# The final numerical answer given is correct but the math shown does not give that answer.

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Note added to Homework set 7: The solution to Problem 16 has an error in it. The specific heat of water is listed as c 1 J/g K but should be c J/g K The final numerical answer given is correct but the math shown does not give that answer.

2 Answer, Key Homework 7 David McIntyre 1 This print-out should have 22 questions, check that it is complete. Multiple-choice questions may continue on the next column or page: find all choices before making your selection. The due time is Central time. Chapter 22 problems. 001 (part 1 of 2) 0 points A heat engine absorbs 362 J of thermal energy and performs 27.2 J of work in each cycle. Find the efficiency of the engine. Correct answer: Given : Q h 362 J and W 27.2 J The thermal efficiency of a heat engine is e W Q h 27.2 J 362 J (part 2 of 2) 0 points Find the thermal energy expelled in each cycle. Correct answer: J. The work done by a heat engine through a cyclic process ( U 0) is W Q h Q c Q c Q h W J. 003 (part 1 of 3) 4 points of a system that absorbs 555 cal of thermal energy while doing 580 J of external work. Correct answer: J. Given : Q 555 cal and W 580 J. According to the first law of thermodynamics, we have U Q W where Q is the thermal energy transferred into the system and W is the work done by the system. Then we have U 555 cal J cal J. 580 J 004 (part 2 of 3) 3 points of a system that absorbs 769 cal of thermal energy while 626 J of external work is done on the system. Correct answer: J. U Q ( W ) 769 cal J cal J J 005 (part 3 of 3) 3 points of a system that is maintained at a constant volume while 1270 cal is removed from the system. Correct answer: J. Since the volume is maintained constant W P V 0 U Q 1270 cal J cal J. 006 (part 1 of 2) 0 points An ideal gas is compressed to half its original volume while its temperature is held constant.

3 Answer, Key Homework 7 David McIntyre 2 If 750 J of energy is removed from the gas during the compression, how much work is done on the gas? Correct answer: 750 J. Given : Q 750 J. According to the first law of thermodynamics, U Q W, where Q is the thermal energy transferred into the system and W is the work done by the system. Since U 0, then Thus Q h W eff P t 1 T c (126 kw) (3600 s) K 928 K J. W Q 750 J. 007 (part 2 of 2) 0 points What is the change in the internal energy of the gas during the compression? Correct answer: 0 J. If the temperature remains constant, U 0 J. 008 (part 1 of 2) 5 points A Carnot engine has a power output of 126 kw. The engine operates between two reservoirs at 16 C and 655 C. How much thermal energy is absorbed per hour? Correct answer: J. Given : P 126 kw, 655 C 928 K, T c 16 C 289 K. The efficiency of heat engine is eff W Q h 1 T c and the work done by the system is W P t. and 009 (part 2 of 2) 5 points How much thermal energy is lost per hour? Correct answer: J. The work done by a heat engine through a cyclic process ( U 0) is Then W Q h Q c. Q c Q h W Q h P t ( J) (126 kw) (3600 s) J. W KW 010 (part 1 of 2) 0 points A steam engine is operated in a cold climate where the exhaust temperature is 26 C. Calculate the theoretical maximum efficiency of the engine using an intake steam temperature of 114 C. Correct answer: Given : 114 C 387 K and T c 26 C 247 K.

4 Answer, Key Homework 7 David McIntyre 3 According to Carnot s theorem, the theoretical maximum efficiency is e 1 T c K 387 K (part 2 of 2) 0 points If, instead, superheated steam at 286 C is used, find the maximum possible efficiency. Correct answer: C 559 K The maximum efficiency is e K 559 K (part 1 of 1) 0 points The efficiency of a 840 MW nuclear power plant is 27.2%. If a river of flow rate kg/s were used to transport the excess thermal energy away, what would be the average temperature increase of the river? Correct answer: C. Given : P output 840 MW 10 6 W and e 27.2% The excess thermal energy transported per second by the river is P excess P input (1 e) ( ) Poutput (1 e) e ( ) 840 MW ( ) MW where e is efficiency and P output is power output of the plant. Then the temperature of the river is increased (per second) by dm dt c T dq dt P excess where c is heat capacity of water and dm is dt flow rate of the water. Thus T P excess kg/s C. 013 (part 1 of 2) 0 points A house loses thermal energy through the exterior walls and roof at a rate of 4860 W when the interior temperature is 20.1 C and the outside temperature is 0.2 C. Calculate the electric power required to maintain the interior temperature at T i for the following two cases: The electric power is used in electric resistance heaters (which convert all of the electricity supplied to thermal energy). Correct answer: 4860 W. Given : Q/ t 4860 W, T i 20.1 C, T o 0.2 C. and Since all the electricity supplied is converted to thermal energy, we have Thus Q t E t P El P El 4860 W. 014 (part 2 of 2) 0 points The electric power is used to operate the compressor of a heat pump (which has a coefficient of performance equal to ν 0.7 of the Carnot cycle value). Correct answer: W.

5 Answer, Key Homework 7 David McIntyre 4 For a heat pump we have T i (COP ) Carnot T i T o 20.1 C K 20.1 C ( 0.2 C) Hence to bring 4860 W of heat in the house requires only P h Q/ t (COP ) actual W 0.6 (COP ) carnot 4860 W (0.7) ( ) W. 015 (part 1 of 1) 0 points An ice tray contains 375 g of water at 0 C. Calculate the change in entropy of the water as it freezes completely and slowly at 0 C. Correct answer: J/K. Given : m 375 g kg, L J/kg, and T 0 C 273 K. In the freezing process T is constant, so Q m L where m is mass of water, and l is latent heat of fusion. Thus S Q T m L T (0.375 kg)( J/kg) 273 K J/K. Given : T i 15.8 C K, T f 80.5 C K, m 210 g, and c 1 J/g K. The heat absorbed in the process is dq r m c dt. The change in entropy in an arbitrary reversible process between an initial state and final state is S f i f i ds m c dt T m c log T f T i f i dq r T (210 g) (1 J/g K) log J/K. ( ) K K 017 (part 1 of 6) 2 points One mole of an ideal monatomic gas is taken through the cycle abca shown schematically in the diagram. State a has volume V a m 3 and pressure P a Pa, and state c has volume V c m 3. Process ca lies along the T 231±1 K isotherm. The molar heat capacities for the gas are c p 20.8 J/mol K and c v 12.5 J/mol K. p ( 10 5 Pa) K a b 016 (part 1 of 1) 10 points Calculate the change in entropy of 210 g of water heated slowly from 15.8 C to 80.5 C. Correct answer: J/K c 250 K V ( 10-3 m 3 )

6 Answer, Key Homework 7 David McIntyre 5 This schematic plot is intended to give an example of a P V diagram (not to scale). Use the values of P, V, and T given above. Determine the temperature T b of state b. Correct answer: K. Given : P b Pa, V b m 3, and T b J/mol K. We use the ideal gas equation T P V n R, where P is the pressure, V is the volume (both evaluated at b ), R is the molar gas constant, and n is the number of moles. T b P V R ( Pa) ( m3 ) J/mol K K. 018 (part 2 of 6) 2 points Determine the heat Q ab added to the gas during process ab. Correct answer: J. For state a Given : P a Pa, V a m 3, and T a J/mol K. T a P V R ( Pa) ( m3 ) J/mol K K Thus Q n c p T (1 mol)(20.8 J/mol K) ( K K) J, where Q is the heat transferred, n is the number of moles, c p is the the molar heat capacity for a constant pressure process (such as process ab ), and T is the change in temperature from a to b. 019 (part 3 of 6) 2 points U ab U b U a. Correct answer: J. In an isobaric process the change in internal energy is given by U ab Q ab W Q ab P V Q ab P [V b V a ] J ( Pa) ( m m 3 ) J, 020 (part 4 of 6) 2 points Determine the work W bc done by the gas on its surroundings during process bc. Correct answer: 0. W P V and V 0, so W (part 5 of 6) 1 points The net heat added to the gas for the entire cycle is 2140 J. Determine the net work done by the gas on its surroundings for the entire cycle. Correct answer: 2140 J. Given : Q 2140 J. For a complete cycle the change in internal energy U is zero, so W Q 2140 J.

7 The work is simply the net heat added to the gas. 022 (part 6 of 6) 1 points Determine the efficiency Eff of a Carnot engine that operates between the maximum and minimum temperatures in this cycle. Correct answer: The Carnot efficiency Eff is given by Eff 1 T c. The maximum temperature is clearly that of state b, determined to be K in question 1. The minimum temperature will be that of the isotherm, K. Therefore Eff 1 T a T b K K Answer, Key Homework 7 David McIntyre 6

### Answer, Key Homework 6 David McIntyre 1

Answer, Key Homework 6 David McIntyre 1 This print-out should have 0 questions, check that it is complete. Multiple-choice questions may continue on the next column or page: find all choices before making

### ME 201 Thermodynamics

ME 0 Thermodynamics Second Law Practice Problems. Ideally, which fluid can do more work: air at 600 psia and 600 F or steam at 600 psia and 600 F The maximum work a substance can do is given by its availablity.

### The First Law of Thermodynamics

Thermodynamics The First Law of Thermodynamics Thermodynamic Processes (isobaric, isochoric, isothermal, adiabatic) Reversible and Irreversible Processes Heat Engines Refrigerators and Heat Pumps The Carnot

### APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES

APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES INTRODUCTION This tutorial is designed for students wishing to extend their knowledge of thermodynamics to a more

### The Second Law of Thermodynamics

Objectives MAE 320 - Chapter 6 The Second Law of Thermodynamics The content and the pictures are from the text book: Çengel, Y. A. and Boles, M. A., Thermodynamics: An Engineering Approach, McGraw-Hill,

### a) Use the following equation from the lecture notes: = ( 8.314 J K 1 mol 1) ( ) 10 L

hermodynamics: Examples for chapter 4. 1. One mole of nitrogen gas is allowed to expand from 0.5 to 10 L reversible and isothermal process at 300 K. Calculate the change in molar entropy using a the ideal

### Physics 5D - Nov 18, 2013

Physics 5D - Nov 18, 2013 30 Midterm Scores B } Number of Scores 25 20 15 10 5 F D C } A- A A + 0 0-59.9 60-64.9 65-69.9 70-74.9 75-79.9 80-84.9 Percent Range (%) The two problems with the fewest correct

### The Second Law of Thermodynamics

The Second aw of Thermodynamics The second law of thermodynamics asserts that processes occur in a certain direction and that the energy has quality as well as quantity. The first law places no restriction

### UNIT 2 REFRIGERATION CYCLE

UNIT 2 REFRIGERATION CYCLE Refrigeration Cycle Structure 2. Introduction Objectives 2.2 Vapour Compression Cycle 2.2. Simple Vapour Compression Refrigeration Cycle 2.2.2 Theoretical Vapour Compression

### Supplementary Notes on Entropy and the Second Law of Thermodynamics

ME 4- hermodynamics I Supplementary Notes on Entropy and the Second aw of hermodynamics Reversible Process A reversible process is one which, having taken place, can be reversed without leaving a change

### Type: Single Date: Homework: READ 12.8, Do CONCEPT Q. # (14) Do PROBLEMS (40, 52, 81) Ch. 12

Type: Single Date: Objective: Latent Heat Homework: READ 12.8, Do CONCEPT Q. # (14) Do PROBLEMS (40, 52, 81) Ch. 12 AP Physics B Date: Mr. Mirro Heat and Phase Change When bodies are heated or cooled their

### THERMODYNAMICS TUTORIAL 5 HEAT PUMPS AND REFRIGERATION. On completion of this tutorial you should be able to do the following.

THERMODYNAMICS TUTORIAL 5 HEAT PUMPS AND REFRIGERATION On completion of this tutorial you should be able to do the following. Discuss the merits of different refrigerants. Use thermodynamic tables for

### FUNDAMENTALS OF ENGINEERING THERMODYNAMICS

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS System: Quantity of matter (constant mass) or region in space (constant volume) chosen for study. Closed system: Can exchange energy but not mass; mass is constant

### 18 Q0 a speed of 45.0 m/s away from a moving car. If the car is 8 Q0 moving towards the ambulance with a speed of 15.0 m/s, what Q0 frequency does a

First Major T-042 1 A transverse sinusoidal wave is traveling on a string with a 17 speed of 300 m/s. If the wave has a frequency of 100 Hz, what 9 is the phase difference between two particles on the

### Problem Set 4 Solutions

Chemistry 360 Dr Jean M Standard Problem Set 4 Solutions 1 Two moles of an ideal gas are compressed isothermally and reversibly at 98 K from 1 atm to 00 atm Calculate q, w, ΔU, and ΔH For an isothermal

### Chapter 10 Temperature and Heat

Chapter 10 Temperature and Heat What are temperature and heat? Are they the same? What causes heat? What Is Temperature? How do we measure temperature? What are we actually measuring? Temperature and Its

### 6 18 A steam power plant receives heat from a furnace at a rate of 280 GJ/h. Heat losses to the surrounding air from the steam as it passes through

Thermo 1 (MEP 261) Thermodynamics An Engineering Approach Yunus A. Cengel & Michael A. Boles 7 th Edition, McGraw-Hill Companies, ISBN-978-0-07-352932-5, 2008 Sheet 6:Chapter 6 6 17 A 600-MW steam power

### Energy Matters Heat. Changes of State

Energy Matters Heat Changes of State Fusion If we supply heat to a lid, such as a piece of copper, the energy supplied is given to the molecules. These start to vibrate more rapidly and with larger vibrations

### CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS. Blank

CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS Blank SONNTAG/BORGNAKKE STUDY PROBLEM 7-1 7.1 A car engine and its fuel consumption A car engine produces 136 hp on the output shaft with a thermal efficiency

### Stirling heat engine Internal combustion engine (Otto cycle) Diesel engine Steam engine (Rankine cycle) Kitchen Refrigerator

Lecture. Real eat Engines and refrigerators (Ch. ) Stirling heat engine Internal combustion engine (Otto cycle) Diesel engine Steam engine (Rankine cycle) Kitchen Refrigerator Carnot Cycle - is not very

### Thermodynamics - Example Problems Problems and Solutions

Thermodynamics - Example Problems Problems and Solutions 1 Examining a Power Plant Consider a power plant. At point 1 the working gas has a temperature of T = 25 C. The pressure is 1bar and the mass flow

### Exergy: the quality of energy N. Woudstra

Exergy: the quality of energy N. Woudstra Introduction Characteristic for our society is a massive consumption of goods and energy. Continuation of this way of life in the long term is only possible if

### PERFORMANCE ANALYSIS OF VAPOUR COMPRESSION REFRIGERATION SYSTEM WITH R404A, R407C AND R410A

Int. J. Mech. Eng. & Rob. Res. 213 Jyoti Soni and R C Gupta, 213 Research Paper ISSN 2278 149 www.ijmerr.com Vol. 2, No. 1, January 213 213 IJMERR. All Rights Reserved PERFORMANCE ANALYSIS OF VAPOUR COMPRESSION

### Problem Set 3 Solutions

Chemistry 360 Dr Jean M Standard Problem Set 3 Solutions 1 (a) One mole of an ideal gas at 98 K is expanded reversibly and isothermally from 10 L to 10 L Determine the amount of work in Joules We start

### We will try to get familiar with a heat pump, and try to determine its performance coefficient under different circumstances.

C4. Heat Pump I. OBJECTIVE OF THE EXPERIMENT We will try to get familiar with a heat pump, and try to determine its performance coefficient under different circumstances. II. INTRODUCTION II.1. Thermodynamic

### Specific Heat Capacity and Latent Heat Questions A2 Physics

1. An electrical heater is used to heat a 1.0 kg block of metal, which is well lagged. The table shows how the temperature of the block increased with time. temp/ C 20.1 23.0 26.9 30.0 33.1 36.9 time/s

### QUESTIONS THERMODYNAMICS PRACTICE PROBLEMS FOR NON-TECHNICAL MAJORS. Thermodynamic Properties

QUESTIONS THERMODYNAMICS PRACTICE PROBLEMS FOR NON-TECHNICAL MAJORS Thermodynamic Properties 1. If an object has a weight of 10 lbf on the moon, what would the same object weigh on Jupiter? ft ft -ft g

### 39 kg of water at 10 C is mixed with 360 kg of ice at -7 C.

39 kg of water at 10 C is mixed with 360 kg of ice at -7 C. (The heat capacity of water is 4190 J/(kg C), that of ice is 2090 J/(kg C), and the heat of fusion of water is 3.34x10 5 J/kg. A. 320 J/K B.

### Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Thermodynamics study and application of thermal energy temperature quantity

### An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation

An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation R K Kapooria Department of Mechanical Engineering, BRCM College of Engineering & Technology, Bahal (Haryana)

### 2B.1 Chilled-Water Return (and Supply) Temperature...119. 2B.3 Cooling-Water Supply Temperature / Flow... 124

Appendix 2B: Chiller Test Results...119 2B.1 Chilled-Water Return (and Supply) Temperature...119 2B.2 Chilled-Water Flow... 122 2B.3 Cooling-Water Supply Temperature / Flow... 124 2B.4 Pressure/Temperature...

### Thermochemistry. r2 d:\files\courses\1110-20\99heat&thermorans.doc. Ron Robertson

Thermochemistry r2 d:\files\courses\1110-20\99heat&thermorans.doc Ron Robertson I. What is Energy? A. Energy is a property of matter that allows work to be done B. Potential and Kinetic Potential energy

### ASSESSMENT OF THE SUBCOOLING CAPABILITIES OF A THERMOELECTRIC DEVICE IN A VAPOR COMPRESSION REFRIGERATION SYSTEM

Universitatea de Ştiinţe Agricole şi Medicină Veterinară Iaşi ASSESSMENT OF E SUBCOOLING CAPABILITIES OF A ERMOELECTRIC DEVICE IN A VAPOR COMPRESSION REFRIGERATION SYSTEM R. ROŞCA 1, I. ŢENU 1, P. CÂRLESCU

### MCQ - ENERGY and CLIMATE

1 MCQ - ENERGY and CLIMATE 1. The volume of a given mass of water at a temperature of T 1 is V 1. The volume increases to V 2 at temperature T 2. The coefficient of volume expansion of water may be calculated

### Technical Thermodynamics

Technical Thermodynamics Chapter 2: Basic ideas and some definitions Prof. Dr.-Ing. habil. Egon Hassel University of Rostock, Germany Faculty of Mechanical Engineering and Ship Building Institute of Technical

### Problem Set 1 3.20 MIT Professor Gerbrand Ceder Fall 2003

LEVEL 1 PROBLEMS Problem Set 1 3.0 MIT Professor Gerbrand Ceder Fall 003 Problem 1.1 The internal energy per kg for a certain gas is given by U = 0. 17 T + C where U is in kj/kg, T is in Kelvin, and C

### Heat and Work. First Law of Thermodynamics 9.1. Heat is a form of energy. Calorimetry. Work. First Law of Thermodynamics.

Heat and First Law of Thermodynamics 9. Heat Heat and Thermodynamic rocesses Thermodynamics is the science of heat and work Heat is a form of energy Calorimetry Mechanical equivalent of heat Mechanical

### Energy Conversions I. Unit of measure (most common one) Form Definition Example

Energy Conversions I Energy can take many forms, but any one form can usually be converted into another. And no matter what form we talk about, we can use conversion factors to calculate equivalent amounts

### Sheet 5:Chapter 5 5 1C Name four physical quantities that are conserved and two quantities that are not conserved during a process.

Thermo 1 (MEP 261) Thermodynamics An Engineering Approach Yunus A. Cengel & Michael A. Boles 7 th Edition, McGraw-Hill Companies, ISBN-978-0-07-352932-5, 2008 Sheet 5:Chapter 5 5 1C Name four physical

### Lesson. 11 Vapour Compression Refrigeration Systems: Performance Aspects And Cycle Modifications. Version 1 ME, IIT Kharagpur 1

Lesson Vapour Compression Refrigeration Systems: Performance Aspects And Cycle Modifications Version ME, IIT Kharagpur The objectives of this lecture are to discuss. Performance aspects of SSS cycle and

### 15 THERMODYNAMICS. Learning Objectives

CHAPTER 15 THERMODYNAMICS 505 15 THERMODYNAMICS Figure 15.1 A steam engine uses heat transfer to do work. Tourists regularly ride this narrow-gauge steam engine train near the San Juan Skyway in Durango,

### Chapter 4 EFFICIENCY OF ENERGY CONVERSION

Chapter 4 EFFICIENCY OF ENERGY CONVERSION The National Energy Strategy reflects a National commitment to greater efficiency in every element of energy production and use. Greater energy efficiency can

### Phys222 W11 Quiz 1: Chapters 19-21 Keys. Name:

Name:. In order for two objects to have the same temperature, they must a. be in thermal equilibrium.

### Introduction to the Ideal Gas Law

Course PHYSICS260 Assignment 5 Consider ten grams of nitrogen gas at an initial pressure of 6.0 atm and at room temperature. It undergoes an isobaric expansion resulting in a quadrupling of its volume.

### Mohan Chandrasekharan #1

International Journal of Students Research in Technology & Management Exergy Analysis of Vapor Compression Refrigeration System Using R12 and R134a as Refrigerants Mohan Chandrasekharan #1 # Department

### 06150 PORVOO, FINLAND Pelican eco ED(D), Pelican eco EDE(D), Pelican eco EDW(D), Pelican eco EDX(D)

Certificate Certified Passive House Component For cool, temperate climates, valid until 31 December 2013 Passive House Institute Dr. Wolfgang Feist 64283 Darmstadt GERMANY Category: Manufacturer: Heat

### APPLIED THERMODYNAMICS. TUTORIAL No.3 GAS TURBINE POWER CYCLES. Revise gas expansions in turbines. Study the Joule cycle with friction.

APPLIED HERMODYNAMICS UORIAL No. GAS URBINE POWER CYCLES In this tutorial you will do the following. Revise gas expansions in turbines. Revise the Joule cycle. Study the Joule cycle with friction. Extend

### THE KINETIC THEORY OF GASES

Chapter 19: THE KINETIC THEORY OF GASES 1. Evidence that a gas consists mostly of empty space is the fact that: A. the density of a gas becomes much greater when it is liquefied B. gases exert pressure

### OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE. TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS

UNIT 61: ENGINEERING THERMODYNAMICS Unit code: D/601/1410 QCF level: 5 Credit value: 15 OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS 2 Be able to evaluate

### FXA 2008. Candidates should be able to : Define and apply the concept of specific heat capacity. Select and apply the equation : E = mcδθ

UNIT G484 Module 3 4.3.3 Thermal Properties of Materials 1 Candidates should be able to : Define and apply the concept of specific heat capacity. Select and apply the equation : E = mcδθ The MASS (m) of

### Thermodynamics AP Physics B. Multiple Choice Questions

Thermodynamics AP Physics B Name Multiple Choice Questions 1. What is the name of the following statement: When two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium

### CHAPTER 12. Gases and the Kinetic-Molecular Theory

CHAPTER 12 Gases and the Kinetic-Molecular Theory 1 Gases vs. Liquids & Solids Gases Weak interactions between molecules Molecules move rapidly Fast diffusion rates Low densities Easy to compress Liquids

### Condensers & Evaporator Chapter 5

Condensers & Evaporator Chapter 5 This raises the condenser temperature and the corresponding pressure thereby reducing the COP. Page 134 of 263 Condensers & Evaporator Chapter 5 OBJECTIVE QUESTIONS (GATE,

### HEAT PUMPS A KEY COMPONENT IN LOW CARBON FUTURE

HEAT PUMPS A KEY COMPONENT IN LOW CARBON FUTURE Satish Joshi Managing Director CONTENTS 1. INTRODUCTION, APPLICATIONS 2. TECHNOLOGY, PROJECTS DONE, COST COMPARISION 3. HEAT PUMPS IN THE RENEWABLES DIRECTIVE,

### CHAPTER 14 THE CLAUSIUS-CLAPEYRON EQUATION

CHAPTER 4 THE CAUIU-CAPEYRON EQUATION Before starting this chapter, it would probably be a good idea to re-read ections 9. and 9.3 of Chapter 9. The Clausius-Clapeyron equation relates the latent heat

### Development of a model for the simulation of Organic Rankine Cycles based on group contribution techniques

ASME Turbo Expo Vancouver, June 6 10 2011 Development of a model for the simulation of Organic Rankine ycles based on group contribution techniques Enrico Saverio Barbieri Engineering Department University

### C H A P T E R T W O. Fundamentals of Steam Power

35 C H A P T E R T W O Fundamentals of Steam Power 2.1 Introduction Much of the electricity used in the United States is produced in steam power plants. Despite efforts to develop alternative energy converters,

### Chapter 8 Maxwell relations and measurable properties

Chapter 8 Maxwell relations and measurable properties 8.1 Maxwell relations Other thermodynamic potentials emerging from Legendre transforms allow us to switch independent variables and give rise to alternate

Chapter 18 Homework Answers 18.22. 18.24. 18.26. a. Since G RT lnk, as long as the temperature remains constant, the value of G also remains constant. b. In this case, G G + RT lnq. Since the reaction

### Fundamentals of THERMAL-FLUID SCIENCES

Fundamentals of THERMAL-FLUID SCIENCES THIRD EDITION YUNUS A. CENGEL ROBERT H. TURNER Department of Mechanical JOHN M. CIMBALA Me Graw Hill Higher Education Boston Burr Ridge, IL Dubuque, IA Madison, Wl

### DET: Mechanical Engineering Thermofluids (Higher)

DET: Mechanical Engineering Thermofluids (Higher) 6485 Spring 000 HIGHER STILL DET: Mechanical Engineering Thermofluids Higher Support Materials *+,-./ CONTENTS Section : Thermofluids (Higher) Student

### CO 2 41.2 MPa (abs) 20 C

comp_02 A CO 2 cartridge is used to propel a small rocket cart. Compressed CO 2, stored at a pressure of 41.2 MPa (abs) and a temperature of 20 C, is expanded through a smoothly contoured converging nozzle

### ES-7A Thermodynamics HW 1: 2-30, 32, 52, 75, 121, 125; 3-18, 24, 29, 88 Spring 2003 Page 1 of 6

Spring 2003 Page 1 of 6 2-30 Steam Tables Given: Property table for H 2 O Find: Complete the table. T ( C) P (kpa) h (kj/kg) x phase description a) 120.23 200 2046.03 0.7 saturated mixture b) 140 361.3

### How to choose a heat pump and use it wisely

How to choose a heat pump and use it wisely Contents How does a heat pump work? 2 Insulating your home 3 Heat loss in the home Not all heat pumps are created equal 4 Choosing a heat pump 4 Choosing by

### Forms of Energy. Freshman Seminar

Forms of Energy Freshman Seminar Energy Energy The ability & capacity to do work Energy can take many different forms Energy can be quantified Law of Conservation of energy In any change from one form

### Hybrid (Dual Fuel) - Gas Heat and Air Source Heat Pump

s.doty 10-2014 White Paper #30 Hybrid (Dual Fuel) - Gas Heat and Air Source Heat Pump System Switches Fuels Automatically for Economy. What is an Air-Source Heat Pump? A heat pump is a modified air conditioning

### Chapter 7 Energy and Energy Balances

CBE14, Levicky Chapter 7 Energy and Energy Balances The concept of energy conservation as expressed by an energy balance equation is central to chemical engineering calculations. Similar to mass balances

### SOLAR COOLING WITH ICE STORAGE

SOLAR COOLING WITH ICE STORAGE Beth Magerman Patrick Phelan Arizona State University 95 N. College Ave Tempe, Arizona, 8581 bmagerma@asu.edu phelan@asu.edu ABSTRACT An investigation is undertaken of a

### Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004

Statistical Mechanics, Kinetic Theory Ideal Gas 8.01t Nov 22, 2004 Statistical Mechanics and Thermodynamics Thermodynamics Old & Fundamental Understanding of Heat (I.e. Steam) Engines Part of Physics Einstein

### Chapter 10: Temperature and Heat

Chapter 10: Temperature and Heat 1. The temperature of a substance is A. proportional to the average kinetic energy of the molecules in a substance. B. equal to the kinetic energy of the fastest moving

### The first law: transformation of energy into heat and work. Chemical reactions can be used to provide heat and for doing work.

The first law: transformation of energy into heat and work Chemical reactions can be used to provide heat and for doing work. Compare fuel value of different compounds. What drives these reactions to proceed

### Measurement And Application of Performance Characteristics Of A Free Piston Stirling Cooler

Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 00 Measurement And Application of Performance Characteristics Of A Free Piston

### Chapter 2 Classical Thermodynamics: The Second Law

Chapter 2 Classical hermodynamics: he Second Law 2.1 Heat engines and refrigerators 2.2 he second law of thermodynamics 2.3 Carnot cycles and Carnot engines 2.4* he thermodynamic temperature scale 2.5

### Chapter 3.4: HVAC & Refrigeration System

Chapter 3.4: HVAC & Refrigeration System Part I: Objective type questions and answers 1. One ton of refrigeration (TR) is equal to. a) Kcal/h b) 3.51 kw c) 120oo BTU/h d) all 2. The driving force for refrigeration

### Chapter 6 The first law and reversibility

Chapter 6 The first law and reversibility 6.1 The first law for processes in closed systems We have discussed the properties of equilibrium states and the relationship between the thermodynamic parameters

### OPTIMAL DESIGN AND OPERATION OF HELIUM REFRIGERATION SYSTEMS *

OPTIMAL DESIGN AND OPERATION OF HELIUM REFRIGERATION SYSTEMS * Abstract Helium refrigerators are of keen interest to present and future particle physics programs utilizing superconducting magnet or radio

### HEAT UNIT 1.1 KINETIC THEORY OF GASES. 1.1.1 Introduction. 1.1.2 Postulates of Kinetic Theory of Gases

UNIT HEAT. KINETIC THEORY OF GASES.. Introduction Molecules have a diameter of the order of Å and the distance between them in a gas is 0 Å while the interaction distance in solids is very small. R. Clausius

### Thermodynamics. 3.6.04-01/15 Stirling engine. Applied Thermodynamics. What you need:

Thermodynamics Applied Thermodynamics /15 Stirling engine What you can learn about First and second law of thermodynamics Reversible cycles Isochoric and isothermal changes Gas laws Efficiency Stirling

### 1. Thermite reaction 2. Enthalpy of reaction, H 3. Heating/cooling curves and changes in state 4. More thermite thermodynamics

Chem 105 Fri 10-23-09 1. Thermite reaction 2. Enthalpy of reaction, H 3. Heating/cooling curves and changes in state 4. More thermite thermodynamics 10/23/2009 1 Please PICK UP your graded EXAM in front.

### The Fundamentals of Thermoelectrics

The Fundamentals of Thermoelectrics A bachelor s laboratory practical Contents 1 An introduction to thermoelectrics 1 2 The thermocouple 4 3 The Peltier device 5 3.1 n- and p-type Peltier elements..................

### Energy and Society. Professor Ani Aprahamian

Energy and Society Professor Ani Aprahamian Wednesday, September 14th Nieuwland Science Hall 123; 6 pm - 7pm Dr. Peter Burns - "Nuclear Energy: Past Mistakes, Current Challenges, Future Prospects" Thursday,

### DE-TOP User s Manual. Version 2.0 Beta

DE-TOP User s Manual Version 2.0 Beta CONTENTS 1. INTRODUCTION... 1 1.1. DE-TOP Overview... 1 1.2. Background information... 2 2. DE-TOP OPERATION... 3 2.1. Graphical interface... 3 2.2. Power plant model...

### Solar and Hydroelectric Power. Abbie Thill Becca Mattson Grace Nordquist Keira Jacobs Miyabi Goedert

Solar and Hydroelectric Power Abbie Thill Becca Mattson Grace Nordquist Keira Jacobs Miyabi Goedert Photovoltaic Cell vs Solar Heating Panel Photovoltaic cells power things such as calculators and satellites.

### Energy Conservation: Heat Transfer Design Considerations Using Thermodynamic Principles

Energy Conservation: Heat Transfer Design Considerations Using Thermodynamic Principles M. Minnucci, J. Ni, A. Nikolova, L. Theodore Department of Chemical Engineering Manhattan College Abstract Environmental

### Chapter 1 Classical Thermodynamics: The First Law. 1.2 The first law of thermodynamics. 1.3 Real and ideal gases: a review

Chapter 1 Classical Thermodynamics: The First Law 1.1 Introduction 1.2 The first law of thermodynamics 1.3 Real and ideal gases: a review 1.4 First law for cycles 1.5 Reversible processes 1.6 Work 1.7

### Testing methods applicable to refrigeration components and systems

Testing methods applicable to refrigeration components and systems Sylvain Quoilin (1)*, Cristian Cuevas (2), Vladut Teodorese (1), Vincent Lemort (1), Jules Hannay (1) and Jean Lebrun (1) (1) University

### 7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790.

CHATER 3. The atmosphere is a homogeneous mixture (a solution) of gases.. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. have volumes that depend on their conditions,

### REFRIGERATION (& HEAT PUMPS)

REFRIGERATION (& HEAT PUMPS) Refrigeration is the 'artificial' extraction of heat from a substance in order to lower its temperature to below that of its surroundings Primarily, heat is extracted from

### ENERGY CLIMATE PROBLEMS - SOLUTIONS

1 ENERGY CLIMATE PROBLEMS - SOLUTIONS 1. This question is about energy sources. (a) Fossil fuels are being produced continuously on Earth and yet they are classed as being non-renewable. Outline why fossil

### Engineering Problem Solving as Model Building

Engineering Problem Solving as Model Building Part 1. How professors think about problem solving. Part 2. Mech2 and Brain-Full Crisis Part 1 How experts think about problem solving When we solve a problem

### Air-sourced 90 Hot Water Supplying Heat Pump "HEM-90A"

Air-sourced 90 Hot Water Supplying Heat Pump "HEM-90A" Takahiro OUE *1, Kazuto OKADA *1 *1 Refrigeration System & Energy Dept., Compressor Div., Machinery Business Kobe Steel has developed an air-sourced

### Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version

Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version Freezing point depression describes the process where the temperature at which a liquid freezes is lowered by adding another

### Gravitational Potential Energy

Gravitational Potential Energy Consider a ball falling from a height of y 0 =h to the floor at height y=0. A net force of gravity has been acting on the ball as it drops. So the total work done on the

### International Journal of Latest Research in Science and Technology Volume 4, Issue 2: Page No.161-166, March-April 2015

International Journal of Latest Research in Science and Technology Volume 4, Issue 2: Page No.161-166, March-April 2015 http://www.mnkjournals.com/ijlrst.htm ISSN (Online):2278-5299 EXPERIMENTAL STUDY

### Chemistry B11 Chapter 4 Chemical reactions

Chemistry B11 Chapter 4 Chemical reactions Chemical reactions are classified into five groups: A + B AB Synthesis reactions (Combination) H + O H O AB A + B Decomposition reactions (Analysis) NaCl Na +Cl

### Availability. Second Law Analysis of Systems. Reading Problems 10.1 10.4 10.59, 10.65, 10.66, 10.67 10.69, 10.75, 10.81, 10.

Availability Readg Problems 10.1 10.4 10.59, 10.65, 10.66, 10.67 10.69, 10.75, 10.81, 10.88 Second Law Analysis of Systems AVAILABILITY: the theoretical maximum amount of reversible work that can be obtaed

### Thermochemical equations allow stoichiometric calculations.

CHEM 1105 THERMOCHEMISTRY 1. Change in Enthalpy ( H) Heat is evolved or absorbed in all chemical reactions. Exothermic reaction: heat evolved - heat flows from reaction mixture to surroundings; products

### PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS

ASME ORC 2015 3rd International Seminar on ORC Power Systems 12-14 October 2015, Brussels, Belgium PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS Vittorio