Chapter 4 Practice Quiz

Save this PDF as:

Size: px
Start display at page:

Transcription

1 Chapter 4 Practice Quiz 1. Label each box with the appropriate state of matter. A) I: Gas II: Liquid III: Solid B) I: Liquid II: Solid III: Gas C) I: Solid II: Liquid III: Gas D) I: Gas II: Solid III: Liquid E) I: Solid II: Gas III: Liquid Use the following to answer questions 2-3. Below are six descriptions of the kinetic and potential energy of objects. I. Water moving a waterwheel II. The chemical bonds in the water of a running river III. The dispersion forces between two nonpolar molecules IV. The blades of a fan turning V. Hot water molecules moving rapidly in a cup of tea VI. A parachutist ready to jump out of a plane Page 1

2 2. Which of the above is a description of kinetic energy? A) I only B) I and IV C) II, III, and V D) I, IV, and V E) I, II, IV, and V 3. Which of the above is a description of potential energy? A) VI only B) II, III, IV, and VI C) I, IV, and V D) II, III, and V E) II, III, and VI 4. When measuring the temperature of gases, Kelvin is often used because it is a function of the kinetic energy of a gas. If a gas is 121 C, what is its temperature in Kelvin? A) 322 K B) 152 K C) 242 K D) 394 K E) 250 K 5. Which statement best describes how heat energy is involved in changing water into steam? A) Heat energy breaks the intermolecular forces holding molecules of water together. B) Heat energy is released from intermolecular forces as the molecules of water break apart. C) Heat energy breaks the covalent bonds holding molecules of water together. D) Heat energy is released from covalent bonds as the molecules of water break apart. E) Heat energy is not involved in this change. 6. Which process requires more energy per gram: melting ice or boiling water? A) They both require the same amount of energy because both processes involve breaking intermolecular forces. B) Melting ice takes more energy because more intermolecular forces are broken. C) Boiling water takes more energy because more intermolecular forces are broken. D) Melting ice takes more energy because it occurs at 0 C instead of 100 C. E) The energy of these processes has never been compared. Page 2

3 Use the following to answer questions 7-9. Refer to the following heating curve to answer the question(s) below. 7. A liquid has temperature A as shown on the heating curve. What will happen to the temperature of the liquid if heat is added to it? A) The temperature will stay the same. B) The temperature will decrease. C) The temperature will increase and then decrease. D) The temperature will increase. E) It is not possible to determine what will happen to the temperature of the liquid by looking at the chart. 8. What change of phase is represented by B? A) boiling B) freezing C) sublimating D) melting E) It is not possible to determine what will happen to the temperature of the liquid by looking at the chart. Page 3

4 9. When heat energy is added to a solid and liquid mix at the melting point, the temperature does not increase, as illustrated by horizontal line C. Which of the statements below best describes what happens to the heat energy added to the solid and liquid? A) It increases the kinetic energy of the molecules. B) It decreases the kinetic energy of the molecules. C) It breaks the intermolecular forces between the molecules. D) It makes new intermolecular forces between molecules. E) It just passes through the solid and liquid, which is why the temperature does not increase. Use the following to answer question 10. Refer to the following illustration of two beakers to answer the question(s) below. 10. The two beakers above each have added to them the same amount of heat energy. Which statement best describes what would happen to the temperatures of the two beakers? A) The temperature of the two beakers will remain the same. B) The temperatures of the two beakers will increase by the same amount. C) The temperature of Beaker 1 will increase more than that of Beaker 2. D) The temperature of Beaker 2 will increase more than that of Beaker 1. E) It is not possible to predict how the temperature of the beakers will change. Page 4

5 11. You have a 25-g sample of a metal and you would like to identify it. You are certain that the metal is either copper (specific heat = cal/g C), lead (specific heat = cal/ g C) or aluminum (specific heat = 0.22 cal/g C). You run an experiment in which you find that the metal absorbs 6.2 calories of heat when it increases in temperature from 25 C to 33 C. Which metal is it? A) copper B) lead C) iron D) a mixture of copper and lead E) It's not any of these metals. 12. Which of the following statements best describes pressure? A) Pressure is heat energy applied to a given volume. B) Pressure is heat energy applied to a given area. C) Pressure is force applied to a given volume. D) Pressure is force applied to a given area. E) Pressure is heat energy or force applied to a substance. 13. Atmospheric pressure at sea level is. At elevations higher than sea level, atmospheric pressure is. A) less than 1 atm; 1 atm B) 1 atm; less than 1 atm C) greater than 1 atm; 1 atm D) 1 atm; greater than 1 atm E) 1 atm; impossible to predict 14. The atmospheric pressure in Denver is 0.85 atm. What is the atmospheric pressure in torr? A) torr B) 890 torr C) 650 torr D) 12 torr E) torr 15. Which of the following statements best describes vapor pressure? A) Vapor pressure is the pressure of a gas at room temperature. B) Vapor pressure is the pressure of a liquid at room temperature. C) Vapor pressure is a measure of the strength of a substance's odor. D) Vapor pressure is a measure of a material's boiling point. E) Vapor pressure is the pressure of the vapor above a liquid or solid. Page 5

6 16. A scuba diver dives down to 15 m, where the pressure is 2.5 atm. The scuba diver then inhales 500. ml of air and holds his breath while ascending to the water surface where the pressure is 1 atm. What is the volume of the air in the diver's lungs at the surface? A) ml B) 0.20 ml C) 5.0 ml D) 200 ml E) 1250 ml 17. A sample of gaseous neon has a volume of 68.2 L at STP. How many moles of neon are in the sample? A) moles B) 3.04 moles C) 68.2 moles D) 1530 moles E) moles Use the following to answer question 18. The temperature of a gas at 1.00 atm and 8.00 C is increased to 20.0 C, resulting in a change of pressure. 18. Using the proper equation, the new calculated pressure is: A) atm B) atm C) 1.00 atm D) 1.04 atm E) 2.50 atm 19. Air is primarily composed of nitrogen (594 torr) and oxygen (160 torr). There is also carbon dioxide and water vapor in the air. Assuming that atmospheric pressure is 760 torr, what is the partial pressure of carbon dioxide and water vapor combined? A) 1514 torr B) 754 torr C) 500 torr D) 166 torr E) 6 torr Page 6

7 20. 1 mol of gas is taken from STP to 500 K and 15 atm. What is the volume of the gas? A) L B) 2.74 L C) 15.7 L D) There is not enough information Page 7

8 Answer Key - Chapter 4 Practice Quiz 1. E 2. D 3. E 4. D 5. A 6. C 7. D 8. A 9. C 10. C 11. B 12. D 13. B 14. C 15. E 16. E 17. B 18. D 19. E 20. B Page 8

5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C

1. The average kinetic energy of water molecules increases when 1) H 2 O(s) changes to H 2 O( ) at 0ºC 3) H 2 O( ) at 10ºC changes to H 2 O( ) at 20ºC 2) H 2 O( ) changes to H 2 O(s) at 0ºC 4) H 2 O( )

CHEM 120 Online Chapter 7

CHEM 120 Online Chapter 7 Date: 1. Which of the following statements is not a part of kinetic molecular theory? A) Matter is composed of particles that are in constant motion. B) Particle velocity increases

Chemistry 110 Lecture Unit 5 Chapter 11-GASES

Chemistry 110 Lecture Unit 5 Chapter 11-GASES I. PROPERITIES OF GASES A. Gases have an indefinite shape. B. Gases have a low density C. Gases are very compressible D. Gases exert pressure equally in all

Chemistry 13: States of Matter

Chemistry 13: States of Matter Name: Period: Date: Chemistry Content Standard: Gases and Their Properties The kinetic molecular theory describes the motion of atoms and molecules and explains the properties

5 Answers and Solutions to Text Problems

Energy and States of Matter 5 Answers and Solutions to Text Problems 5.1 At the top of the hill, all of the energy of the car is in the form of potential energy. As it descends down the hill, potential

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

General Chemistry PHS 1015 Practice Exam 4 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following statements about pressure

Test 5 Review questions. 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will

Name: Thursday, December 13, 2007 Test 5 Review questions 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will 1. decrease 2. increase 3. remain the same 2. The graph below

Gas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion.

Name Period Gas Laws Kinetic energy is the energy of motion of molecules. Gas state of matter made up of tiny particles (atoms or molecules). Each atom or molecule is very far from other atoms or molecules.

Kinetic Theory of Gases. 6.1 Properties of Gases 6.2 Gas Pressure. Properties That Describe a Gas. Gas Pressure. Learning Check.

Chapter 6 Gases Kinetic Theory of Gases 6.1 Properties of Gases 6.2 Gas Pressure A gas consists of small particles that move rapidly in straight lines. have essentially no attractive (or repulsive) forces.

Exam 4 Practice Problems false false

Exam 4 Practice Problems 1 1. Which of the following statements is false? a. Condensed states have much higher densities than gases. b. Molecules are very far apart in gases and closer together in liquids

EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor

EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor Purpose: In this experiment you will use the ideal gas law to calculate the molecular weight of a volatile liquid compound by measuring the mass,

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.

CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. ideal gas

Physical and Chemical Properties of Matter

Physical and Chemical Properties of Matter What is matter? Anything that has mass and takes up space Chemical or Physical Property? Physical properties of matter: characteristics that can be observed or

Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008

Name: Review - After School Matter Tuesday, April 29, 2008 1. Figure 1 The graph represents the relationship between temperature and time as heat was added uniformly to a substance starting at a solid

CHEMICAL EQUILIBRIUM (ICE METHOD)

CHEMICAL EQUILIBRIUM (ICE METHOD) Introduction Chemical equilibrium occurs when opposing reactions are proceeding at equal rates. The rate at which the products are formed from the reactants equals the

Chapter 10: Temperature and Heat

Chapter 10: Temperature and Heat 1. The temperature of a substance is A. proportional to the average kinetic energy of the molecules in a substance. B. equal to the kinetic energy of the fastest moving

Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states.

Describe the strength of attractive forces between particles. Describe the amount of space between particles. Can the particles in this state be compressed? Do the particles in this state have a definite

Materials 10-mL graduated cylinder l or 2-L beaker, preferably tall-form Thermometer

VAPOR PRESSURE OF WATER Introduction At very low temperatures (temperatures near the freezing point), the rate of evaporation of water (or any liquid) is negligible. But as its temperature increases, more

ESSAY. Write your answer in the space provided or on a separate sheet of paper.

Test 1 General Chemistry CH116 Summer, 2012 University of Massachusetts, Boston Name ESSAY. Write your answer in the space provided or on a separate sheet of paper. 1) Sodium hydride reacts with excess

Gas Laws. vacuum. 760 mm. air pressure. mercury

Gas Laws Some chemical reactions take place in the gas phase and others produce products that are gases. We need a way to measure the quantity of compounds in a given volume of gas and relate that to moles.

Chapter 10. Can You... 1. draw the Lewis structure for a given covalently bonded molecule?

Chapter 10 Can You... 1. draw the Lewis structure for a given covalently bonded molecule? e.g. SF 6 and CH 3 Cl 2. identify and count the number of non-bonding and bonding domains within a given covalently

Answer, Key Homework 6 David McIntyre 1

Answer, Key Homework 6 David McIntyre 1 This print-out should have 0 questions, check that it is complete. Multiple-choice questions may continue on the next column or page: find all choices before making

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic

Molar Mass of Butane

Cautions Butane is toxic and flammable. No OPEN Flames should be used in this experiment. Purpose The purpose of this experiment is to determine the molar mass of butane using Dalton s Law of Partial Pressures

Answers Additional Questions 12.1 1. A gas collected over water has a total pressure equal to the pressure of the dry gas plus the pressure of the water vapor. If the partial pressure of water at 25.0

CHAPTER 12. Gases and the Kinetic-Molecular Theory

CHAPTER 12 Gases and the Kinetic-Molecular Theory 1 Gases vs. Liquids & Solids Gases Weak interactions between molecules Molecules move rapidly Fast diffusion rates Low densities Easy to compress Liquids

Intermolecular Forces

Intermolecular Forces: Introduction Intermolecular Forces Forces between separate molecules and dissolved ions (not bonds) Van der Waals Forces 15% as strong as covalent or ionic bonds Chapter 11 Intermolecular

Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134)

Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134) 1. Helium atoms do not combine to form He 2 molecules, What is the strongest attractive

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Thermodynamics study and application of thermal energy temperature quantity

CHEM 105 HOUR EXAM III 28-OCT-99. = -163 kj/mole determine H f 0 for Ni(CO) 4 (g) = -260 kj/mole determine H f 0 for Cr(CO) 6 (g)

CHEM 15 HOUR EXAM III 28-OCT-99 NAME (please print) 1. a. given: Ni (s) + 4 CO (g) = Ni(CO) 4 (g) H Rxn = -163 k/mole determine H f for Ni(CO) 4 (g) b. given: Cr (s) + 6 CO (g) = Cr(CO) 6 (g) H Rxn = -26

Part B 2. Allow a total of 15 credits for this part. The student must answer all questions in this part.

Part B 2 Allow a total of 15 credits for this part. The student must answer all questions in this part. 51 [1] Allow 1 credit for 3 Mg(s) N 2 (g) Mg 3 N 2 (s). Allow credit even if the coefficient 1 is

KINETIC MOLECULAR THEORY OF MATTER

KINETIC MOLECULAR THEORY OF MATTER The kinetic-molecular theory is based on the idea that particles of matter are always in motion. The theory can be used to explain the properties of solids, liquids,

13.1 The Nature of Gases. What is Kinetic Theory? Kinetic Theory and a Model for Gases. Chapter 13: States of Matter. Principles of Kinetic Theory

Chapter 13: States of Matter The Nature of Gases The Nature of Gases kinetic molecular theory (KMT), gas pressure (pascal, atmosphere, mm Hg), kinetic energy The Nature of Liquids vaporization, evaporation,

7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter

7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter Kinetic Molecular Theory of Matter The Kinetic Molecular Theory of Matter is a concept that basically states that matter is composed

Specific Heat (slope and steepness)

1 Specific Heat (slope and steepness) 10 pages. According to the Physical Science text book, the Specific Heat of a material is DEFINED as the following: Specific heat is the amount of heat energy required

Stoichiometry. 1. The total number of moles represented by 20 grams of calcium carbonate is (1) 1; (2) 2; (3) 0.1; (4) 0.2.

Stoichiometry 1 The total number of moles represented by 20 grams of calcium carbonate is (1) 1; (2) 2; (3) 01; (4) 02 2 A 44 gram sample of a hydrate was heated until the water of hydration was driven

UNIT 6a TEST REVIEW. 1. A weather instrument is shown below.

UNIT 6a TEST REVIEW 1. A weather instrument is shown below. Which weather variable is measured by this instrument? 1) wind speed 3) cloud cover 2) precipitation 4) air pressure 2. Which weather station

Thermodynamics and Equilibrium

Chapter 19 Thermodynamics and Equilibrium Concept Check 19.1 You have a sample of 1.0 mg of solid iodine at room temperature. Later, you notice that the iodine has sublimed (passed into the vapor state).

Energy and Matter CHAPTER OUTLINE CHAPTER GOALS

4 When sweat evaporates, it cools the skin by absorbing heat from the body. Energy and Matter CAPTER OUTLINE 4.1 Energy 4.2 The Three States of Matter 4.3 Intermolecular Forces 4.4 Boiling Point and Melting

Phys222 W11 Quiz 1: Chapters 19-21 Keys. Name:

Name:. In order for two objects to have the same temperature, they must a. be in thermal equilibrium.

Chapter 12 - Liquids and Solids

Chapter 12 - Liquids and Solids 12-1 Liquids I. Properties of Liquids and the Kinetic Molecular Theory A. Fluids 1. Substances that can flow and therefore take the shape of their container B. Relative

7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790.

CHATER 3. The atmosphere is a homogeneous mixture (a solution) of gases.. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. have volumes that depend on their conditions,

Name Date Class STATES OF MATTER. SECTION 13.1 THE NATURE OF GASES (pages 385 389)

13 STATES OF MATTER SECTION 13.1 THE NATURE OF GASES (pages 385 389) This section introduces the kinetic theory and describes how it applies to gases. It defines gas pressure and explains how temperature

Type: Single Date: Homework: READ 12.8, Do CONCEPT Q. # (14) Do PROBLEMS (40, 52, 81) Ch. 12

Type: Single Date: Objective: Latent Heat Homework: READ 12.8, Do CONCEPT Q. # (14) Do PROBLEMS (40, 52, 81) Ch. 12 AP Physics B Date: Mr. Mirro Heat and Phase Change When bodies are heated or cooled their

Chapter Test A. States of Matter MULTIPLE CHOICE. a fixed amount of STAs2 a. a solid. b. a liquid. c. a gas. d. any type of matter.

Assessment Chapter Test A States of Matter MULTIPLE CHOICE Write the letter of the correct answer in the space provided. 1. Boyle s law explains the relationship between volume and pressure for a fixed

CHEMISTRY. Matter and Change. Section 13.1 Section 13.2 Section 13.3. The Gas Laws The Ideal Gas Law Gas Stoichiometry

CHEMISTRY Matter and Change 13 Table Of Contents Chapter 13: Gases Section 13.1 Section 13.2 Section 13.3 The Gas Laws The Ideal Gas Law Gas Stoichiometry State the relationships among pressure, temperature,

Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version

Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version Freezing point depression describes the process where the temperature at which a liquid freezes is lowered by adding another

THE PLANT KINGDOM: THE WATER CYCLE

THE PLANT KINGDOM: THE WATER CYCLE Material: The Water Cycle Nomenclature The Water cycle Model Water Ice Heat Source (lamp with a clamp) Tables Presentation 1: Key Experience 1. Say, Today we are going

CHAPTER 3: MATTER. Active Learning Questions: 1-6, 9, 13-14; End-of-Chapter Questions: 1-18, 20, 24-32, 38-42, 44, 49-52, 55-56, 61-64

CHAPTER 3: MATTER Active Learning Questions: 1-6, 9, 13-14; End-of-Chapter Questions: 1-18, 20, 24-32, 38-42, 44, 49-52, 55-56, 61-64 3.1 MATTER Matter: Anything that has mass and occupies volume We study

Calorimetry: Heat of Vaporization

Calorimetry: Heat of Vaporization OBJECTIVES INTRODUCTION - Learn what is meant by the heat of vaporization of a liquid or solid. - Discuss the connection between heat of vaporization and intermolecular

= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm

Chapter 13 Gases 1. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. Gases have volumes that depend on their conditions, and can be compressed or expanded by

In the box below, draw the Lewis electron-dot structure for the compound formed from magnesium and oxygen. [Include any charges or partial charges.

Name: 1) Which molecule is nonpolar and has a symmetrical shape? A) NH3 B) H2O C) HCl D) CH4 7222-1 - Page 1 2) When ammonium chloride crystals are dissolved in water, the temperature of the water decreases.

Chapter 13 Solution Dynamics. An Introduction to Chemistry by Mark Bishop

Chapter 13 Solution Dynamics An Introduction to Chemistry by Mark Bishop Chapter Map Why Changes Happen Consider a system that can switch freely between two states, A and B. Probability helps us to predict

Thermochemistry. r2 d:\files\courses\1110-20\99heat&thermorans.doc. Ron Robertson

Thermochemistry r2 d:\files\courses\1110-20\99heat&thermorans.doc Ron Robertson I. What is Energy? A. Energy is a property of matter that allows work to be done B. Potential and Kinetic Potential energy

States of Matter and the Kinetic Molecular Theory - Gr10 [CAPS]

OpenStax-CNX module: m38210 1 States of Matter and the Kinetic Molecular Theory - Gr10 [CAPS] Free High School Science Texts Project This work is produced by OpenStax-CNX and licensed under the Creative

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING Essential Standard: STUDENTS WILL UNDERSTAND THAT THE PROPERTIES OF MATTER AND THEIR INTERACTIONS ARE A CONSEQUENCE OF THE STRUCTURE OF MATTER,

The Properties of Water (Instruction Sheet)

The Properties of Water (Instruction Sheet) Property : High Polarity Activity #1 Surface Tension: PILE IT ON. Materials: 1 DRY penny, 1 eye dropper, water. 1. Make sure the penny is dry. 2. Begin by estimating

Introduction to the Ideal Gas Law

Course PHYSICS260 Assignment 5 Consider ten grams of nitrogen gas at an initial pressure of 6.0 atm and at room temperature. It undergoes an isobaric expansion resulting in a quadrupling of its volume.

2. Room temperature: C. Kelvin. 2. Room temperature:

Temperature I. Temperature is the quantity that tells how hot or cold something is compared with a standard A. Temperature is directly proportional to the average kinetic energy of molecular translational

What s in a Mole? Molar Mass

LESSON 10 What s in a Mole? Molar Mass OVERVIEW Key Ideas Lesson Type Lab: Groups of 4 Chemists compare moles of substances rather than masses because moles are a way of counting atoms. When considering

PV (0.775 atm)(0.0854 L) n = = = 0.00264 mol RT -1-1

catalyst 2 5 g ¾¾¾¾ 2 4 g 2 g DH298 = rxn DS298 C H OH( ) C H ( ) + H O( ) 45.5 kj/mol ; = 126 J/(K mol ) ethanol ethene water rxn 1 atm 760 torr PV (0.775 atm)(0.0854 L) n = = = 0.00264 mol RT -1-1 (0.08206

A n = 2 to n = 1. B n = 3 to n = 1. C n = 4 to n = 2. D n = 5 to n = 2

North arolina Testing Program EO hemistry Sample Items Goal 4 1. onsider the spectrum for the hydrogen atom. In which situation will light be produced? 3. Which color of light would a hydrogen atom emit

Chapter 5 Student Reading THE POLARITY OF THE WATER MOLECULE Wonderful water Water is an amazing substance. We drink it, cook and wash with it, swim and play in it, and use it for lots of other purposes.

Name: Unit 2- Elements, Compounds and Mixtures and Physical/Chemical Properties and Changes. Elements, Compounds and Mixtures

Name: Unit 2- Elements, Compounds and Mixtures and Physical/Chemical Properties and Changes Day Page # Description IC/HW All 2 Warm-up IC 1 3 5 Matter Notes IC 1 6 Nuts & Bolts IC 1 7 Elements, Compounds

Chemical Changes. Measuring a Chemical Reaction. Name(s)

Chemical Changes Name(s) In the particle model of matter, individual atoms can be bound tightly to other atoms to form molecules. For example, water molecules are made up of two hydrogen atoms bound to

Warm-Up 9/9. 1. Define the term matter. 2. Name something in this room that is not matter.

Warm-Up 9/9 1. Define the term matter. 2. Name something in this room that is not matter. Warm-Up 9/16 1. List the three most important rules of lab safety. 2. Would you classify jello as a solid or a

Chapter 6 Thermodynamics: The First Law

Key Concepts 6.1 Systems Chapter 6 Thermodynamics: The First Law Systems, States, and Energy (Sections 6.1 6.8) thermodynamics, statistical thermodynamics, system, surroundings, open system, closed system,

Chapter 10 Temperature and Heat

Chapter 10 Temperature and Heat What are temperature and heat? Are they the same? What causes heat? What Is Temperature? How do we measure temperature? What are we actually measuring? Temperature and Its

Structure, Polarity & Physical Properties

tructure, Polarity & Physical Properties upplemental packet handouts 92-96 I. Lewis structure, stability, and bond energies A. ydrogen, oxygen, and nitrogen are present in the atmosphere as diatomic molecular

Page 2. Base your answers to questions 7 through 9 on this phase diagram

1. The normal boiling point of water is often depressed at high altitudes. Which of the following explains this phenomenon? t high altitudes, the lower atmospheric pressure equals the equilibrium water

THE HUMIDITY/MOISTURE HANDBOOK

THE HUMIDITY/MOISTURE HANDBOOK Table of Contents Introduction... 3 Relative Humidity... 3 Partial Pressure... 4 Saturation Pressure (Ps)... 5 Other Absolute Moisture Scales... 8 % Moisture by Volume (%M

Energy Matters Heat. Changes of State

Energy Matters Heat Changes of State Fusion If we supply heat to a lid, such as a piece of copper, the energy supplied is given to the molecules. These start to vibrate more rapidly and with larger vibrations

A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences.

I. MOLECULES IN MOTION: A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences. 1) theory developed in the late 19 th century to

Chapter 2, Lesson 5: Changing State Melting

Chapter 2, Lesson 5: Changing State Melting Key Concepts Melting is a process that causes a substance to change from a solid to a liquid. Melting occurs when the molecules of a solid speed up enough that

Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1

Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1 FV 6/26/13 MATERIALS: PURPOSE: 1000 ml tall-form beaker, 10 ml graduated cylinder, -10 to 110 o C thermometer, thermometer clamp, plastic pipet, long

Phase diagram of water. Note: for H 2 O melting point decreases with increasing pressure, for CO 2 melting point increases with increasing pressure.

Phase diagram of water Note: for H 2 O melting point decreases with increasing pressure, for CO 2 melting point increases with increasing pressure. WATER Covers ~ 70% of the earth s surface Life on earth

We will study the temperature-pressure diagram of nitrogen, in particular the triple point.

K4. Triple Point of Nitrogen I. OBJECTIVE OF THE EXPERIMENT We will study the temperature-pressure diagram of nitrogen, in particular the triple point. II. BAKGROUND THOERY States of matter Matter is made

Every mathematician knows it is impossible to understand an elementary course in thermodynamics. ~V.I. Arnold

Every mathematician knows it is impossible to understand an elementary course in thermodynamics. ~V.I. Arnold Radiation Radiation: Heat energy transmitted by electromagnetic waves Q t = εσat 4 emissivity

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Given: 4 NO2(g) + O2(g) 2 N2O5(g) ΔH = -110.2 kj find ΔH for N2O5(g) 2 NO2(g) + 1/2 O2(g).

EXPERIMENT 12: Empirical Formula of a Compound

EXPERIMENT 12: Empirical Formula of a Compound INTRODUCTION Chemical formulas indicate the composition of compounds. A formula that gives only the simplest ratio of the relative number of atoms in a compound

Stoichiometry. 1. The total number of moles represented by 20 grams of calcium carbonate is (1) 1; (2) 2; (3) 0.1; (4) 0.2.

Stoichiometry 1 The total number of moles represented by 20 grams of calcium carbonate is (1) 1; (2) 2; (3) 01; (4) 02 2 A 44 gram sample of a hydrate was heated until the water of hydration was driven

The Structure of Water Introductory Lesson

Dana V. Middlemiss Fall 2002 The Structure of Water Introductory Lesson Abstract: This is an introduction to the chemical nature of water and its interactions. In particular, this lesson will explore evaporation,

Chapter 13 - LIQUIDS AND SOLIDS

Chapter 13 - LIQUIDS AND SOLIDS Problems to try at end of chapter: Answers in Appendix I: 1,3,5,7b,9b,15,17,23,25,29,31,33,45,49,51,53,61 13.1 Properties of Liquids 1. Liquids take the shape of their container,

Solids, Liquids, and Gases

Glencoe Science Chapter Resources Solids, Liquids, and Gases Includes: Reproducible Student Pages ASSESSMENT Chapter Tests Chapter Review HANDS-ON ACTIVITIES Lab Worksheets for each Student Edition Activity

Intermolecular and Ionic Forces

Intermolecular and Ionic Forces Introduction: Molecules are attracted to each other in the liquid and solid states by intermolecular, or attractive, forces. These are the attractions that must be overcome

1. At which temperature would a source radiate the least amount of electromagnetic energy? 1) 273 K 3) 32 K 2) 212 K 4) 5 K

1. At which temperature would a source radiate the least amount of electromagnetic energy? 1) 273 K 3) 32 K 2) 212 K 4) 5 K 2. How does the amount of heat energy reflected by a smooth, dark-colored concrete

A Study of Matter. Video Notes

A Study of Matter Video Notes In this lesson you will: Define physical property, chemical property and chemical change. Describe the phases of matter. Label properties as physical or chemical. Label changes

KINETIC THEORY OF MATTER - molecules in matter are always in motion - speed of molecules is proportional to the temperature

1 KINETIC TERY F MATTER - molecules in matter are always in motion - speed of molecules is proportional to the temperature TE STATES F MATTER 1. Gas a) ideal gas - molecules move freely - molecules have

Properties and Classifications of Matter

PS-3.1 Distinguish chemical properties of matter (including reactivity) from physical properties of matter (including boiling point, freezing/melting point, density [with density calculations], solubility,

Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4)

Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1 1. 2. 3. 4. 5. 6. Question What is a symbolic representation of a chemical reaction? What 3 things (values) is a mole of a chemical

Vapor Pressure Curves

Why? Vapor Pressure Curves The vapor pressure of a substance depends on the temperature (higher temperature leads to higher vapor pressure). A liquid boils when the vapor pressure equals the atmospheric

Boyles Law. At constant temperature the volume occupied by a fixed amount of gas is inversely proportional to the pressure on the gas 1 P = P

Boyles Law At constant temperature the volume occupied by a fixed amount of gas is inversely proportional to the pressure on the gas 1 or k 1 Boyles Law Example ressure olume Initial 2.00 atm 100 cm 3

Chemistry 1050 Chapter 13 LIQUIDS AND SOLIDS 1. Exercises: 25, 27, 33, 39, 41, 43, 51, 53, 57, 61, 63, 67, 69, 71(a), 73, 75, 79

Chemistry 1050 Chapter 13 LIQUIDS AND SOLIDS 1 Text: Petrucci, Harwood, Herring 8 th Edition Suggest text problems Review questions: 1, 5!11, 13!17, 19!23 Exercises: 25, 27, 33, 39, 41, 43, 51, 53, 57,

Unit 3: States of Matter Practice Exam

Page 1 Unit 3: States of Matter Practice Exam Multiple Choice. Identify the choice that best completes the statement or answers the question. 1. Two gases with unequal masses are injected into opposite

Thermodynamics. Thermodynamics 1

Thermodynamics 1 Thermodynamics Some Important Topics First Law of Thermodynamics Internal Energy U ( or E) Enthalpy H Second Law of Thermodynamics Entropy S Third law of Thermodynamics Absolute Entropy

AP CHEMISTRY 2006 SCORING GUIDELINES

AP CHEMISTRY 2006 SCORING GUIDELINES Question 6 6. Answer each of the following in terms of principles of molecular behavior and chemical concepts. (a) The structures for glucose, C 6 H 12 O 6, and cyclohexane,

Thermodynamics of Mixing

Thermodynamics of Mixing Dependence of Gibbs energy on mixture composition is G = n A µ A + n B µ B and at constant T and p, systems tend towards a lower Gibbs energy The simplest example of mixing: What