The final numerical answer given is correct but the math shown does not give that answer.


 Mary Barnett
 1 years ago
 Views:
Transcription
1 Note added to Homework set 7: The solution to Problem 16 has an error in it. The specific heat of water is listed as c 1 J/g K but should be c J/g K The final numerical answer given is correct but the math shown does not give that answer.
2 Answer, Key Homework 7 David McIntyre 1 This printout should have 22 questions, check that it is complete. Multiplechoice questions may continue on the next column or page: find all choices before making your selection. The due time is Central time. Chapter 22 problems. 001 (part 1 of 2) 0 points A heat engine absorbs 362 J of thermal energy and performs 27.2 J of work in each cycle. Find the efficiency of the engine. Correct answer: Given : Q h 362 J and W 27.2 J The thermal efficiency of a heat engine is e W Q h 27.2 J 362 J (part 2 of 2) 0 points Find the thermal energy expelled in each cycle. Correct answer: J. The work done by a heat engine through a cyclic process ( U 0) is W Q h Q c Q c Q h W J. 003 (part 1 of 3) 4 points of a system that absorbs 555 cal of thermal energy while doing 580 J of external work. Correct answer: J. Given : Q 555 cal and W 580 J. According to the first law of thermodynamics, we have U Q W where Q is the thermal energy transferred into the system and W is the work done by the system. Then we have U 555 cal J cal J. 580 J 004 (part 2 of 3) 3 points of a system that absorbs 769 cal of thermal energy while 626 J of external work is done on the system. Correct answer: J. U Q ( W ) 769 cal J cal J J 005 (part 3 of 3) 3 points of a system that is maintained at a constant volume while 1270 cal is removed from the system. Correct answer: J. Since the volume is maintained constant W P V 0 U Q 1270 cal J cal J. 006 (part 1 of 2) 0 points An ideal gas is compressed to half its original volume while its temperature is held constant.
3 Answer, Key Homework 7 David McIntyre 2 If 750 J of energy is removed from the gas during the compression, how much work is done on the gas? Correct answer: 750 J. Given : Q 750 J. According to the first law of thermodynamics, U Q W, where Q is the thermal energy transferred into the system and W is the work done by the system. Since U 0, then Thus Q h W eff P t 1 T c (126 kw) (3600 s) K 928 K J. W Q 750 J. 007 (part 2 of 2) 0 points What is the change in the internal energy of the gas during the compression? Correct answer: 0 J. If the temperature remains constant, U 0 J. 008 (part 1 of 2) 5 points A Carnot engine has a power output of 126 kw. The engine operates between two reservoirs at 16 C and 655 C. How much thermal energy is absorbed per hour? Correct answer: J. Given : P 126 kw, 655 C 928 K, T c 16 C 289 K. The efficiency of heat engine is eff W Q h 1 T c and the work done by the system is W P t. and 009 (part 2 of 2) 5 points How much thermal energy is lost per hour? Correct answer: J. The work done by a heat engine through a cyclic process ( U 0) is Then W Q h Q c. Q c Q h W Q h P t ( J) (126 kw) (3600 s) J. W KW 010 (part 1 of 2) 0 points A steam engine is operated in a cold climate where the exhaust temperature is 26 C. Calculate the theoretical maximum efficiency of the engine using an intake steam temperature of 114 C. Correct answer: Given : 114 C 387 K and T c 26 C 247 K.
4 Answer, Key Homework 7 David McIntyre 3 According to Carnot s theorem, the theoretical maximum efficiency is e 1 T c K 387 K (part 2 of 2) 0 points If, instead, superheated steam at 286 C is used, find the maximum possible efficiency. Correct answer: C 559 K The maximum efficiency is e K 559 K (part 1 of 1) 0 points The efficiency of a 840 MW nuclear power plant is 27.2%. If a river of flow rate kg/s were used to transport the excess thermal energy away, what would be the average temperature increase of the river? Correct answer: C. Given : P output 840 MW 10 6 W and e 27.2% The excess thermal energy transported per second by the river is P excess P input (1 e) ( ) Poutput (1 e) e ( ) 840 MW ( ) MW where e is efficiency and P output is power output of the plant. Then the temperature of the river is increased (per second) by dm dt c T dq dt P excess where c is heat capacity of water and dm is dt flow rate of the water. Thus T P excess kg/s C. 013 (part 1 of 2) 0 points A house loses thermal energy through the exterior walls and roof at a rate of 4860 W when the interior temperature is 20.1 C and the outside temperature is 0.2 C. Calculate the electric power required to maintain the interior temperature at T i for the following two cases: The electric power is used in electric resistance heaters (which convert all of the electricity supplied to thermal energy). Correct answer: 4860 W. Given : Q/ t 4860 W, T i 20.1 C, T o 0.2 C. and Since all the electricity supplied is converted to thermal energy, we have Thus Q t E t P El P El 4860 W. 014 (part 2 of 2) 0 points The electric power is used to operate the compressor of a heat pump (which has a coefficient of performance equal to ν 0.7 of the Carnot cycle value). Correct answer: W.
5 Answer, Key Homework 7 David McIntyre 4 For a heat pump we have T i (COP ) Carnot T i T o 20.1 C K 20.1 C ( 0.2 C) Hence to bring 4860 W of heat in the house requires only P h Q/ t (COP ) actual W 0.6 (COP ) carnot 4860 W (0.7) ( ) W. 015 (part 1 of 1) 0 points An ice tray contains 375 g of water at 0 C. Calculate the change in entropy of the water as it freezes completely and slowly at 0 C. Correct answer: J/K. Given : m 375 g kg, L J/kg, and T 0 C 273 K. In the freezing process T is constant, so Q m L where m is mass of water, and l is latent heat of fusion. Thus S Q T m L T (0.375 kg)( J/kg) 273 K J/K. Given : T i 15.8 C K, T f 80.5 C K, m 210 g, and c 1 J/g K. The heat absorbed in the process is dq r m c dt. The change in entropy in an arbitrary reversible process between an initial state and final state is S f i f i ds m c dt T m c log T f T i f i dq r T (210 g) (1 J/g K) log J/K. ( ) K K 017 (part 1 of 6) 2 points One mole of an ideal monatomic gas is taken through the cycle abca shown schematically in the diagram. State a has volume V a m 3 and pressure P a Pa, and state c has volume V c m 3. Process ca lies along the T 231±1 K isotherm. The molar heat capacities for the gas are c p 20.8 J/mol K and c v 12.5 J/mol K. p ( 10 5 Pa) K a b 016 (part 1 of 1) 10 points Calculate the change in entropy of 210 g of water heated slowly from 15.8 C to 80.5 C. Correct answer: J/K c 250 K V ( 103 m 3 )
6 Answer, Key Homework 7 David McIntyre 5 This schematic plot is intended to give an example of a P V diagram (not to scale). Use the values of P, V, and T given above. Determine the temperature T b of state b. Correct answer: K. Given : P b Pa, V b m 3, and T b J/mol K. We use the ideal gas equation T P V n R, where P is the pressure, V is the volume (both evaluated at b ), R is the molar gas constant, and n is the number of moles. T b P V R ( Pa) ( m3 ) J/mol K K. 018 (part 2 of 6) 2 points Determine the heat Q ab added to the gas during process ab. Correct answer: J. For state a Given : P a Pa, V a m 3, and T a J/mol K. T a P V R ( Pa) ( m3 ) J/mol K K Thus Q n c p T (1 mol)(20.8 J/mol K) ( K K) J, where Q is the heat transferred, n is the number of moles, c p is the the molar heat capacity for a constant pressure process (such as process ab ), and T is the change in temperature from a to b. 019 (part 3 of 6) 2 points U ab U b U a. Correct answer: J. In an isobaric process the change in internal energy is given by U ab Q ab W Q ab P V Q ab P [V b V a ] J ( Pa) ( m m 3 ) J, 020 (part 4 of 6) 2 points Determine the work W bc done by the gas on its surroundings during process bc. Correct answer: 0. W P V and V 0, so W (part 5 of 6) 1 points The net heat added to the gas for the entire cycle is 2140 J. Determine the net work done by the gas on its surroundings for the entire cycle. Correct answer: 2140 J. Given : Q 2140 J. For a complete cycle the change in internal energy U is zero, so W Q 2140 J.
7 The work is simply the net heat added to the gas. 022 (part 6 of 6) 1 points Determine the efficiency Eff of a Carnot engine that operates between the maximum and minimum temperatures in this cycle. Correct answer: The Carnot efficiency Eff is given by Eff 1 T c. The maximum temperature is clearly that of state b, determined to be K in question 1. The minimum temperature will be that of the isotherm, K. Therefore Eff 1 T a T b K K Answer, Key Homework 7 David McIntyre 6
Answer, Key Homework 6 David McIntyre 1
Answer, Key Homework 6 David McIntyre 1 This printout should have 0 questions, check that it is complete. Multiplechoice questions may continue on the next column or page: find all choices before making
More informationExpansion and Compression of a Gas
Physics 6B  Winter 2011 Homework 4 Solutions Expansion and Compression of a Gas In an adiabatic process, there is no heat transferred to or from the system i.e. dq = 0. The first law of thermodynamics
More informationc. Applying the first law of thermodynamics from Equation 15.1, we find that c h c h.
Week 11 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
More informationPhysics 2326  Assignment No: 3 Chapter 22 Heat Engines, Entropy and Second Law of Thermodynamics
Serway/Jewett: PSE 8e Problems Set Ch. 221 Physics 2326  Assignment No: 3 Chapter 22 Heat Engines, Entropy and Second Law of Thermodynamics Objective Questions 1. A steam turbine operates at a boiler
More informationENTROPY AND THE SECOND LAW OF THERMODYNAMICS
Chapter 20: ENTROPY AND THE SECOND LAW OF THERMODYNAMICS 1. In a reversible process the system: A. is always close to equilibrium states B. is close to equilibrium states only at the beginning and end
More informationReversible & Irreversible Processes
Reversible & Irreversible Processes Example of a Reversible Process: Cylinder must be pulled or pushed slowly enough (quasistatically) that the system remains in thermal equilibrium (isothermal). Change
More informationME 201 Thermodynamics
ME 0 Thermodynamics Second Law Practice Problems. Ideally, which fluid can do more work: air at 600 psia and 600 F or steam at 600 psia and 600 F The maximum work a substance can do is given by its availablity.
More informationThe First Law of Thermodynamics
Thermodynamics The First Law of Thermodynamics Thermodynamic Processes (isobaric, isochoric, isothermal, adiabatic) Reversible and Irreversible Processes Heat Engines Refrigerators and Heat Pumps The Carnot
More informationAPPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES
APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES INTRODUCTION This tutorial is designed for students wishing to extend their knowledge of thermodynamics to a more
More informationChapter 15: Thermodynamics
Chapter 15: Thermodynamics The First Law of Thermodynamics Thermodynamic Processes (isobaric, isochoric, isothermal, adiabatic) Reversible and Irreversible Processes Heat Engines Refrigerators and Heat
More informationThe Second Law of Thermodynamics
Objectives MAE 320  Chapter 6 The Second Law of Thermodynamics The content and the pictures are from the text book: Çengel, Y. A. and Boles, M. A., Thermodynamics: An Engineering Approach, McGrawHill,
More informationChapter 22. Heat Engines, Entropy, and the Second Law of Thermodynamics
Chapter 22 Heat Engines, Entropy, and the Second Law of Thermodynamics C HAP T E R O UTLI N E 221 Heat Engines and the Second Law of Thermodynamics 222 Heat Pumps and Refrigerators 223 Reversible and Irreversible
More informationEsystem = 0 = Ein Eout
AGENDA: I. Introduction to Thermodynamics II. First Law Efficiency III. Second Law Efficiency IV. Property Diagrams and Power Cycles V. Additional Material, Terms, and Variables VI. Practice Problems I.
More informationEntropy and the Second Law of Thermodynamics. The Adiabatic Expansion of Gases
Lecture 7 Entropy and the Second Law of Thermodynamics 15/08/07 The Adiabatic Expansion of Gases In an adiabatic process no heat is transferred, Q=0 = C P / C V is assumed to be constant during this process
More informationThe Second Law of Thermodynamics
The Second aw of Thermodynamics The second law of thermodynamics asserts that processes occur in a certain direction and that the energy has quality as well as quantity. The first law places no restriction
More informationPhysics 5D  Nov 18, 2013
Physics 5D  Nov 18, 2013 30 Midterm Scores B } Number of Scores 25 20 15 10 5 F D C } A A A + 0 059.9 6064.9 6569.9 7074.9 7579.9 8084.9 Percent Range (%) The two problems with the fewest correct
More informationa) Use the following equation from the lecture notes: = ( 8.314 J K 1 mol 1) ( ) 10 L
hermodynamics: Examples for chapter 4. 1. One mole of nitrogen gas is allowed to expand from 0.5 to 10 L reversible and isothermal process at 300 K. Calculate the change in molar entropy using a the ideal
More informationEsystem = 0 = Ein Eout
AGENDA: I. Introduction to Thermodynamics II. First Law Efficiency III. Second Law Efficiency IV. Property Diagrams and Power Cycles V. Additional Material, Terms, and Variables VI. Practice Problems I.
More informationUNIT 2 REFRIGERATION CYCLE
UNIT 2 REFRIGERATION CYCLE Refrigeration Cycle Structure 2. Introduction Objectives 2.2 Vapour Compression Cycle 2.2. Simple Vapour Compression Refrigeration Cycle 2.2.2 Theoretical Vapour Compression
More informationSupplementary Notes on Entropy and the Second Law of Thermodynamics
ME 4 hermodynamics I Supplementary Notes on Entropy and the Second aw of hermodynamics Reversible Process A reversible process is one which, having taken place, can be reversed without leaving a change
More informationType: Single Date: Homework: READ 12.8, Do CONCEPT Q. # (14) Do PROBLEMS (40, 52, 81) Ch. 12
Type: Single Date: Objective: Latent Heat Homework: READ 12.8, Do CONCEPT Q. # (14) Do PROBLEMS (40, 52, 81) Ch. 12 AP Physics B Date: Mr. Mirro Heat and Phase Change When bodies are heated or cooled their
More information20 m neon m propane 20
Problems with solutions:. A m 3 tank is filled with a gas at room temperature 0 C and pressure 00 Kpa. How much mass is there if the gas is a) Air b) Neon, or c) Propane? Given: T73K; P00KPa; M air 9;
More informationLecture 36 (Walker 18.8,18.56,)
Lecture 36 (Walker 18.8,18.56,) Entropy 2 nd Law of Thermodynamics Dec. 11, 2009 Help Session: Today, 3:104:00, TH230 Review Session: Monday, 3:104:00, TH230 Solutions to practice Lecture 36 final on
More informationFUNDAMENTALS OF ENGINEERING THERMODYNAMICS
FUNDAMENTALS OF ENGINEERING THERMODYNAMICS System: Quantity of matter (constant mass) or region in space (constant volume) chosen for study. Closed system: Can exchange energy but not mass; mass is constant
More informationBasic problems for ideal gases and problems to the first law of thermodynamics and cycles
Basic problems for ideal gases and problems to the first law of thermodynamics and cycles SHORT SUMMARY OF THE FORMS: Equation of ideal gases: Number of moles: Universal gas constant: General gas equation
More information6 18 A steam power plant receives heat from a furnace at a rate of 280 GJ/h. Heat losses to the surrounding air from the steam as it passes through
Thermo 1 (MEP 261) Thermodynamics An Engineering Approach Yunus A. Cengel & Michael A. Boles 7 th Edition, McGrawHill Companies, ISBN9780073529325, 2008 Sheet 6:Chapter 6 6 17 A 600MW steam power
More informationTHERMODYNAMICS TUTORIAL 5 HEAT PUMPS AND REFRIGERATION. On completion of this tutorial you should be able to do the following.
THERMODYNAMICS TUTORIAL 5 HEAT PUMPS AND REFRIGERATION On completion of this tutorial you should be able to do the following. Discuss the merits of different refrigerants. Use thermodynamic tables for
More information18 Q0 a speed of 45.0 m/s away from a moving car. If the car is 8 Q0 moving towards the ambulance with a speed of 15.0 m/s, what Q0 frequency does a
First Major T042 1 A transverse sinusoidal wave is traveling on a string with a 17 speed of 300 m/s. If the wave has a frequency of 100 Hz, what 9 is the phase difference between two particles on the
More information= T T V V T = V. By using the relation given in the problem, we can write this as: ( P + T ( P/ T)V ) = T
hermodynamics: Examples for chapter 3. 1. Show that C / = 0 for a an ideal gas, b a van der Waals gas and c a gas following P = nr. Assume that the following result nb holds: U = P P Hint: In b and c,
More informationProblem Set 4 Solutions
Chemistry 360 Dr Jean M Standard Problem Set 4 Solutions 1 Two moles of an ideal gas are compressed isothermally and reversibly at 98 K from 1 atm to 00 atm Calculate q, w, ΔU, and ΔH For an isothermal
More informationChapter 10 Temperature and Heat
Chapter 10 Temperature and Heat What are temperature and heat? Are they the same? What causes heat? What Is Temperature? How do we measure temperature? What are we actually measuring? Temperature and Its
More informationEnergy Matters Heat. Changes of State
Energy Matters Heat Changes of State Fusion If we supply heat to a lid, such as a piece of copper, the energy supplied is given to the molecules. These start to vibrate more rapidly and with larger vibrations
More informationCHAPTER 7 THE SECOND LAW OF THERMODYNAMICS. Blank
CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS Blank SONNTAG/BORGNAKKE STUDY PROBLEM 71 7.1 A car engine and its fuel consumption A car engine produces 136 hp on the output shaft with a thermal efficiency
More informationThermodynamics  Example Problems Problems and Solutions
Thermodynamics  Example Problems Problems and Solutions 1 Examining a Power Plant Consider a power plant. At point 1 the working gas has a temperature of T = 25 C. The pressure is 1bar and the mass flow
More informationdm 3. dm 3 ) b Find the buoyant force (noste) on the stone when immersed in water. B = r f Vg)
CHAPTER 9 1 Archimedes Law The magnitude of the buoyant force always equals the weight of the fluid displaced by the object Noste nesteessä on yhtä suuri kuin syrjäytetyn nestemäärän paino. Hpätee myös
More informationChapter 5 The Second Law of Thermodynamics
Chapter 5 he Second aw of hermodynamics he second law of thermodynamics states that processes occur in a certain direction, not in just any direction. Physical processes in nature can proceed toward equilibrium
More informationHeat as Energy Transfer. Heat is energy transferred from one object to another because of a difference in temperature
Unit of heat: calorie (cal) Heat as Energy Transfer Heat is energy transferred from one object to another because of a difference in temperature 1 cal is the amount of heat necessary to raise the temperature
More informationCHAPTER 27 SPECIFIC HEAT CAPACITIES OF GASES
HATE 7 SEIFI HEAT AAITIES OF GASES. N mole, W g/mol, m/s K.E. of the vessel Internal energy of the gas (/) mv (/) J n r(t) 8. T T k. 8.. m g, t.7 cal/g J. J/al. dq du + dw Now, (for a rigid body) So,
More informationEntropy and The Second Law of Thermodynamics
The Second Law of Thermodynamics (SL) Entropy and The Second Law of Thermodynamics Explain and manipulate the second law State and illustrate by example the second law of thermodynamics Write both the
More informationPhysics 2101 Section 3 April 26th: Chap. 18 : Chap Ann n ce n e t nnt : Exam #4, April Exam #4,
Physics 2101 Section 3 April 26 th : Chap. 181919 Announcements: n nt Exam #4, April 28 th (Ch. 13.618.8) 18.8) Final Exam: May 11 th (Tuesday), 7:30 AM Make up Final: May 15 th (Saturday) 7:30 AM Class
More information20 Entropy and the Second Law of Thermodynamics
20 Entropy and the Second Law of Thermodynamics An anonymous graffito on a wall of the Pecan Street Cafe in Austin, Texas, reads: Time is God s way of keeping things from happening all at once. Time also
More informationExergy: the quality of energy N. Woudstra
Exergy: the quality of energy N. Woudstra Introduction Characteristic for our society is a massive consumption of goods and energy. Continuation of this way of life in the long term is only possible if
More informationStirling heat engine Internal combustion engine (Otto cycle) Diesel engine Steam engine (Rankine cycle) Kitchen Refrigerator
Lecture. Real eat Engines and refrigerators (Ch. ) Stirling heat engine Internal combustion engine (Otto cycle) Diesel engine Steam engine (Rankine cycle) Kitchen Refrigerator Carnot Cycle  is not very
More information Know basic of refrigeration  Able to analyze the efficiency of refrigeration system 
Refrigeration cycle Objectives  Know basic of refrigeration  Able to analyze the efficiency of refrigeration system  contents Ideal VaporCompression Refrigeration Cycle Actual VaporCompression Refrigeration
More informationCHAPTER 25 IDEAL GAS LAWS
EXERCISE 139, Page 303 CHAPTER 5 IDEAL GAS LAWS 1. The pressure of a mass of gas is increased from 150 kpa to 750 kpa at constant temperature. Determine the final volume of the gas, if its initial volume
More informationProblem Set 3 Solutions
Chemistry 360 Dr Jean M Standard Problem Set 3 Solutions 1 (a) One mole of an ideal gas at 98 K is expanded reversibly and isothermally from 10 L to 10 L Determine the amount of work in Joules We start
More informationPERFORMANCE ANALYSIS OF VAPOUR COMPRESSION REFRIGERATION SYSTEM WITH R404A, R407C AND R410A
Int. J. Mech. Eng. & Rob. Res. 213 Jyoti Soni and R C Gupta, 213 Research Paper ISSN 2278 149 www.ijmerr.com Vol. 2, No. 1, January 213 213 IJMERR. All Rights Reserved PERFORMANCE ANALYSIS OF VAPOUR COMPRESSION
More information39 kg of water at 10 C is mixed with 360 kg of ice at 7 C.
39 kg of water at 10 C is mixed with 360 kg of ice at 7 C. (The heat capacity of water is 4190 J/(kg C), that of ice is 2090 J/(kg C), and the heat of fusion of water is 3.34x10 5 J/kg. A. 320 J/K B.
More informationSpecific Heat Capacity and Latent Heat Questions A2 Physics
1. An electrical heater is used to heat a 1.0 kg block of metal, which is well lagged. The table shows how the temperature of the block increased with time. temp/ C 20.1 23.0 26.9 30.0 33.1 36.9 time/s
More informationWe will try to get familiar with a heat pump, and try to determine its performance coefficient under different circumstances.
C4. Heat Pump I. OBJECTIVE OF THE EXPERIMENT We will try to get familiar with a heat pump, and try to determine its performance coefficient under different circumstances. II. INTRODUCTION II.1. Thermodynamic
More information1 Exercise 3.1b pg 131
In this solution set, an underline is used to show the last significant digit of numbers. For instance in x = 2.51693 the 2,5,1, and 6 are all significant. Digits to the right of the underlined digit,
More informationChapter 11. Refrigeration Cycles
Chapter 11 Refrigeration Cycles The vapor compression refrigeration cycle is a common method for transferring heat from a low temperature space to a high temperature space. The figures below show the objectives
More informationChapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57
Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Thermodynamics study and application of thermal energy temperature quantity
More informationAn analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation
An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation R K Kapooria Department of Mechanical Engineering, BRCM College of Engineering & Technology, Bahal (Haryana)
More informationLaws of Thermodynamics
Laws of Thermodynamics Thermodynamics Thermodynamics is the study of the effects of work, heat, and energy on a system Thermodynamics is only concerned with macroscopic (largescale) changes and observations
More information= Q H Q C Q H Q C Q H Q C. ω = Q C W =
I.D The Second Law The historical development of thermodynamics follows the industrial olution in the 19 th century, and the advent of heat engines. It is interesting to see how such practical considerations
More informationSecond Law of Thermodynamics Alternative Statements
Second Law of Thermodynamics Alternative Statements There is no simple statement that captures all aspects of the second law. Several alternative formulations of the second law are found in the technical
More informationQUESTIONS THERMODYNAMICS PRACTICE PROBLEMS FOR NONTECHNICAL MAJORS. Thermodynamic Properties
QUESTIONS THERMODYNAMICS PRACTICE PROBLEMS FOR NONTECHNICAL MAJORS Thermodynamic Properties 1. If an object has a weight of 10 lbf on the moon, what would the same object weigh on Jupiter? ft ft ft g
More informationTHE SECOND LAW OF THERMODYNAMICS
1 THE SECOND LAW OF THERMODYNAMICS The FIRST LAW is a statement of the fact that ENERGY (a useful concept) is conserved. It says nothing about the WAY, or even WHETHER one form of energy can be converted
More informationEnthalpy changes and calorimetry. Enthalpy changes in reactions Calorimetry and heat measurement Hess s Law Heats of formation
Enthalpy changes and calorimetry Enthalpy changes in reactions Calorimetry and heat measurement Hess s Law Heats of formation Learning objectives Describe the standard state for thermodynamic functions
More information(b) 1. Look up c p for air in Table A.6. c p = 1004 J/kg K 2. Use equation (1) and given and looked up values to find s 2 s 1.
Problem 1 Given: Air cooled where: T 1 = 858K, P 1 = P = 4.5 MPa gage, T = 15 o C = 88K Find: (a) Show process on a Ts diagram (b) Calculate change in specific entropy if air is an ideal gas (c) Evaluate
More informationSOLUTION MANUAL SI UNIT PROBLEMS CHAPTER 9 SONNTAG BORGNAKKE VAN WYLEN. FUNDAMENTALS of. Thermodynamics. Sixth Edition
SOLUTION MANUAL SI UNIT PROBLEMS CHAPTER 9 SONNTAG BORGNAKKE VAN WYLEN FUNDAMENTALS of Thermodynamics Sixth Edition CONTENT SUBSECTION PROB NO. Correspondence table ConceptStudy Guide Problems 20 Steady
More informationPractice Problems on Conservation of Energy. heat loss of 50,000 kj/hr. house maintained at 22 C
COE_10 A passive solar house that is losing heat to the outdoors at an average rate of 50,000 kj/hr is maintained at 22 C at all times during a winter night for 10 hr. The house is to be heated by 50 glass
More informationMCQ  ENERGY and CLIMATE
1 MCQ  ENERGY and CLIMATE 1. The volume of a given mass of water at a temperature of T 1 is V 1. The volume increases to V 2 at temperature T 2. The coefficient of volume expansion of water may be calculated
More informationPSS 17.1: The Bermuda Triangle
Assignment 6 Consider 6.0 g of helium at 40_C in the form of a cube 40 cm. on each side. Suppose 2000 J of energy are transferred to this gas. (i) Determine the final pressure if the process is at constant
More informationApplied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur
Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture  7 Ideal Gas Laws, Different Processes Let us continue
More informationEntropy. Objectives. MAE 320  Chapter 7. Definition of Entropy. Definition of Entropy. Definition of Entropy. Definition of Entropy + Δ
MAE 320  Chapter 7 Entropy Objectives Defe a new property called entropy to quantify the secondlaw effects. Establish the crease of entropy prciple. Calculate the entropy changes that take place durg
More informationClausius Inequality (contd )
Module 7 Entropy Suppose we have an engine that receives from several heat reservoirs and rejects heat to several reservoirs, we still have the equation valid. Clausius Inequality Clausius Inequality (contd
More informationThe Basic Physics of Heat Pumps
The Basic Physics of Heat Pumps Hilliard Kent Macomber Emeritus Professor of Physics University of Northern Iowa June 2002 Introduction In order to understand the basic physics of heat pumps, it is necessary
More informationThermochemistry. r2 d:\files\courses\111020\99heat&thermorans.doc. Ron Robertson
Thermochemistry r2 d:\files\courses\111020\99heat&thermorans.doc Ron Robertson I. What is Energy? A. Energy is a property of matter that allows work to be done B. Potential and Kinetic Potential energy
More information2B.1 ChilledWater Return (and Supply) Temperature...119. 2B.3 CoolingWater Supply Temperature / Flow... 124
Appendix 2B: Chiller Test Results...119 2B.1 ChilledWater Return (and Supply) Temperature...119 2B.2 ChilledWater Flow... 122 2B.3 CoolingWater Supply Temperature / Flow... 124 2B.4 Pressure/Temperature...
More information15 THERMODYNAMICS. Learning Objectives
CHAPTER 15 THERMODYNAMICS 505 15 THERMODYNAMICS Figure 15.1 A steam engine uses heat transfer to do work. Tourists regularly ride this narrowgauge steam engine train near the San Juan Skyway in Durango,
More informationASSESSMENT OF THE SUBCOOLING CAPABILITIES OF A THERMOELECTRIC DEVICE IN A VAPOR COMPRESSION REFRIGERATION SYSTEM
Universitatea de Ştiinţe Agricole şi Medicină Veterinară Iaşi ASSESSMENT OF E SUBCOOLING CAPABILITIES OF A ERMOELECTRIC DEVICE IN A VAPOR COMPRESSION REFRIGERATION SYSTEM R. ROŞCA 1, I. ŢENU 1, P. CÂRLESCU
More informationTHE CLAUSIUS INEQUALITY
Part IV Entropy In Part III, we introduced the second law of thermodynamics and applied it to cycles and cyclic devices. In this part, we apply the second law to processes. he first law of thermodynamics
More informationIn a cyclic transformation, where the final state of a system is the same as the initial one, U = 0
Chapter 4 Entropy and second law of thermodynamics 4.1 Carnot cycle In a cyclic transformation, where the final state of a system is the same as the initial one, U = 0 since the internal energy U is a
More informationCalorimetry and Enthalpy. Chapter 5.2
Calorimetry and Enthalpy Chapter 5.2 Heat Capacity Specific heat capacity (c) is the quantity of thermal energy required to raise the temperature of 1g of a substance by 1⁰C The units for specific heat
More informationESO201A: Thermodynamics
ESO201A: Thermodynamics Instructor: Sameer Khandekar First Semester: 2015 2016 Lecture #1: Course File Introduction to Thermodynamics, Importance, Definitions Continuum, System: closed, open and isolated,
More informationThe First Law of Thermodynamics: Closed Systems. Heat Transfer
The First Law of Thermodynamics: Closed Systems The first law of thermodynamics can be simply stated as follows: during an interaction between a system and its surroundings, the amount of energy gained
More informationIntroduction to the Ideal Gas Law
Course PHYSICS260 Assignment 5 Consider ten grams of nitrogen gas at an initial pressure of 6.0 atm and at room temperature. It undergoes an isobaric expansion resulting in a quadrupling of its volume.
More informationProblem Set 1 3.20 MIT Professor Gerbrand Ceder Fall 2003
LEVEL 1 PROBLEMS Problem Set 1 3.0 MIT Professor Gerbrand Ceder Fall 003 Problem 1.1 The internal energy per kg for a certain gas is given by U = 0. 17 T + C where U is in kj/kg, T is in Kelvin, and C
More informationEnergy Conversions I. Unit of measure (most common one) Form Definition Example
Energy Conversions I Energy can take many forms, but any one form can usually be converted into another. And no matter what form we talk about, we can use conversion factors to calculate equivalent amounts
More informationThere is no general classification of thermodynamic cycle. The following types will be discussed as those are included in the course curriculum
THERMODYNAMIC CYCLES There is no general classification of thermodynamic cycle. The following types will be discussed as those are included in the course curriculum 1. Gas power cycles a) Carnot cycle
More informationThe First Law of Thermodynamics
The First Law of Thermodynamics (FL) The First Law of Thermodynamics Explain and manipulate the first law Write the integral and differential forms of the first law Describe the physical meaning of each
More informationHeat and Work. First Law of Thermodynamics 9.1. Heat is a form of energy. Calorimetry. Work. First Law of Thermodynamics.
Heat and First Law of Thermodynamics 9. Heat Heat and Thermodynamic rocesses Thermodynamics is the science of heat and work Heat is a form of energy Calorimetry Mechanical equivalent of heat Mechanical
More informationThermodynamics AP Physics B. Multiple Choice Questions
Thermodynamics AP Physics B Name Multiple Choice Questions 1. What is the name of the following statement: When two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium
More informationAPPLIED THERMODYNAMICS. TUTORIAL No.3 GAS TURBINE POWER CYCLES. Revise gas expansions in turbines. Study the Joule cycle with friction.
APPLIED HERMODYNAMICS UORIAL No. GAS URBINE POWER CYCLES In this tutorial you will do the following. Revise gas expansions in turbines. Revise the Joule cycle. Study the Joule cycle with friction. Extend
More informationSheet 5:Chapter 5 5 1C Name four physical quantities that are conserved and two quantities that are not conserved during a process.
Thermo 1 (MEP 261) Thermodynamics An Engineering Approach Yunus A. Cengel & Michael A. Boles 7 th Edition, McGrawHill Companies, ISBN9780073529325, 2008 Sheet 5:Chapter 5 5 1C Name four physical
More informationChapter 6 Energy Equation for a Control Volume
Chapter 6 Energy Equation for a Control Volume Conservation of Mass and the Control Volume Closed systems: The mass of the system remain constant during a process. Control volumes: Mass can cross the boundaries,
More informationOUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE. TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS
UNIT 61: ENGINEERING THERMODYNAMICS Unit code: D/601/1410 QCF level: 5 Credit value: 15 OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS 2 Be able to evaluate
More informationTechnical Thermodynamics
Technical Thermodynamics Chapter 2: Basic ideas and some definitions Prof. Dr.Ing. habil. Egon Hassel University of Rostock, Germany Faculty of Mechanical Engineering and Ship Building Institute of Technical
More informationMohan Chandrasekharan #1
International Journal of Students Research in Technology & Management Exergy Analysis of Vapor Compression Refrigeration System Using R12 and R134a as Refrigerants Mohan Chandrasekharan #1 # Department
More informationLesson. 11 Vapour Compression Refrigeration Systems: Performance Aspects And Cycle Modifications. Version 1 ME, IIT Kharagpur 1
Lesson Vapour Compression Refrigeration Systems: Performance Aspects And Cycle Modifications Version ME, IIT Kharagpur The objectives of this lecture are to discuss. Performance aspects of SSS cycle and
More informationPhys222 W11 Quiz 1: Chapters 1921 Keys. Name:
Name:. In order for two objects to have the same temperature, they must a. be in thermal equilibrium.
More informationk is change in kinetic energy and E
Energy Balances on Closed Systems A system is closed if mass does not cross the system boundary during the period of time covered by energy balance. Energy balance for a closed system written between two
More informationUNIT 5 REFRIGERATION SYSTEMS
UNIT REFRIGERATION SYSTEMS Refrigeration Systems Structure. Introduction Objectives. Vapour Compression Systems. Carnot Vapour Compression Systems. Limitations of Carnot Vapour Compression Systems with
More informationChapter 4 EFFICIENCY OF ENERGY CONVERSION
Chapter 4 EFFICIENCY OF ENERGY CONVERSION The National Energy Strategy reflects a National commitment to greater efficiency in every element of energy production and use. Greater energy efficiency can
More informationThe Kinetic Theory of Gases Sections Covered in the Text: Chapter 18
The Kinetic Theory of Gases Sections Covered in the Text: Chapter 18 In Note 15 we reviewed macroscopic properties of matter, in particular, temperature and pressure. Here we see how the temperature and
More informationChapter 5. Thermochemistry
Chapter 5. Thermochemistry THERMODYNAMICS  study of energy and its transformations Thermochemistry  study of energy changes associated with chemical reactions Energy  capacity to do work or to transfer
More informationReservoir Fluids PETE 310
Reservoir Fluids PETE 31 Lab 2: Determination of the Vapor Pressure of Propane Learning Objectives When you complete this laboratory, you should be able to: Use closedcell and sightglass methods for
More informationAn introduction to thermodynamics applied to Organic Rankine Cycles
An introduction to thermodynamics applied to Organic Rankine Cycles By : Sylvain Quoilin PhD Student at the University of Liège November 2008 1 Definition of a few thermodynamic variables 1.1 Main thermodynamics
More information