thermochemistry Reading: Chapter 5 (omit 5.8) As you read ask yourself What is meant by the terms system and surroundings? How are they related to each other? How does energy get transferred between them?

### Homework: 2, 3, 5, 6 (page 500)

Homework: 2,, 5, 6 (age 500) 2. (age 500) wo constant-volume gas thermometers are assembled, one with nitrogen and the other with hydrogen. Both contain enough gas so that 80 kpa. (a) What is the difference

### Chapter 5. Measures of Humidity. Phases of Water. Atmospheric Moisture

Chapter 5 Atmospheric Moisture Measures of Humidity 1. Absolute humidity 2. Specific humidity 3. Actual vapor pressure 4. Saturation vapor pressure 5. Relative humidity 6. Dew point Phases of Water evaporation

### Entropy Changes & Processes

Entropy Changes & Processes Chapter 4 of Atkins: he Second Law: he Concepts Section 4.3, 7th edition; 3.3, 8th edition Entropy of Phase ransition at the ransition emperature Expansion of the Perfect Gas

### Chapter 4: Transfer of Thermal Energy

Chapter 4: Transfer of Thermal Energy Goals of Period 4 Section 4.1: To define temperature and thermal energy Section 4.2: To discuss three methods of thermal energy transfer. Section 4.3: To describe

### A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences.

I. MOLECULES IN MOTION: A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences. 1) theory developed in the late 19 th century to

### 2.0 Heat affects matter in different ways

2.0 Heat affects matter in different ways 2.1 States of Matter and The Particle Model of Matter Matter is made up of tiny particles and exists in three states: solid, liquid and gas. The Particle Model

### Kinetic Theory. Bellringer. Kinetic Theory, continued. Visual Concept: Kinetic Molecular Theory. States of Matter, continued.

Bellringer You are already familiar with the most common states of matter: solid, liquid, and gas. For example you can see solid ice and liquid water. You cannot see water vapor, but you can feel it in

### 5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C

1. The average kinetic energy of water molecules increases when 1) H 2 O(s) changes to H 2 O( ) at 0ºC 3) H 2 O( ) at 10ºC changes to H 2 O( ) at 20ºC 2) H 2 O( ) changes to H 2 O(s) at 0ºC 4) H 2 O( )

### Triple Point Experiment

Equipment List Rotary vane vacuum pump 2-stage, 2 to 7 CFM. For example, Edwards 2M2 (2 CFM), Edwards RV5 (3.5 CFM), Edwards E2M8 (6.7 CFM) or equivalent. Bell jar Nalgene polycarbonate plastic, 5-5/8

### Thermochemistry is study of changes in energy (heat) associated with physical or chemical changes.

Thermochem 1 Thermochemistry Thermochemistry and Energy and Temperature Thermochemistry is study of changes in energy (heat) associated with physical or chemical changes. Force = push F= m a (mass x acceleration)

### TEACHER BACKGROUND INFORMATION THERMAL ENERGY

TEACHER BACKGROUND INFORMATION THERMAL ENERGY In general, when an object performs work on another object, it does not transfer all of its energy to that object. Some of the energy is lost as heat due to

### Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 7 Ideal Gas Laws, Different Processes Let us continue

### The particulate nature of matter

The particulate nature of matter Solids, liquids and gases The kinetic theory of matter Explaining the states of matter Changes of state An unusual state of matter An unusual change of state Heating and

### Intermolecular Forces

Intermolecular Forces: Introduction Intermolecular Forces Forces between separate molecules and dissolved ions (not bonds) Van der Waals Forces 15% as strong as covalent or ionic bonds Chapter 11 Intermolecular

### Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

### Section 7. Laws of Thermodynamics: Too Hot, Too Cold, Just Right. What Do You See? What Do You Think? Investigate.

Chapter 6 Electricity for Everyone Section 7 Laws of Thermodynamics: Too Hot, Too Cold, Just Right What Do You See? Learning Outcomes In this section, you will Assess experimentally the final temperature

### = 800 kg/m 3 (note that old units cancel out) 4.184 J 1000 g = 4184 J/kg o C

Units and Dimensions Basic properties such as length, mass, time and temperature that can be measured are called dimensions. Any quantity that can be measured has a value and a unit associated with it.

### Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states.

Describe the strength of attractive forces between particles. Describe the amount of space between particles. Can the particles in this state be compressed? Do the particles in this state have a definite

### Welcome to the World of Chemistry

Welcome to the World of Chemistry The Language of Chemistry CHEMICAL ELEMENTS - pure substances that cannot be decomposed by ordinary means to other substances. Aluminum Bromine Sodium The Language of

### 5 Answers and Solutions to Text Problems

Energy and States of Matter 5 Answers and Solutions to Text Problems 5.1 At the top of the hill, all of the energy of the car is in the form of potential energy. As it descends down the hill, potential

### Mechanisms of Heat Transfer. Amin Sabzevari

Mechanisms of Heat Transfer Amin Sabzevari Outline Definition of Heat and Temperature Conduction, Convection, Radiation Demonstrations and Examples What is Heat? Heat is the spontaneous flow of energy

### Chapter Test A. States of Matter MULTIPLE CHOICE. a fixed amount of STAs2 a. a solid. b. a liquid. c. a gas. d. any type of matter.

Assessment Chapter Test A States of Matter MULTIPLE CHOICE Write the letter of the correct answer in the space provided. 1. Boyle s law explains the relationship between volume and pressure for a fixed

### The First Law of Thermodynamics

Thermodynamics The First Law of Thermodynamics Thermodynamic Processes (isobaric, isochoric, isothermal, adiabatic) Reversible and Irreversible Processes Heat Engines Refrigerators and Heat Pumps The Carnot

### Chapter 3 Assessment. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: Class: _ Date: _ ID: A Chapter 3 Assessment Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which state of matter has a definite volume but a variable

### CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING Essential Standard: STUDENTS WILL UNDERSTAND THAT THE PROPERTIES OF MATTER AND THEIR INTERACTIONS ARE A CONSEQUENCE OF THE STRUCTURE OF MATTER,

### Thermodynamics AP Physics B. Multiple Choice Questions

Thermodynamics AP Physics B Name Multiple Choice Questions 1. What is the name of the following statement: When two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium

### Name Date Class STATES OF MATTER. SECTION 13.1 THE NATURE OF GASES (pages 385 389)

13 STATES OF MATTER SECTION 13.1 THE NATURE OF GASES (pages 385 389) This section introduces the kinetic theory and describes how it applies to gases. It defines gas pressure and explains how temperature

### Rusty Walker, Corporate Trainer Hill PHOENIX

Refrigeration 101 Rusty Walker, Corporate Trainer Hill PHOENIX Compressor Basic Refrigeration Cycle Evaporator Condenser / Receiver Expansion Device Vapor Compression Cycle Cooling by the removal of heat

### Science Department Mark Erlenwein, Assistant Principal

Staten Island Technical High School Vincent A. Maniscalco, Principal The Physical Setting: CHEMISTRY Science Department Mark Erlenwein, Assistant Principal - Unit 1 - Matter and Energy Lessons 9-14 Heat,

### Sample Questions Chapter 2. Stoker

Sample Questions Chapter 2. Stoker 1. The mathematical meaning associated with the metric system prefixes centi, milli, and micro is, respectively, A) 2, 4, and 6. B) 2, 3, and 6. C) 3, 6, and 9. D) 3,

### L A T E N T H E A T O F F U S I O N

Class Date Name Partner(s) L A T E N T H E A T O F F U S I O N Materials LoggerPro Software and Real Time Physics Thermodynamics Experiment Files Stainless Steel Temperature Probes (2) Styrofoam Cup Film

### 1.4.6-1.4.8 Gas Laws. Heat and Temperature

1.4.6-1.4.8 Gas Laws Heat and Temperature Often the concepts of heat and temperature are thought to be the same, but they are not. Perhaps the reason the two are incorrectly thought to be the same is because

Chapter 2 Student Reading Atoms and molecules are in motion We warm things up and cool things down all the time, but we usually don t think much about what s really happening. If you put a room-temperature

### The student knows that matter has measurable physical properties and those properties determine how matter is classified, changed, and used.

TEKS 5.5B The student knows that matter has measurable physical properties and those properties determine how matter is classified, changed, and used. The student is expected to: (B) identify the boiling

### Use tongs and wear goggles when removing the samples from the pot of boiling water. Protect your eyes against accidental splashes!

Calorimetry Lab Purpose: Students will measure latent heat and specific heat. PLEASE READ the entire handout before starting. You won t know what to do unless you understand how it works! Introduction:

### Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version

Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version Freezing point depression describes the process where the temperature at which a liquid freezes is lowered by adding another

### There is no such thing as heat energy

There is no such thing as heat energy We have used heat only for the energy transferred between the objects at different temperatures, and thermal energy to describe the energy content of the objects.

### Problem # 2 Determine the kinds of intermolecular forces present in each element or compound:

Chapter 11 Homework solutions Problem # 2 Determine the kinds of intermolecular forces present in each element or compound: A. Kr B. NCl 3 C. SiH 4 D. HF SOLUTION: Kr is a single atom, hence it can have

### Gas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion.

Name Period Gas Laws Kinetic energy is the energy of motion of molecules. Gas state of matter made up of tiny particles (atoms or molecules). Each atom or molecule is very far from other atoms or molecules.

### Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1

Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1 FV 6/26/13 MATERIALS: PURPOSE: 1000 ml tall-form beaker, 10 ml graduated cylinder, -10 to 110 o C thermometer, thermometer clamp, plastic pipet, long

### Chemistry 110 Lecture Unit 5 Chapter 11-GASES

Chemistry 110 Lecture Unit 5 Chapter 11-GASES I. PROPERITIES OF GASES A. Gases have an indefinite shape. B. Gases have a low density C. Gases are very compressible D. Gases exert pressure equally in all

### Laws of Thermodynamics

Laws of Thermodynamics Thermodynamics Thermodynamics is the study of the effects of work, heat, and energy on a system Thermodynamics is only concerned with macroscopic (large-scale) changes and observations

### q = (mass) x (specific heat) x T = m c T (1)

Experiment: Heat Effects and Calorimetry Heat is a form of energy, sometimes called thermal energy, which can pass spontaneously from an object at a high temperature to an object at a lower temperature.

### EXPERIMENT 16: Charles Law of Gases V vs T

EXPERIMENT 16: Charles Law of Gases V vs T Materials: Thermometer Bunsen burner Ring stand Clamps 600ml beakers (2) Closed-tip syringe Ice Water Objectives 1. To put to work the model to verify Charles

### Unit 3: States of Matter Practice Exam

Page 1 Unit 3: States of Matter Practice Exam Multiple Choice. Identify the choice that best completes the statement or answers the question. 1. Two gases with unequal masses are injected into opposite

### UNIT (1) MEASUREMENTS IN CHEMISTRY

UNIT (1) MEASUREMENTS IN CHEMISTRY Measurements are part of our daily lives. We measure our weights, driving distances, and gallons of gasoline. As a health professional you might measure blood pressure,

### Pressure Enthalpy Explained

Pressure Enthalpy Explained Within the new F Gas course the requirement for an understanding of Pressure Enthalpy (Ph) graphs is proving to be a large learning curve for those who have not come across

### Chemistry 212 VAPOR PRESSURE OF WATER LEARNING OBJECTIVES

Chemistry 212 VAPOR PRESSURE OF WATER LEARNING OBJECTIVES The learning objectives of this experiment are to explore the relationship between the temperature and vapor pressure of water. determine the molar

### Physical and Chemical Properties of Matter

Physical and Chemical Properties of Matter What is matter? Anything that has mass and takes up space Chemical or Physical Property? Physical properties of matter: characteristics that can be observed or

### Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels

1 P age Module 5: Combustion Technology Lecture 34: Calculation of calorific value of fuels 2 P age Keywords : Gross calorific value, Net calorific value, enthalpy change, bomb calorimeter 5.3 Calculation

### Chapter 5. Thermochemistry

Chapter 5. Thermochemistry THERMODYNAMICS - study of energy and its transformations Thermochemistry - study of energy changes associated with chemical reactions Energy - capacity to do work or to transfer

### Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004

Statistical Mechanics, Kinetic Theory Ideal Gas 8.01t Nov 22, 2004 Statistical Mechanics and Thermodynamics Thermodynamics Old & Fundamental Understanding of Heat (I.e. Steam) Engines Part of Physics Einstein