The final numerical answer given is correct but the math shown does not give that answer.


 Mary Barnett
 1 years ago
 Views:
Transcription
1 Note added to Homework set 7: The solution to Problem 16 has an error in it. The specific heat of water is listed as c 1 J/g K but should be c J/g K The final numerical answer given is correct but the math shown does not give that answer.
2 Answer, Key Homework 7 David McIntyre 1 This printout should have 22 questions, check that it is complete. Multiplechoice questions may continue on the next column or page: find all choices before making your selection. The due time is Central time. Chapter 22 problems. 001 (part 1 of 2) 0 points A heat engine absorbs 362 J of thermal energy and performs 27.2 J of work in each cycle. Find the efficiency of the engine. Correct answer: Given : Q h 362 J and W 27.2 J The thermal efficiency of a heat engine is e W Q h 27.2 J 362 J (part 2 of 2) 0 points Find the thermal energy expelled in each cycle. Correct answer: J. The work done by a heat engine through a cyclic process ( U 0) is W Q h Q c Q c Q h W J. 003 (part 1 of 3) 4 points of a system that absorbs 555 cal of thermal energy while doing 580 J of external work. Correct answer: J. Given : Q 555 cal and W 580 J. According to the first law of thermodynamics, we have U Q W where Q is the thermal energy transferred into the system and W is the work done by the system. Then we have U 555 cal J cal J. 580 J 004 (part 2 of 3) 3 points of a system that absorbs 769 cal of thermal energy while 626 J of external work is done on the system. Correct answer: J. U Q ( W ) 769 cal J cal J J 005 (part 3 of 3) 3 points of a system that is maintained at a constant volume while 1270 cal is removed from the system. Correct answer: J. Since the volume is maintained constant W P V 0 U Q 1270 cal J cal J. 006 (part 1 of 2) 0 points An ideal gas is compressed to half its original volume while its temperature is held constant.
3 Answer, Key Homework 7 David McIntyre 2 If 750 J of energy is removed from the gas during the compression, how much work is done on the gas? Correct answer: 750 J. Given : Q 750 J. According to the first law of thermodynamics, U Q W, where Q is the thermal energy transferred into the system and W is the work done by the system. Since U 0, then Thus Q h W eff P t 1 T c (126 kw) (3600 s) K 928 K J. W Q 750 J. 007 (part 2 of 2) 0 points What is the change in the internal energy of the gas during the compression? Correct answer: 0 J. If the temperature remains constant, U 0 J. 008 (part 1 of 2) 5 points A Carnot engine has a power output of 126 kw. The engine operates between two reservoirs at 16 C and 655 C. How much thermal energy is absorbed per hour? Correct answer: J. Given : P 126 kw, 655 C 928 K, T c 16 C 289 K. The efficiency of heat engine is eff W Q h 1 T c and the work done by the system is W P t. and 009 (part 2 of 2) 5 points How much thermal energy is lost per hour? Correct answer: J. The work done by a heat engine through a cyclic process ( U 0) is Then W Q h Q c. Q c Q h W Q h P t ( J) (126 kw) (3600 s) J. W KW 010 (part 1 of 2) 0 points A steam engine is operated in a cold climate where the exhaust temperature is 26 C. Calculate the theoretical maximum efficiency of the engine using an intake steam temperature of 114 C. Correct answer: Given : 114 C 387 K and T c 26 C 247 K.
4 Answer, Key Homework 7 David McIntyre 3 According to Carnot s theorem, the theoretical maximum efficiency is e 1 T c K 387 K (part 2 of 2) 0 points If, instead, superheated steam at 286 C is used, find the maximum possible efficiency. Correct answer: C 559 K The maximum efficiency is e K 559 K (part 1 of 1) 0 points The efficiency of a 840 MW nuclear power plant is 27.2%. If a river of flow rate kg/s were used to transport the excess thermal energy away, what would be the average temperature increase of the river? Correct answer: C. Given : P output 840 MW 10 6 W and e 27.2% The excess thermal energy transported per second by the river is P excess P input (1 e) ( ) Poutput (1 e) e ( ) 840 MW ( ) MW where e is efficiency and P output is power output of the plant. Then the temperature of the river is increased (per second) by dm dt c T dq dt P excess where c is heat capacity of water and dm is dt flow rate of the water. Thus T P excess kg/s C. 013 (part 1 of 2) 0 points A house loses thermal energy through the exterior walls and roof at a rate of 4860 W when the interior temperature is 20.1 C and the outside temperature is 0.2 C. Calculate the electric power required to maintain the interior temperature at T i for the following two cases: The electric power is used in electric resistance heaters (which convert all of the electricity supplied to thermal energy). Correct answer: 4860 W. Given : Q/ t 4860 W, T i 20.1 C, T o 0.2 C. and Since all the electricity supplied is converted to thermal energy, we have Thus Q t E t P El P El 4860 W. 014 (part 2 of 2) 0 points The electric power is used to operate the compressor of a heat pump (which has a coefficient of performance equal to ν 0.7 of the Carnot cycle value). Correct answer: W.
5 Answer, Key Homework 7 David McIntyre 4 For a heat pump we have T i (COP ) Carnot T i T o 20.1 C K 20.1 C ( 0.2 C) Hence to bring 4860 W of heat in the house requires only P h Q/ t (COP ) actual W 0.6 (COP ) carnot 4860 W (0.7) ( ) W. 015 (part 1 of 1) 0 points An ice tray contains 375 g of water at 0 C. Calculate the change in entropy of the water as it freezes completely and slowly at 0 C. Correct answer: J/K. Given : m 375 g kg, L J/kg, and T 0 C 273 K. In the freezing process T is constant, so Q m L where m is mass of water, and l is latent heat of fusion. Thus S Q T m L T (0.375 kg)( J/kg) 273 K J/K. Given : T i 15.8 C K, T f 80.5 C K, m 210 g, and c 1 J/g K. The heat absorbed in the process is dq r m c dt. The change in entropy in an arbitrary reversible process between an initial state and final state is S f i f i ds m c dt T m c log T f T i f i dq r T (210 g) (1 J/g K) log J/K. ( ) K K 017 (part 1 of 6) 2 points One mole of an ideal monatomic gas is taken through the cycle abca shown schematically in the diagram. State a has volume V a m 3 and pressure P a Pa, and state c has volume V c m 3. Process ca lies along the T 231±1 K isotherm. The molar heat capacities for the gas are c p 20.8 J/mol K and c v 12.5 J/mol K. p ( 10 5 Pa) K a b 016 (part 1 of 1) 10 points Calculate the change in entropy of 210 g of water heated slowly from 15.8 C to 80.5 C. Correct answer: J/K c 250 K V ( 103 m 3 )
6 Answer, Key Homework 7 David McIntyre 5 This schematic plot is intended to give an example of a P V diagram (not to scale). Use the values of P, V, and T given above. Determine the temperature T b of state b. Correct answer: K. Given : P b Pa, V b m 3, and T b J/mol K. We use the ideal gas equation T P V n R, where P is the pressure, V is the volume (both evaluated at b ), R is the molar gas constant, and n is the number of moles. T b P V R ( Pa) ( m3 ) J/mol K K. 018 (part 2 of 6) 2 points Determine the heat Q ab added to the gas during process ab. Correct answer: J. For state a Given : P a Pa, V a m 3, and T a J/mol K. T a P V R ( Pa) ( m3 ) J/mol K K Thus Q n c p T (1 mol)(20.8 J/mol K) ( K K) J, where Q is the heat transferred, n is the number of moles, c p is the the molar heat capacity for a constant pressure process (such as process ab ), and T is the change in temperature from a to b. 019 (part 3 of 6) 2 points U ab U b U a. Correct answer: J. In an isobaric process the change in internal energy is given by U ab Q ab W Q ab P V Q ab P [V b V a ] J ( Pa) ( m m 3 ) J, 020 (part 4 of 6) 2 points Determine the work W bc done by the gas on its surroundings during process bc. Correct answer: 0. W P V and V 0, so W (part 5 of 6) 1 points The net heat added to the gas for the entire cycle is 2140 J. Determine the net work done by the gas on its surroundings for the entire cycle. Correct answer: 2140 J. Given : Q 2140 J. For a complete cycle the change in internal energy U is zero, so W Q 2140 J.
7 The work is simply the net heat added to the gas. 022 (part 6 of 6) 1 points Determine the efficiency Eff of a Carnot engine that operates between the maximum and minimum temperatures in this cycle. Correct answer: The Carnot efficiency Eff is given by Eff 1 T c. The maximum temperature is clearly that of state b, determined to be K in question 1. The minimum temperature will be that of the isotherm, K. Therefore Eff 1 T a T b K K Answer, Key Homework 7 David McIntyre 6
Chapter 8 Maxwell relations and measurable properties
Chapter 8 Maxwell relations and measurable properties 8.1 Maxwell relations Other thermodynamic potentials emerging from Legendre transforms allow us to switch independent variables and give rise to alternate
More informationDOE FUNDAMENTALS HANDBOOK THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW Volume 1 of 3
DOEHDBK1012/192 JUNE 1992 DOE FUNDAMENTALS HANDBOOK THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW Volume 1 of 3 U.S. Department of Energy Washington, D.C. 20585 FSC6910 Distribution Statement A. Approved
More informationMEP Y9 Practice Book A
1 Base Arithmetic 1.1 Binary Numbers We normally work with numbers in base 10. In this section we consider numbers in base 2, often called binary numbers. In base 10 we use the digits 0, 1, 2, 3, 4, 5,
More informationEnergy Savings in Methanol Synthesis : Use of Heat Integration Techniques and Simulation Tools.
Page 1 Energy Savings in Methanol Synthesis : Use of Heat Integration Techniques and Simulation Tools. François Maréchal a, Georges Heyen a, Boris Kalitventzeff a,b a L.A.S.S.C., Université de Liège, SartTilman
More information= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that
Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without
More informationMath 2001 Homework #10 Solutions
Math 00 Homework #0 Solutions. Section.: ab. For each map below, determine the number of southerly paths from point to point. Solution: We just have to use the same process as we did in building Pascal
More informationAxial Flow Compressor Mean Line Design
Axial Flow Compressor Mean Line Design Niclas Falck February 2008 Master Thesis Division of Thermal Power Engineering Department of Energy Sciences Lund University, Sweden Niclas Falck 2008 ISSN 02821990
More information(b) As the mass of the Sn electrode decreases, where does the mass go?
A student is given a standard galvanic cell, represented above, that has a Cu electrode and a Sn electrode. As current flows through the cell, the student determines that the Cu electrode increases in
More informationLearning Objectives for AP Physics
Learning Objectives for AP Physics These course objectives are intended to elaborate on the content outline for Physics B and Physics C found in the AP Physics Course Description. In addition to the five
More informationDOE FUNDAMENTALS HANDBOOK
DOEHDBK1019/293 JANUARY 1993 DOE FUNDAMENTALS HANDBOOK NUCLEAR PHYSICS AND REACTOR THEORY Volume 2 of 2 U.S. Department of Energy Washington, D.C. 20585 FSC6910 Distribution Statement A. Approved for
More information( ) where W is work, f(x) is force as a function of distance, and x is distance.
Work by Integration 1. Finding the work required to stretch a spring 2. Finding the work required to wind a wire around a drum 3. Finding the work required to pump liquid from a tank 4. Finding the work
More informationSensing and Control. A Process Control Primer
Sensing and Control A Process Control Primer Copyright, Notices, and Trademarks Printed in U.S.A. Copyright 2000 by Honeywell Revision 1 July 2000 While this information is presented in good faith and
More informationAPPLICATION NOTE. Measuring Current Output Transducers with Campbell Scientific Dataloggers. App. Note Code: 2MIB Revision: 1
App. Note Code: 2MIB Revision: 1 APPLICATION NOTE Measuring Current Output s with Campbell Scientific Dataloggers 815 W. 1800 N. Logan, Utah 843211784 (435) 7532342 FAX (435) 7509540 Copyright (C)
More informationHeating and Cooling With a Heat Pump
Heating and Cooling With a Heat Pump Heating and Cooling With a Heat Pump Produced by Natural Resources Canada s Office of Energy Efficiency EnerGuide The Heating and Cooling series is published by the
More information+ 4θ 4. We want to minimize this function, and we know that local minima occur when the derivative equals zero. Then consider
Math Xb Applications of Trig Derivatives 1. A woman at point A on the shore of a circular lake with radius 2 miles wants to arrive at the point C diametrically opposite A on the other side of the lake
More information6 WORK and ENERGY. 6.0 Introduction. 6.1 Work and kinetic energy. Objectives
6 WORK and ENERGY Chapter 6 Work and Energy Objectives After studying this chapter you should be able to calculate work done by a force; be able to calculate kinetic energy; be able to calculate power;
More informationThe plasmoelectric effect: optically induced electrochemical potentials in resonant metallic structures
The plasmoelectric effect: optically induced electrochemical potentials in resonant metallic structures Matthew T. Sheldon and Harry A. Atwater Thomas J. Watson Laboratories of Applied Physics, California
More informationThe Prospects of Alternatives to Vapor Compression Technology for Space Cooling and Food Refrigeration Applications
PNNL19259 Prepared for the U.S. Department of Energy under Contract DEAC0576RL01830 The Prospects of Alternatives to Vapor Compression Technology for Space Cooling and Food Refrigeration Applications
More informationOPRE 6201 : 2. Simplex Method
OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2
More informationAllocation of Fuel Energy and Emissions to Heat and Power in CHP
Allocation of Fuel Energy and Emissions to Heat and Power in CHP Arto Nuorkivi EnergyAN Consulting 7 September 2010 Page 1 Allocation of Fuel Energy and Emissions to Heat and Power in CHP Contents 1.
More informationRevised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m)
Chapter 23 Squares Modulo p Revised Version of Chapter 23 We learned long ago how to solve linear congruences ax c (mod m) (see Chapter 8). It s now time to take the plunge and move on to quadratic equations.
More informationTerminology and Symbols in Control Engineering
Technical Information Terminology and Symbols in Control Engineering 1 Part 1 Fundamentals Technical Information Part 1: Fundamentals Part 2: Selfoperated Regulators Part 3: Control Valves Part 4: Communication
More informationTraining Guide. An Introduction to Well Drawdown
Training Guide An Introduction to Well Drawdown Rural and Small Systems Training Guide An Introduction to Well Drawdown Michael J. Lytle, Arizona Water Association Contributing Author Paul Markowski, Nebraska
More informationMEP Pupil Text 12. A list of numbers which form a pattern is called a sequence. In this section, straightforward sequences are continued.
MEP Pupil Text Number Patterns. Simple Number Patterns A list of numbers which form a pattern is called a sequence. In this section, straightforward sequences are continued. Worked Example Write down the
More informationMiscellaneous Mechanical Equipment
Miscellaneous Mechanical Equipment Course No: M05001 Credit: 5 PDH Elie Tawil, P.E., LEED AP Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980 P: (877) 3225800 F:
More informationTOPIC: 191004 KNOWLEDGE: K1.01 [3.3/3.5] Which one of the following contains indications of cavitation in an operating centrifugal pump?
KNOWLEDGE: K1.01 [3.3/3.5] P21 Which one of the following contains indications of cavitation in an operating centrifugal pump? A. Low flow rate with low discharge pressure. B. Low flow rate with high discharge
More informationBEST PRACTICES. Data Center Best Practices Guide Energy efficiency solutions for highperformance data centers
BEST PRACTICES Data Center Best Practices Guide Energy efficiency solutions for highperformance data centers Table of Contents Introduction...1 1. Information Technology (IT) Systems...3 2. Air Management...10
More informationHowever, industrial applications may utilize a relay, which shortcircuits the ICL path after the inrush sequence.
Application note for Inrush Current Limiters (ICL) Turning on electrical devices generally cause high inrush currents which can damage electronic components and cause interruption of the line voltage if
More informationWhy hot water freezes faster than cold water
Why hot water freezes faster than cold water By Daniel Muthukrishna Undergraduate Engineering/Physics Student at the University of Queensland Images also produced by Daniel Muthukrishna Some of the main
More informationThere is no such thing as heat energy
There is no such thing as heat energy We have used heat only for the energy transferred between the objects at different temperatures, and thermal energy to describe the energy content of the objects.
More information