Space-Time Structure, Newton s Laws and Galilean Transformation

Size: px
Start display at page:

Download "Space-Time Structure, Newton s Laws and Galilean Transformation"

Transcription

1 Chapte 1 Space-Time Stuctue, Newton s Laws and Galilean Tansfomation What is motion? The phase change of position with time expesses the basic idea of motion. We say that an object is moving if it occupies diffeent positions in space at diffeent times. In contast, if an object does not change its position in space as time flows, we say that the object is at est. Inheent in this desciption of est and motion is the obseve (that is we ) and the concepts of a sepaate space and time. Ou peception tells us that space exists as a stationay, pemanent and absolute backgound in which we can place an object, o though which an object can move without any inteaction with it. Newton fomulated this idea by asseting, Absolute space, in its own natue, without elation to anything extenal, emains always simila and immovable. Time, accoding to Newton, is also absolute and flows on without elation to the pesence of any physical object o event. In his wods, Absolute, tue, and mathematical time, of itself, and fom its own natue, flows equably without elation to anything extenal, and by anothe name is called duation. In this Newtonian absolute space and time, motion of an object is chaacteized by change of its position in space as time evolves. Howeve, since this abstact absolute space cannot be seen and/o no pat of it can be distinguished fom anothe, how do we fix the position of an object in this space? Newton egaded the distant stas in the sky at est and defined the positions of othe objects in elation to them. Howeve, astonomes now tell us that none of these cosmological objects in the Univese ae at est. Thee is no object at est in this absolute space with espect to which we can define the position of anothe object. Theefoe, at any instant of time, the position of an object is always defined by the obseve with espect to himself. An obseve, theefoe, fist defines a local space, in which positions of othe objects ae then descibed. This local space, to which is attached the obseve, is called a fame of efeence. The concepts of est and motion ae theefoe elative, that is, these ae in elation to a fame of efeence o obseve. A house built on Eath does not change its position in the local space o fame of efeence associated with Eath; howeve, as obseved fom a fame of efeence attached to Moon fo example (o in othe wods, in the local space associated with Moon), its (house on Eath) position continuously changes. Thus, even within the Newtonian point of view, space does not exist on its own but is a elative space. Time, on

2 Mechanics the othe hand, is same and flows equably eveywhee, i.e., fo example its ate of flow is same both on Eath and Moon. 1.1 FRAMES OF REFERENCE AND CO-ORDINATE SYSTEMS A fame of efeence is usually a collection of objects, togethe with the obseve, which ae at est elative to each othe*. Thus, fo example, we at est elative to Eath along with Eath and laboatoies built on Eath, etc., constitute a fame of efeence. It is with espect to this Eath s fame of efeence that we obseve and measue the changes of positions of othe objects. Simila fames of efeence can be associated with othe obseves (o objects) who may not be at est elative to us. Within a fame of efeence, we set up a co-odinate system which is used to measue the position of an object. Measuements indicate that the space we inhabit is a theedimensional space. This means that we need thee numbes to specify the position of any (point) object in the space. The choice of numbes is detemined by the type of co-odinate system that we use. The geneally used co-odinate systems ae ectangula (Catesian) co-odinates (x, y, z), spheical-pola co-odinates (, θ, ), and cylindical co-odinates (ρ,, z). A co-odinate system may be set up anywhee in the fame of efeence, the choice of oigin has complete feedom. Given the oigin, a Catesian (ectangula) system is fomed by having thee mutually pependicula staight lines, the X, Y, and Z axes. Thee ae two independent ectangula systems possible in space, the left-handed and the ight-handed, which cannot be made to coincide with each othe by any means of tanslation o otation. Catesian system, by convention, is chosen to be ight-handed, as shown in Fig The position of a paticle** P elative to oigin O is given by position vecto, chaacteized by its specific length and diection: = x i+ y j+ z k...(1.1) X Z O i k P (x, y, z) j Y whee i, j, kdenote constant unit vectos in the diections of X, Y, Z axes. We talk of a point, staight line, pependicula staight lines, length of line segment, etc. in the Euclidean sense. Ou expeience tells us that Euclidean geomety is applicable in ou odinay Newtonian space. This is valid if the objects ae not vey massive, o ae not moving with vey high speeds of the ode of speed of light. If the position of the paticle P changes, the diffeential change in its position vecto is, in geneal, given by, Fig. 1.1: Catesian co-odinates. d = dx i+ dy j+ dz k...(1.) * The collection of such point objects constitute the concept of a igid body. ** We define paticle as a mass concentated at a point. The paticle is theefoe a point object.

3 Space-Time Stuctue, Newton s Laws and Galilean Tansfomation 3 The instantaneous velocity and acceleation of P, in Catesian system, theefoe ae d dx dy dz v = = i+ y+ k dt dt dt dt = v i+ v j+ v k...(1.3) x y z and dv dv dv x y dvz a = = i+ j+ k dt dt dt dt = a i+ a j+ a k...(1.4) x y z Spheical-Pola Co-odinates The position of paticle P elative to oigin O, in spheical pola co-odinate system, is descibed by adial distance, pola angle θ, and azimuth, as shown in Fig. 1.a. Geomety of the figue shows the elations between Catesian and spheical pola co-odinates: x = sin θcos = x + y + z...(1.5a) y = sinθsin tanθ = x + y z...(1.5b) z = cosθ tan = y x...(1.5c) Z Z S cos θ = z P (, θ, ) P e P e e θ θ θ X x O sin θ y Y X T Y (a) (b) Fig. 1.: Spheical co-odinates. The unit vecto e points towads -axis, i.e., in the diection of vecto along which only co-odinate changes, θ and emain fixed. Hence, we can wite = e. Unit vecto e θ is tangent at P to cicle SPT; displacement along cicle SPT changes only co-odinate θ, distance and angle emain fixed. Unit vecto e is tangent at P to cicle PP poduced

4 4 Mechanics by the otation of OP about Z-axis; displacement along this cicle changes only co-odinate, distance OP = and angle θ emain fixed; see Fig. 1. (b). The geneal diffeential displacement of paticle P in spheical pola co-odinates is given by, d = de + dθe + sin θde...(1.6) θ One can satisfy himself that the above elation is tue by consideing special cases: (i) if dθ = d = 0, d = d e gives displacement vecto when distance changes by d along line OP; similaly, (ii) if d = d = 0, and angle θ changes by dθ, displacement vecto d = ( dθ e θ ) and (iii) if d = dθ = 0, change of angle by d poduces a displacement d = (ρ d ) e, whee ρ = sin θ is the adius of the cicle as we otate P about Z-axis. The unit vectos e, e θ and e can be expessed in tems of i, j, k as follows (see Example 1.1 on p.6): e = sinθ cos i+ sinθsin j+ cosθ k...(1.7a) eθ = cosθ cos i+ cosθsin j sin θ k...(1.7b) e = sin i+ cos j...(1.7c) The unit vectos (e, e θ, e ), unlike (i, j, k), ae not constant vectos but change in diection as co-odinates θ and change. Howeve, at each point, they constitute an othogonal ight-handed co-odinate system, that is, we have e e = e e = eθ e = 0...(1.8a) e e = e, e e = e, e e = e...(1.8b) θ θ θ 1.1. Motion in -Dimensions Quite often, we find a paticle constained to move in a plane, athe than in space in geneal. If we call this plane as XY plane, then position vecto of the paticle is given by, = x i + y j because z = 0 always fo the paticle duing motion. The spheical pola co-odinates (, θ, ) then educe to cicula pola co-odinates (, ); θ = 90 fo the paticle. That is, we define the position of the paticle in tems of adial distance fom oigin and angle such that, Y e e P (, ) O Fig. 1.3: Cicula pola co-odinates. X = x + y x = cos...(1.9a) tan =y x y = sin...(1.9b) The displacement vecto d in cicula pola co-odinate is obtained by putting θ = 90 and d θ = 0 in Eq. 1.6:

5 Space-Time Stuctue, Newton s Laws and Galilean Tansfomation 5 whee unit vectos e, e ae given by, d = de + de...(1.10) e = cos i + sin j...(1.11a) e = sini+ cos j...(1.11b) Velocity and Acceleation in Cicula Pola Co-odinates The velocity and acceleation of a point object, moving in a plane, can be obtained in tems of pola co-odinates (, ) by diffeentiating position vecto = e with espect to time: d d e v = = e + d...(1.1) dt dt dt Note that e is not a constant vecto; its time ate can be obtained by using Eqs. 1.11a, b: d e d d d = sin i+ cos j= e...(1.13a) dt dt dt dt Similaly, we obtain d e d = e...(1.13b) dt dt The velocity vecto, theefoe, is witten as v = ve + ve...(1.14) d whee v v d = dt =, = and dt = ae the adial and tangential (o azimuthal) components of velocity vecto v. To find the expession fo acceleation, we have F F HG F I HG K J F + v + HG d e dt d v dv e I e a = = e + v e HG d dv K J + + v d dt dt dt dt dt dv = v d dt dt o a = ae + ae...(1.15) whee a...(1.15a) = and a = +...(1.15b) ae the adial and tangential components of acceleation vecto a. dv dt I KJ e I KJ

6 6 Mechanics In paticula, if the object is moving in the plane, in a cicle of adius R (i.e., = R, constant), we find v = 0, v = R...(1.16a) and a = R, a = R...(1.16b) a denotes the centipetal acceleation (towads e ), and a is tangential acceleation esponsible fo incease in tangential speed v. Example 1.1: Deive Eqs. 1.7 a, b, c. Solution: We have, = xi+ y j+ zk Hence, and and Also, fom Eq. 1.6, we find = sinθcosi+ sinθsinj+ cosθk θ i θ j θk = sin cos + sin sin + cos b = cosθcos i+ cosθsinj sinθk θ b = sinθ sini+ cosj b = e θ, const. b = eθ, const. = sin θe, θ const. b g g Compaing above two sets of equations, we get Eqs. 1.7a, b, c Cylindical Co-odinates In cylindical co-odinates, the position of paticle P elative to oigin O is descibed by the two cicula pola co-odinates (ρ, ) defined in the plane Z = 0, and the thid being the Z-co-odinate itself. The cylindical co-odinates (ρ,, z) ae elated to Catesian coodinates as, ρ = x + y y,tan =, = x z z...(1.17a) Convesely, x = ρcos, y = ρsin, z = z....(1.17b) The equation ρ = constant descibes a ight cicula cylinde of adius ρ about Z-axis. The equation = constant descibes the plane containing Z-axis and making an angle to g g g

7 Space-Time Stuctue, Newton s Laws and Galilean Tansfomation 7 the XZ-plane. The geneal diffeential displacement of paticle P in cylindical coodinates is given by d = dρe + ρde + dze Z ρ z whee e ρ and e ae elated to (i, j, k) as given by Eqs. 1.11a, b, and e z = k. The unit vectos (e ρ, e, e z ) constitute an othogonal (ight-handed) co-odinate system, i.e., e e = e, e e = e, e e = e ρ z z ρ z ρ and e e = e e = e e = ρ ρ z z 0 In situations whee thee is an axis of symmety, cylindical co-odinates become the ight choice e ρ X to descibe the system. A typical example is the Fig. 1.4: Cylindical co-odinates. (plana) otation of a paticle about an axis. In geneal, if a paticle moves in a plane, we descibe its motion in pola co-odinates (ρ, ), whee ρ gives the adial position of the paticle. (We can call the plane as Z = 0, o XY-plane). The velocity and acceleation of the paticle ae then given by Eqs. 1.1 to 1.15, as discussed in last section. In paticula, if the paticle moves in a cicle of adius ρ, we have (Eq. 1.14): v= ρ e = ω ρ whee ρ = ρe ω ρ, and = ez. The vecto ω epesents angula velocity whose magnitude is and diection is about the axis of otation. The acceleation of the paticle otating about Z-axis can be ewitten as, d v d ω d ρ a = = ρ + ω dt dt dt = α ρ+ ω ω ρ whee, b g d i c ω ω ρ = ρ ρ = ρ ez ez e eρ is the centipetal acceleation, and d α ρ = ρ e e = ρ e z ρ is the tangential acceleation. Note that if the paticle is otating in the XY-plane, ρ coesponds to position vecto of the paticle. Hence, one usually denotes ρ by and hoping no confusion, we wite v = ω...(1.18a) and a = ω ω + α i h c h...(1.18b) We shall fequently need above elations when descibing the motion in otating fame, and/o otating motion of an object. O ρ P ( ρ, θ, z) z e Y

8 8 Mechanics 1. NEWTON S LAWS OF MOTION In 1687, Isaac Newton aticulated the laws upon which all classical mechanics is based. In pesent-day teminology these laws may be stated as follows: I Law: An object continues in its state of est, o of unifom motion in a staight line, unless it is compelled to change that state by extenal foces acting on it. II Law: The time ate of change of linea momentum of an object is popotional to the net extenal foce acting on it and occus in the diection of the esultant foce. That is, p F = k d = km a...(1.19) dt whee F is esultant extenal foce; m is inetial mass of the object, and p = m v is its linea momentum. k is constant of popotionality which is taken as 1 by defining appopiate units. III Law: When two objects inteact, the mutual foces of inteaction on each object ae equal in magnitude and opposite in diection. That is, to evey action thee is an equal and opposite eaction Comments on Newton s Laws I Law and fames of efeence: Newton s I law has two ingedients: fist, that of foce (o the absence of it) and second, that of measuement of est o unifom motion of the object. Foce is the expession fo inteaction between diffeent objects. Thee is a pioi, no way to know that thee is no foce acting on an object except by putting it so fa away fom all othe objects that we would believe that it is not acted by an extenal foce. Having such an object, Newton s I law assets that it would eithe emain at est o continue to move with constant velocity. But, with espect to whom? Obviously, if the obseve himself is sitting on an acceleated fame continuously changing his velocity, the object cannot always emain at est o in unifom motion with espect to him. A efeence fame with espect to which I law holds is called an inetial fame of efeence. Thus, Newton s fist law defines the citeion fo an inetial fame. The law says that thee exists cetain fames of efeence (called inetial fames) with espect to which an object, (believed to be) not acted upon by any extenal foce, stays eithe at est o in unifom motion in a staight line. Obviously, an inetial fame itself must be a fame moving with constant velocity, i.e., non-acceleating. The question whethe a given fame of efeence is inetial o not then becomes a matte of obsevation and expeiment. Fo most of the obsevations made on the suface of Eath, the fame of efeence attached to the suface of Eath behaves as an inetial fame to a vey good appoximation. Moe efined obsevations, which we shall discuss late, shows that it is not. Howeve, unless othewise stated, we shall efe to Eath s fame as the inetial fame. All othe fames moving unifomly in staight line elative to Eath theefoe also constitute inetial fames of efeence. Newton s I law is an independent law and is not contained in his II law: In fact, both II and III laws hold only in an inetial fame suitably chosen on the basis of I law. 1.. II Law Newton s II law is not a definition of foce: The equation, F = m a, is an equality

9 Space-Time Stuctue, Newton s Laws and Galilean Tansfomation 9 which says that the foce acting on a body detemines not the velocity but ate of change of velocity of the body. What is the natue and value of F is left unansweed in II law. Newton s II law is valid fo an object having constant inetial mass and moving with velocity small compaed to that of light. If the velocity of the object is high (i.e., a significant faction of velocity of light), we ente into the domain of special elativity. Thee we find inetial mass changes with velocity; diection of acceleation is geneally not same as that of foce; hence Newton s law needs to be evised in elativistic dynamics III Law and Pinciple of Momentum Consevation Newton s III law is the only statement made by Newton about the natue of foce. It says that no matte what is the exact fom of a foce (i.e., inteaction) between two objects, it behaves in such a way that at any instant of time, if an object 1 exets a foce F 1 on object, then object exets an equal and opposite foce F 1 on object 1. That is, at any instant which implies F + F = 0...(1.0) 1 1 dp1 dp dp + = = 0 dt dt dt o P = p 1 + p is constant in time....(1.1) Thus, when two objects inteact, the sum of thei momenta is constant. Newton s III law, altenatively, is a statement of momentum consevation fo a system of inteacting objects (in absence of any extenal foce). In its oiginal fom, Newton s III law has pofound limitations. Fo example, it is not satisfied by two sepaate chages inteacting though electomagnetic field. Popagation of electomagnetic inteaction takes place at a finite speed c, speed of light. The tansfe of momentum (i.e., tavel of foce field) fom one chage to anothe involves a time inteval equal to distance between the chages divided by c. Thus, at any instant, a change in momentum occus in fist chage without an equal and opposite change in momentum in the othe chage. That is, instant by instant, we find F F o p p Momentum consevation pinciple is eventually peseved by associating the instantaneous change in momentum of paticles with that of the electomagnetic field which caies the inteaction. In fact, no inteaction (whethe electomagnetic, o gavitational, o any othe) can popagate with speed geate than that of light. Hence, in geneal, momentum consevation pinciple fo an isolated, inteacting system of paticles is valid only when we conside paticles as well as fields that cay the inteactions as the complete system. Howeve, in this book, we shall not go into these complications and assume Newton s III law to be valid in its stong fom as given by Eq SPACE-TIME SYMMETRY AND CONSERVATION LAWS Fom ou expeience, we aticulate the concepts of space and time to descibe the motion of an object. It is fom the same expeience and obsevation, we ascibe cetain fundamental popeties to the concepts of space and time. One such popety is homogeneity and the othe is isotopy of space and time.

10 10 Mechanics Homogeneity of Space Space is homogeneous means one pat (o point) of space is identical o equivalent to any othe pat (o point) of space. Any physical pocess will occu the same way (o identically) unde identical conditions, no matte whee (i.e., in whateve pat of space) it occus; a paticula expeiment, whethe pefomed in Kanpu o New Yok, will yield same esult. (Incidentally Kanpu and New Yok epesent same inetial fame.) Let us apply the basic popety of homogeneity of space to an isolated system of two inteacting paticles: if both the paticles of the system ae displaced by same amount δ, thee should be no change in the state of the system o in its intenal motion. That is, the total wok done by intenal foces when the system is displaced by δ must be zeo: F δ+ F δ = 0 Since δ is abitay, we get 1 1 F1 + F1 = 0 This is Newton s III law which leads to law of momentum consevation fo the isolated system of two paticles. Thus, momentum consevation emeges fom the fundamental popety of homogeneity of space. [The above agument can be extended to an isolated system of n-inteacting paticles. No wok done by intenal foces imply: b 1 1g b 13 31g... 0 δ F + F + δ F + F + = whee the seies includes all pais of two paticles out of n-paticle system. That is, in shot, we can wite δ F + F =, i j =... n i j d ij jii 0 1 j Since δ is abitay, we find d F ij + F jii = 0, i j = 1,..., n; i j] i j The comments made in Sec on Newton s III law also apply to the above poof of momentum consevation (of paticles) fom homogeneity of space. If we conside the foces popagating with finite speed, homogeneity of space leads to consevation of momentum of complete system, viz, both paticles and the caie of foce. Since space is homogeneous, we can choose the oigin of ou co-odinate system anywhee we wish. Shifting the oigin means displacing the system; and it does not affect the pocesses Homogeneity of Time Time is homogeneous means one instant of time (o duation) is identical to any othe instant (o duation) of time. An expeiment, whethe pefomed today o tomoow o a yea late will yield same esult unde othewise same conditions. Let us discuss the effect of concept of homogeneity of time on Newton s laws of motion. Homogeneity of time implies that the foces in natue should not depend explicitly on

11 Space-Time Stuctue, Newton s Laws and Galilean Tansfomation 11 time. [Fo example, the foce F of gavitation between two point masses m 1 and m sepaated by distance emains the same at time t (today) and t (tomoow).] That is, fo all kinds of foces, we have F t = 0 Now if a foce is consevative, we can define a potential enegy of inteaction U such that the foce is negative gadient of U, i.e., we have U F x F U y F U x =, y =, z = z This means that if F does not depend explicitly on t, then equivalently, potential enegy U also is not an explicit function of t, o, b U = U x, y, z whee x, y, z efe to co-odinates of the paticle unde consideation in a given inetial fame. The explicit independence of U on t leads to consevation of mechanical enegy of the paticle. To show this, let us wite the total enegy of the paticle as, 1 E = mv + U Hence, we get de m d du = v v + dt dt dt F HG d g U dx U dy U dz = v F+ + + x dt y dt z dt = v F+ Fv Fv Fv x x y y z z = 0 O, E emains constant in time. Thus the law of consevation of enegy, in Newtonian mechanics, follows diectly as a consequence of homogeneity of time. Homogeneity of time implies that we can choose the zeo of time at any instant fo the obsevation of a physical pocess Isotopy of Space Space is isotopic means one diection in space is identical o equivalent to any othe diection. A paticula expeiment (i.e., physical pocess) will yield the same esult whethe ou laboatoy faces Noth o West. That is, an angula displacement of an isolated system does not change the intenal state of the system, no its intenal motion. When applied to an isolated system of two inteacting paticles, isotopy of space implies that the net wok done by intenal foces must be zeo when the system is otated by an angle d. i I KJ

12 1 Mechanics That is, d F + d F = whee d1 and d ae displacement vectos of paticles 1 and espectively. We know that v = ω ; that implies, d = d, and d = d 1 1 Thus, we find dd 1i F 1 + dd i F 1 = 0 o d F + d F = Since d is abitay, we get b 1 1g b 1g 0 1 F1 + F1 = 0 that is, the net toque poduced on the system by intenal foces is zeo. This implies that the angula momentum of the system emains constant. The above analysis can be extended to an n-paticles system. Thus, consevation of angula momentum of an isolated system emeges as a consequence of a fundamental popety of space, viz., its isotopy. Isotopy of space implies we can oient ou co-odinate axes in space in any way we wish Isotopy of Time Isotopy means equivalence of diections; isotopy of time means equivalence of diections of time. Howeve, we usually efe to only one diection of time, the fowad diection, fom pesent to futue. Nevetheless, we can conceive of a backwad diection of time, i.e., fom pesent to past. Theefoe, the question whethe time is isotopic o not means whethe time is evesible o not? Opeationally, it means to find out what happens if we change t by t? Newton s laws of motion do not change if we eplace t by t in it: m d d t b g m d = = F dt Since F does not explicitly contain t, it emains unaffected. Thus, the motion descibed by Newton s laws emains same when we eplace t by t. What it means is the following: conside a physical pocess govened by Newton s laws, as fo example, motion of a paticle thown vetically upwads. It goes up, stops, and then falls back unde gavity. Let us take a movie of the pocess as it poceeds fowad in time. If we now view the movie in evese, we look at the pocess occuing backwad in time. The entie pocess looks nomal: paticle goes up, stops, and falls back exactly accoding to Newton s laws. Thus, Newton s laws ae evesible in time. Pocesses in systems compising of lage numbe of paticles do not show time evesibility. As a typical example, conside a glass which falls fom a table and shattes into small pieces on the floo. If we un a motion pictue of the above pocess in evese, we see the pieces gatheing togethe on the floo into a whole glass, which then jumps onto the

13 Space-Time Stuctue, Newton s Laws and Galilean Tansfomation 13 table. This does not happen in natue. Thus, while each piece of glass follows Newton s laws which ae time evesible, the collective system beaks time evesibility. This is explained by II law of themodynamics which pohibits a macoscopic system to move fom less odeed to a moe odeed state (law of incease of entopy). Isotopy of time does not lead to any specific consevation pinciple in classical mechanics. To sum up, in this section, we descibed the space-time symmeties and thei consequences in undestanding the natue of foces and consevation laws, within a given inetial fame. Now, we shall see how Newtonian space-time stuctue connects motion as obseved fom two diffeent inetial fames. 1.4 PRINCIPLE OF RELATIVITY AND GALILEAN TRANSFORMATION It was fist obseved by Galileo, in multitude of expeiments, that mechanical phenomena occu identically in all inetial fames. (Late, this was expeimentally veified fo electomagnetic phenomena as well.) These obsevations of Galileo wee stated by Newton in the following wods: The motions of bodies included in a given space ae the same among themselves, whethe that space is at est o moves unifomly fowad in a staight line. The above statement, known as Galilean pinciple of special elativity, means that all phenomena in natue should be elated in same way in all inetial fames. In moden teminology, it says that the laws of natue must emain fom-invaiant as we go fom one inetial fame to anothe. The measuements of the motion of a paticle P (i.e., its position, velocity, and acceleation at any instant) fom two diffeent inetial fames S and S leads to two sets of values. The elationships between these two sets of measuements ae called Galilean tansfomation equations. One of the efeence fames S is (abitaily) called stationay while the othe S is called moving. The two fames must be moving with a constant velocity V elative to each othe. Othewise, the two fames become same. Both the fames (o obseves) S and S may use Catesian co-odinate systems fo measuements. Let us denote the co-odinates of paticle P in fame S by = (x, y, z) and time t, and in fame S by = (x, y, z ) and time t ; t and t denote the time ead by clocks attached in fames S and S, at the instant when position co-odinates of P ae espectively and. X Z O S Z R P Y S Y O X Z Y O R Z Y O P X Fig. 1.5 (a) Fig. 1.5 (b)

14 14 Mechanics In paticula, if we assume that oigins O and O of both the co-odinate systems coincide at t = t = 0, then at any late time t = t, the oigin O of co-odinate system S will be at a distance R = Vt fom the oigin O of co-odinate system S, whee V is the constant velocity with which S moves elative to S. Hence, if and ae position vectos of P as obseved fom S and S at that instant, then we have (see Fig. 1.5a). = R+ = Vt +...(1.1a) o = Vt...(1.1b) The above elation, along with t = t, ae known as Galilean tansfomations. As a special case, if the fame S moves paallel elative to fame S with X -axis coinciding with X-axis, as shown in Fig. 1.5b, the Galilean tansfomations ae given in components as following: x = x Vt y = y...(1.) z = z t = t Galilean tansfomations ae not the tansfomation equations between two coodinate systems within a single inetial fame, like e.g., Eq. 1.5 which elate ectangula to spheical pola co-odinates; these ae elations between two diffeent inetial fames. 1.5 INVARIANTS OF GALILEAN TRANSFORMATIONS The numeical values of vaious physical quantities geneally change unde a co-odinate tansfomation. Tivial example is the value of position co-odinates (x, y, z) of a paticle P, which change to (x, y, z ) unde the tansfomation. It means that the value of position co-odinates itself has no objective eality, o in othe wods, it is not an objective popety of the paticle. It is simply the geometical position of the paticle elative to a paticula co-odinate system. The physical quantities whose values do not change unde a tansfomation ae called the invaiants of the tansfomation. Such physical quantities eflect the objective popeties of the object (o phenomenon) unde consideation in the sense that these popeties emain independent of the choice of the co-odinate system. In the following discussion, we look into the invaiants of Galilean tansfomation Invaiance of Acceleation Diffeentiating Eq. 1.1 with espect to time, we find that d dr d = + dt dt dt o v = V + v...(1.3) d d whee v = = is the velocity of P elative to S ; V is velocity of S elative to S, and dt dt v is velocity of P elative to S. Eq. 1. descibes well known elation of velocity addition in Newtonian mechanics.

15 Space-Time Stuctue, Newton s Laws and Galilean Tansfomation 15 Diffeentiating once moe, we get d v d v a = = = a...(1.4) dt dt because V is constant. That is, acceleation of paticle P is same when obseved fom two diffeent inetial fames. Acceleation of the paticle P, theefoe, emains invaiant unde Galilean tansfomation Invaiance of Space and Time Intevals Suppose thee ae two points P 1 and P whose position vectos ae ( 1, ) and b1, g as obseved fom two fames S and S espectively, at any given instant of time t = t. Then, accoding to Galilean tansfomation, we have 1 = 1 Vt and = Vt whee V is the constant velocity of S elative to S. Hence, we get 1 = 1 o l = 1 = 1 = l...(1.5) Eq. 1.5 means that, bx x1 g + by y1 g + bz z1 g b 1g b 1g b 1g = x x + y y + z z l (o ) denotes the space inteval, o spatial distance between the two points. It may also epesent the length of a igid od, fo example, whose end points ae P 1 and P. Thus, we find that space inteval, o length of a igid object in geneal, emains invaiant unde Galilean tansfomation. Similaly, if two events occu at times t1 = t1 and t = t, the time inteval between these events as obseved fom two inetial fames is same, that is, t t1 = t t1 In othe wods, time inteval is also an invaiant of Galilean tansfomation Galilean Invaiance of Newton s Laws and Natue of Foces Pinciple of (special) elativity demands that all laws of natue should be valid in all inetial fames. This is obviously satisfied by Newton s I law: if the velocity of a paticle is constant (v) in fame S, it emains constant (v ) in fame S as well, v = v V...(1.6) because elative velocity (V) between the two inetial fames is a constant. Let us now look into Newton s II law. Suppose a paticle of mass m moves with the acceleation a due to an extenal foce F, as obseved fom fame S.

16 16 Mechanics Then we have, F = m a...(1.7) If the II law has to be fom-invaiant unde Galilean tansfomation, then in fame S, we should get the following elation: F = m a...(1.8) whee F and a ae the foce and acceleation as obseved fom S. It is assumed that inetial mass m, being a scala, is a fame independent quantity. We know that acceleation is an invaiant of Galilean tansfomation, i.e., a = a. Hence, if both the Eqs. 1.7 and 1.8 have to hold, then we must have, F = F...(1.9) The above condition imposes a sevee condition on the natue of foces; that is, foces appeaing in natue must be invaiants of Galilean tansfomation if Newton s II law has to be valid in all inetial fames. How do we know that F = F? What kind of function F (o F ) should be in ode to satisfy above equality? It tuns out that all the foces we encounte in Newtonian dynamics depend only on the elative position o elative velocity of two inteacting bodies (and not on thei absolute position o velocities in space). That is, as obseved fom fame S, a foce exeted by paticle on paticle 1 is found to have the following functional dependence, b g...(1.30) F = f, v v Hence, as seen fom S, the same foce would tansfom to, b F = f, v v Since, unde Galilean tansfomation, we have 1 = 1 and v v1 = v v1...(1.31) we find F = F 1 1 That is, the foces found in natue happen to be invaiants of Galilean tansfomation, thus making Newton s II law valid in all inetial fames. Futhe, if foces in natue have a functional dependence given by Eq. 1.30, then we find F = f, v v = f, v v = F g b g b g...(1.3) which is the statement of Newton s III law. Thus, the III law implicitly ensues that both II and III laws emain valid in all inetial fames. (Note that F1 = F1 = F1 = F1.) All the Newton s laws of motion theefoe emain fom-invaiant unde Galilean tansfomation in a self-consistent manne. Example 1.: Show that the consevation of total momentum of an isolated system of two colliding paticles in the pocess of collision follows fom the pinciple of Galilean invaiance and the law of consevation of enegy.

17 Space-Time Stuctue, Newton s Laws and Galilean Tansfomation 17 Solution: To show this, let us conside the collision of two paticles 1 and as obseved fom an inetial fame S. Suppose initially 1 and, moving with velocities u 1 and u, ae so fa apat that they do not possess any potential enegy of inteaction. The total enegy of the system of both paticles is just thei kinetic enegy, 1 1 mu mu Afte they collide and sepaate fa apat, let thei velocities be v 1 and v 1. Accoding to law of consevation of enegy in fame S, we get mu mu = mv mv + E...(1.33) whee E is the change (loss o gain) in intenal enegy of the paticles duing collision. If E = 0, collision is elastic; othewise inelastic. Now let us view the pocess fom anothe inetial fame S moving with velocity V elative to S. Accoding to Galilean tansfomation, the velocities of paticles as obseved fom S ae, u = u V, u = u V (befoe)...(1.34a) 1 1 and v1 = v1 V, v = v V (afte)...(1.34b) Now we intoduce the idea that pinciple of consevation of enegy is fame independent. In fact, consevation of mechanical enegy being a consequence of homogeneity of time, is fundamentally an invaiant pinciple in Newtonian mechanics. As shown by expeiments, we futhe assume that intenal enegy change E also emains invaiant unde Galilean tansfomations. Hence, consevation of enegy in collision pocess as obseved in S, gives b g b g b g b g...(1.35) m1 u1 + m u = m1 v1 + m v + E Using Eq. 1.34, we find bg u = u V u1 V b 1g b g b 1g b g etc. Substituting fo u, u, v, v in Eq. 1.35, we get b g b g mu mu m1u1 + mu V = mv mv m1v1 + mv V + E Compaing above with Eq. 1.33, we get m u + m u = m v + m v which is the law of consevation of momentum in collision pocess. Thus, the pinciple of consevation of enegy and the concept of Galilean invaiance shows that momentum emains conseved duing collision, whethe elastic o inelastic. Of couse, momentum consevation in collision pocess follows athe staightfowad fom Newton s III law. If we conside the two colliding paticles as an isolated combined system on which no extenal foce acts, then the momentum of the system must emain

18 18 Mechanics conseved, no matte whethe they collide o do something else. Moeove, momentum consevation being a consequence of homogeneity of space must also be a fundamentally Galilean invaiant pinciple. That is, in fame S, we have m u + m u = m v + m v SOME BASIC FORCES IN NATURE A foce expesses the inteaction between two diffeent objects. We ae familia with a lage vaiety of foces such as gavitational foce, electic and magnetic foce, and intemolecula foces giving ise to dy fiction, viscosity, suface tension, tension in the sting, o elastic foce in a sping, etc. We ae also familia with nuclea foces esponsible fo binding of potons and neutons togethe in a nucleus, o the splitting of a neuton into a poton, electon and anti-neutino in beta-decay. Among this lage divesity of tems, it tuns out that thee ae only fou types of basic foces (known at pesent) in natue, viz., 1. Gavitational foce. Electomagnetic foce 3. Stong nuclea foce 4. Weak foce. We shall now biefly outline the basic chaacteistic of these foces. 1. Gavitational foce: The gavitational inteaction is a univesal phenomenon which acts between all foms of matte and enegy. The quantitative natue of gavitational foce was fist given by Newton; accoding to Newton s law of gavitation, between any two mateial paticles thee exists an attactive foce of gavitation, given by F 1 G mm 1 = 1 whee m 1 and m ae the gavitational masses and 1 is the elative distance between the (inteacting) paticles. The value of gavitational constant G is about Nm /kg. The gavitational inteaction plays significant ole only when masses involved ae lage. It becomes the decisive foce when we study motions of planets, stas, o othe such cosmic objects. We shall study moe about the natue of gavitational inteaction in Ch 7. The gavitational inteaction between eath and othe elatively smalle objects nea the suface of eath poduces an almost unifom acceleation due to gavity g = 9.8 m/s (appoximately) in all these objects. Hence, in consideing the motion of any such pototype object, e.g., a block o a sphee of mass m on the suface of eath, it is implicit that gavity foce mg is acting on the object. On the othe hand, if we ae consideing the motion of micoscopic paticles like electons etc., the gavity foce is completely neglected because of the tiny masses of these paticles (as we discuss in Ch. 3; also see Poblem 5, set A, Ch. 1).. Electo-magnetic foce: The second kind of fundamental foce is the electomagnetic foce that acts between chaged paticles. The fist law of electo-magnetism is the Coulomb s law of electic foce between two chages q 1 and q fixed (i.e., kept at est) at elative distance 1. The Coulomb s law states that the electic foce between these static chages is given by 1 qq 1 F1 = 4 πε 0 1

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses, 3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects

More information

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it.

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it. Candidates should be able to : Descibe how a mass ceates a gavitational field in the space aound it. Define gavitational field stength as foce pe unit mass. Define and use the peiod of an object descibing

More information

12. Rolling, Torque, and Angular Momentum

12. Rolling, Torque, and Angular Momentum 12. olling, Toque, and Angula Momentum 1 olling Motion: A motion that is a combination of otational and tanslational motion, e.g. a wheel olling down the oad. Will only conside olling with out slipping.

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of

(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of Homewok VI Ch. 7 - Poblems 15, 19, 22, 25, 35, 43, 51. Poblem 15 (a) The centipetal acceleation of a point on the equato of the Eath is given by v2. The velocity of the eath can be found by taking the

More information

Episode 401: Newton s law of universal gravitation

Episode 401: Newton s law of universal gravitation Episode 401: Newton s law of univesal gavitation This episode intoduces Newton s law of univesal gavitation fo point masses, and fo spheical masses, and gets students pactising calculations of the foce

More information

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges The foce between electic chages Coulomb s Law Two chaged objects, of chage q and Q, sepaated by a distance, exet a foce on one anothe. The magnitude of this foce is given by: kqq Coulomb s Law: F whee

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 of 9 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 Voltage ( = Electic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage is

More information

Deflection of Electrons by Electric and Magnetic Fields

Deflection of Electrons by Electric and Magnetic Fields Physics 233 Expeiment 42 Deflection of Electons by Electic and Magnetic Fields Refeences Loain, P. and D.R. Coson, Electomagnetism, Pinciples and Applications, 2nd ed., W.H. Feeman, 199. Intoduction An

More information

PY1052 Problem Set 8 Autumn 2004 Solutions

PY1052 Problem Set 8 Autumn 2004 Solutions PY052 Poblem Set 8 Autumn 2004 Solutions H h () A solid ball stats fom est at the uppe end of the tack shown and olls without slipping until it olls off the ight-hand end. If H 6.0 m and h 2.0 m, what

More information

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.-7. find the vecto defined

More information

The Role of Gravity in Orbital Motion

The Role of Gravity in Orbital Motion ! The Role of Gavity in Obital Motion Pat of: Inquiy Science with Datmouth Developed by: Chistophe Caoll, Depatment of Physics & Astonomy, Datmouth College Adapted fom: How Gavity Affects Obits (Ohio State

More information

PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013

PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013 PHYSICS 111 HOMEWORK SOLUTION #13 May 1, 2013 0.1 In intoductoy physics laboatoies, a typical Cavendish balance fo measuing the gavitational constant G uses lead sphees with masses of 2.10 kg and 21.0

More information

Gravitation. AP Physics C

Gravitation. AP Physics C Gavitation AP Physics C Newton s Law of Gavitation What causes YOU to be pulled down? THE EARTH.o moe specifically the EARTH S MASS. Anything that has MASS has a gavitational pull towads it. F α Mm g What

More information

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere.

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere. Chapte.3 What is the magnitude of a point chage whose electic field 5 cm away has the magnitude of.n/c. E E 5.56 1 11 C.5 An atom of plutonium-39 has a nuclea adius of 6.64 fm and atomic numbe Z94. Assuming

More information

Exam 3: Equation Summary

Exam 3: Equation Summary MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics Physics 8.1 TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t= Exam 3: Equation Summay total = Impulse: I F( t ) = p Toque: τ = S S,P

More information

Coordinate Systems L. M. Kalnins, March 2009

Coordinate Systems L. M. Kalnins, March 2009 Coodinate Sstems L. M. Kalnins, Mach 2009 Pupose of a Coodinate Sstem The pupose of a coodinate sstem is to uniquel detemine the position of an object o data point in space. B space we ma liteall mean

More information

TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION

TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION MISN-0-34 TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION shaft TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION by Kiby Mogan, Chalotte, Michigan 1. Intoduction..............................................

More information

Gravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2

Gravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2 F Gm Gavitation and Keple s Laws Newton s Law of Univesal Gavitation in vectoial fom: F 12 21 Gm 1 m 2 12 2 ˆ 12 whee the hat (ˆ) denotes a unit vecto as usual. Gavity obeys the supeposition pinciple,

More information

1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2

1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2 Chapte 5 Example The helium atom has 2 electonic enegy levels: E 3p = 23.1 ev and E 2s = 20.6 ev whee the gound state is E = 0. If an electon makes a tansition fom 3p to 2s, what is the wavelength of the

More information

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27 Magnetic Field and Magnetic Foces Young and Feedman Chapte 27 Intoduction Reiew - electic fields 1) A chage (o collection of chages) poduces an electic field in the space aound it. 2) The electic field

More information

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

Charges, Coulomb s Law, and Electric Fields

Charges, Coulomb s Law, and Electric Fields Q&E -1 Chages, Coulomb s Law, and Electic ields Some expeimental facts: Expeimental fact 1: Electic chage comes in two types, which we call (+) and ( ). An atom consists of a heavy (+) chaged nucleus suounded

More information

Forces & Magnetic Dipoles. r r τ = μ B r

Forces & Magnetic Dipoles. r r τ = μ B r Foces & Magnetic Dipoles x θ F θ F. = AI τ = U = Fist electic moto invented by Faaday, 1821 Wie with cuent flow (in cup of Hg) otates aound a a magnet Faaday s moto Wie with cuent otates aound a Pemanent

More information

Carter-Penrose diagrams and black holes

Carter-Penrose diagrams and black holes Cate-Penose diagams and black holes Ewa Felinska The basic intoduction to the method of building Penose diagams has been pesented, stating with obtaining a Penose diagam fom Minkowski space. An example

More information

Lab #7: Energy Conservation

Lab #7: Energy Conservation Lab #7: Enegy Consevation Photo by Kallin http://www.bungeezone.com/pics/kallin.shtml Reading Assignment: Chapte 7 Sections 1,, 3, 5, 6 Chapte 8 Sections 1-4 Intoduction: Pehaps one of the most unusual

More information

Multiple choice questions [60 points]

Multiple choice questions [60 points] 1 Multiple choice questions [60 points] Answe all o the ollowing questions. Read each question caeully. Fill the coect bubble on you scanton sheet. Each question has exactly one coect answe. All questions

More information

The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C

The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C Geneal Physics - PH Winte 6 Bjoen Seipel The Electic Potential, Electic Potential Enegy and Enegy Consevation Electic Potential Enegy U is the enegy of a chaged object in an extenal electic field (Unit

More information

Experiment 6: Centripetal Force

Experiment 6: Centripetal Force Name Section Date Intoduction Expeiment 6: Centipetal oce This expeiment is concened with the foce necessay to keep an object moving in a constant cicula path. Accoding to Newton s fist law of motion thee

More information

Chapter 2. Electrostatics

Chapter 2. Electrostatics Chapte. Electostatics.. The Electostatic Field To calculate the foce exeted by some electic chages,,, 3,... (the souce chages) on anothe chage Q (the test chage) we can use the pinciple of supeposition.

More information

7 Circular Motion. 7-1 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary

7 Circular Motion. 7-1 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary 7 Cicula Motion 7-1 Centipetal Acceleation and Foce Peiod, Fequency, and Speed Vocabulay Vocabulay Peiod: he time it takes fo one full otation o evolution of an object. Fequency: he numbe of otations o

More information

Chapter 3 Savings, Present Value and Ricardian Equivalence

Chapter 3 Savings, Present Value and Ricardian Equivalence Chapte 3 Savings, Pesent Value and Ricadian Equivalence Chapte Oveview In the pevious chapte we studied the decision of households to supply hous to the labo maket. This decision was a static decision,

More information

2. Orbital dynamics and tides

2. Orbital dynamics and tides 2. Obital dynamics and tides 2.1 The two-body poblem This efes to the mutual gavitational inteaction of two bodies. An exact mathematical solution is possible and staightfowad. In the case that one body

More information

Chapter 17 The Kepler Problem: Planetary Mechanics and the Bohr Atom

Chapter 17 The Kepler Problem: Planetary Mechanics and the Bohr Atom Chapte 7 The Keple Poblem: Planetay Mechanics and the Boh Atom Keple s Laws: Each planet moves in an ellipse with the sun at one focus. The adius vecto fom the sun to a planet sweeps out equal aeas in

More information

F G r. Don't confuse G with g: "Big G" and "little g" are totally different things.

F G r. Don't confuse G with g: Big G and little g are totally different things. G-1 Gavity Newton's Univesal Law of Gavitation (fist stated by Newton): any two masses m 1 and m exet an attactive gavitational foce on each othe accoding to m m G 1 This applies to all masses, not just

More information

Lesson 7 Gauss s Law and Electric Fields

Lesson 7 Gauss s Law and Electric Fields Lesson 7 Gauss s Law and Electic Fields Lawence B. Rees 7. You may make a single copy of this document fo pesonal use without witten pemission. 7. Intoduction While it is impotant to gain a solid conceptual

More information

Mechanics 1: Motion in a Central Force Field

Mechanics 1: Motion in a Central Force Field Mechanics : Motion in a Cental Foce Field We now stud the popeties of a paticle of (constant) ass oving in a paticula tpe of foce field, a cental foce field. Cental foces ae ve ipotant in phsics and engineeing.

More information

VISCOSITY OF BIO-DIESEL FUELS

VISCOSITY OF BIO-DIESEL FUELS VISCOSITY OF BIO-DIESEL FUELS One of the key assumptions fo ideal gases is that the motion of a given paticle is independent of any othe paticles in the system. With this assumption in place, one can use

More information

Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360!

Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360! 1. What ae angles? Last time, we looked at how the Geeks intepeted measument of lengths. Howeve, as fascinated as they wee with geomety, thee was a shape that was much moe enticing than any othe : the

More information

Uniform Rectilinear Motion

Uniform Rectilinear Motion Engineeing Mechanics : Dynamics Unifom Rectilinea Motion Fo paticle in unifom ectilinea motion, the acceleation is zeo and the elocity is constant. d d t constant t t 11-1 Engineeing Mechanics : Dynamics

More information

Gravity. A. Law of Gravity. Gravity. Physics: Mechanics. A. The Law of Gravity. Dr. Bill Pezzaglia. B. Gravitational Field. C.

Gravity. A. Law of Gravity. Gravity. Physics: Mechanics. A. The Law of Gravity. Dr. Bill Pezzaglia. B. Gravitational Field. C. Physics: Mechanics 1 Gavity D. Bill Pezzaglia A. The Law of Gavity Gavity B. Gavitational Field C. Tides Updated: 01Jul09 A. Law of Gavity 3 1a. Invese Squae Law 4 1. Invese Squae Law. Newton s 4 th law

More information

Introduction to Fluid Mechanics

Introduction to Fluid Mechanics Chapte 1 1 1.6. Solved Examples Example 1.1 Dimensions and Units A body weighs 1 Ibf when exposed to a standad eath gavity g = 3.174 ft/s. (a) What is its mass in kg? (b) What will the weight of this body

More information

Solution Derivations for Capa #8

Solution Derivations for Capa #8 Solution Deivations fo Capa #8 1) A ass spectoete applies a voltage of 2.00 kv to acceleate a singly chaged ion (+e). A 0.400 T field then bends the ion into a cicula path of adius 0.305. What is the ass

More information

Mechanics 1: Work, Power and Kinetic Energy

Mechanics 1: Work, Power and Kinetic Energy Mechanics 1: Wok, Powe and Kinetic Eneg We fist intoduce the ideas of wok and powe. The notion of wok can be viewed as the bidge between Newton s second law, and eneg (which we have et to define and discuss).

More information

AP Physics Electromagnetic Wrap Up

AP Physics Electromagnetic Wrap Up AP Physics Electomagnetic Wap Up Hee ae the gloious equations fo this wondeful section. F qsin This is the equation fo the magnetic foce acting on a moing chaged paticle in a magnetic field. The angle

More information

Determining solar characteristics using planetary data

Determining solar characteristics using planetary data Detemining sola chaacteistics using planetay data Intoduction The Sun is a G type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this inestigation

More information

Chapte 3 Is Gavitation A Results Of Asymmetic Coulomb Chage Inteactions? Jounal of Undegaduate Reseach èjurè Univesity of Utah è1992è, Vol. 3, No. 1, pp. 56í61. Jeæey F. Gold Depatment of Physics, Depatment

More information

10. Collisions. Before During After

10. Collisions. Before During After 10. Collisions Use conseation of momentum and enegy and the cente of mass to undestand collisions between two objects. Duing a collision, two o moe objects exet a foce on one anothe fo a shot time: -F(t)

More information

Displacement, Velocity And Acceleration

Displacement, Velocity And Acceleration Displacement, Velocity And Acceleation Vectos and Scalas Position Vectos Displacement Speed and Velocity Acceleation Complete Motion Diagams Outline Scala vs. Vecto Scalas vs. vectos Scala : a eal numbe,

More information

NUCLEAR MAGNETIC RESONANCE

NUCLEAR MAGNETIC RESONANCE 19 Jul 04 NMR.1 NUCLEAR MAGNETIC RESONANCE In this expeiment the phenomenon of nuclea magnetic esonance will be used as the basis fo a method to accuately measue magnetic field stength, and to study magnetic

More information

Chapter 4: Fluid Kinematics

Chapter 4: Fluid Kinematics Oveview Fluid kinematics deals with the motion of fluids without consideing the foces and moments which ceate the motion. Items discussed in this Chapte. Mateial deivative and its elationship to Lagangian

More information

Structure and evolution of circumstellar disks during the early phase of accretion from a parent cloud

Structure and evolution of circumstellar disks during the early phase of accretion from a parent cloud Cente fo Tubulence Reseach Annual Reseach Biefs 2001 209 Stuctue and evolution of cicumstella disks duing the ealy phase of accetion fom a paent cloud By Olusola C. Idowu 1. Motivation and Backgound The

More information

Solutions for Physics 1301 Course Review (Problems 10 through 18)

Solutions for Physics 1301 Course Review (Problems 10 through 18) Solutions fo Physics 1301 Couse Review (Poblems 10 though 18) 10) a) When the bicycle wheel comes into contact with the step, thee ae fou foces acting on it at that moment: its own weight, Mg ; the nomal

More information

Phys 2101 Gabriela González. cos. sin. sin

Phys 2101 Gabriela González. cos. sin. sin 1 Phys 101 Gabiela González a m t t ma ma m m T α φ ω φ sin cos α τ α φ τ sin m m α τ I We know all of that aleady!! 3 The figue shows the massive shield doo at a neuton test facility at Lawence Livemoe

More information

Lecture 16: Color and Intensity. and he made him a coat of many colours. Genesis 37:3

Lecture 16: Color and Intensity. and he made him a coat of many colours. Genesis 37:3 Lectue 16: Colo and Intensity and he made him a coat of many colous. Genesis 37:3 1. Intoduction To display a pictue using Compute Gaphics, we need to compute the colo and intensity of the light at each

More information

Fluids Lecture 15 Notes

Fluids Lecture 15 Notes Fluids Lectue 15 Notes 1. Unifom flow, Souces, Sinks, Doublets Reading: Andeson 3.9 3.12 Unifom Flow Definition A unifom flow consists of a velocit field whee V = uî + vĵ is a constant. In 2-D, this velocit

More information

dz + η 1 r r 2 + c 1 ln r + c 2 subject to the boundary conditions of no-slip side walls and finite force over the fluid length u z at r = 0

dz + η 1 r r 2 + c 1 ln r + c 2 subject to the boundary conditions of no-slip side walls and finite force over the fluid length u z at r = 0 Poiseuille Flow Jean Louis Maie Poiseuille, a Fench physicist and physiologist, was inteested in human blood flow and aound 1840 he expeimentally deived a law fo flow though cylindical pipes. It s extemely

More information

Problems of the 2 nd and 9 th International Physics Olympiads (Budapest, Hungary, 1968 and 1976)

Problems of the 2 nd and 9 th International Physics Olympiads (Budapest, Hungary, 1968 and 1976) Poblems of the nd and 9 th Intenational Physics Olympiads (Budapest Hungay 968 and 976) Péte Vankó Institute of Physics Budapest Univesity of Technology and Economics Budapest Hungay Abstact Afte a shot

More information

Experiment MF Magnetic Force

Experiment MF Magnetic Force Expeiment MF Magnetic Foce Intoduction The magnetic foce on a cuent-caying conducto is basic to evey electic moto -- tuning the hands of electic watches and clocks, tanspoting tape in Walkmans, stating

More information

Relativistic Quantum Mechanics

Relativistic Quantum Mechanics Chapte Relativistic Quantum Mechanics In this Chapte we will addess the issue that the laws of physics must be fomulated in a fom which is Loentz invaiant, i.e., the desciption should not allow one to

More information

Chapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6

Chapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6 Chapte 9 lectic Chages, Foces, an Fiels 6 9. One in a million (0 ) ogen molecules in a containe has lost an electon. We assume that the lost electons have been emove fom the gas altogethe. Fin the numbe

More information

Chapter 30: Magnetic Fields Due to Currents

Chapter 30: Magnetic Fields Due to Currents d Chapte 3: Magnetic Field Due to Cuent A moving electic chage ceate a magnetic field. One of the moe pactical way of geneating a lage magnetic field (.1-1 T) i to ue a lage cuent flowing though a wie.

More information

Magnetic Bearing with Radial Magnetized Permanent Magnets

Magnetic Bearing with Radial Magnetized Permanent Magnets Wold Applied Sciences Jounal 23 (4): 495-499, 2013 ISSN 1818-4952 IDOSI Publications, 2013 DOI: 10.5829/idosi.wasj.2013.23.04.23080 Magnetic eaing with Radial Magnetized Pemanent Magnets Vyacheslav Evgenevich

More information

UNIT CIRCLE TRIGONOMETRY

UNIT CIRCLE TRIGONOMETRY UNIT CIRCLE TRIGONOMETRY The Unit Cicle is the cicle centeed at the oigin with adius unit (hence, the unit cicle. The equation of this cicle is + =. A diagam of the unit cicle is shown below: + = - - -

More information

Lab M4: The Torsional Pendulum and Moment of Inertia

Lab M4: The Torsional Pendulum and Moment of Inertia M4.1 Lab M4: The Tosional Pendulum and Moment of netia ntoduction A tosional pendulum, o tosional oscillato, consists of a disk-like mass suspended fom a thin od o wie. When the mass is twisted about the

More information

PAN STABILITY TESTING OF DC CIRCUITS USING VARIATIONAL METHODS XVIII - SPETO - 1995. pod patronatem. Summary

PAN STABILITY TESTING OF DC CIRCUITS USING VARIATIONAL METHODS XVIII - SPETO - 1995. pod patronatem. Summary PCE SEMINIUM Z PODSTW ELEKTOTECHNIKI I TEOII OBWODÓW 8 - TH SEMIN ON FUNDMENTLS OF ELECTOTECHNICS ND CICUIT THEOY ZDENĚK BIOLEK SPŠE OŽNO P.., CZECH EPUBLIC DLIBO BIOLEK MILITY CDEMY, BNO, CZECH EPUBLIC

More information

Physics HSC Course Stage 6. Space. Part 1: Earth s gravitational field

Physics HSC Course Stage 6. Space. Part 1: Earth s gravitational field Physics HSC Couse Stage 6 Space Pat 1: Eath s gavitational field Contents Intoduction... Weight... 4 The value of g... 7 Measuing g...8 Vaiations in g...11 Calculating g and W...13 You weight on othe

More information

est using the formula I = Prt, where I is the interest earned, P is the principal, r is the interest rate, and t is the time in years.

est using the formula I = Prt, where I is the interest earned, P is the principal, r is the interest rate, and t is the time in years. 9.2 Inteest Objectives 1. Undestand the simple inteest fomula. 2. Use the compound inteest fomula to find futue value. 3. Solve the compound inteest fomula fo diffeent unknowns, such as the pesent value,

More information

Gravitational Mechanics of the Mars-Phobos System: Comparing Methods of Orbital Dynamics Modeling for Exploratory Mission Planning

Gravitational Mechanics of the Mars-Phobos System: Comparing Methods of Orbital Dynamics Modeling for Exploratory Mission Planning Gavitational Mechanics of the Mas-Phobos System: Compaing Methods of Obital Dynamics Modeling fo Exploatoy Mission Planning Alfedo C. Itualde The Pennsylvania State Univesity, Univesity Pak, PA, 6802 This

More information

CHAPTER 5 GRAVITATIONAL FIELD AND POTENTIAL

CHAPTER 5 GRAVITATIONAL FIELD AND POTENTIAL CHATER 5 GRAVITATIONAL FIELD AND OTENTIAL 5. Intoduction. This chapte deals with the calculation of gavitational fields and potentials in the vicinity of vaious shapes and sizes of massive bodies. The

More information

Multiple choice questions [70 points]

Multiple choice questions [70 points] Multiple choice questions [70 points] Answe all of the following questions. Read each question caefull. Fill the coect bubble on ou scanton sheet. Each question has exactl one coect answe. All questions

More information

Chapter 4: Fluid Kinematics

Chapter 4: Fluid Kinematics 4-1 Lagangian g and Euleian Desciptions 4-2 Fundamentals of Flow Visualization 4-3 Kinematic Desciption 4-4 Reynolds Tanspot Theoem (RTT) 4-1 Lagangian and Euleian Desciptions (1) Lagangian desciption

More information

The Binomial Distribution

The Binomial Distribution The Binomial Distibution A. It would be vey tedious if, evey time we had a slightly diffeent poblem, we had to detemine the pobability distibutions fom scatch. Luckily, thee ae enough similaities between

More information

Problem Set # 9 Solutions

Problem Set # 9 Solutions Poblem Set # 9 Solutions Chapte 12 #2 a. The invention of the new high-speed chip inceases investment demand, which shifts the cuve out. That is, at evey inteest ate, fims want to invest moe. The incease

More information

Analytical Proof of Newton's Force Laws

Analytical Proof of Newton's Force Laws Analytical Poof of Newton s Foce Laws Page 1 1 Intouction Analytical Poof of Newton's Foce Laws Many stuents intuitively assume that Newton's inetial an gavitational foce laws, F = ma an Mm F = G, ae tue

More information

An Introduction to Omega

An Introduction to Omega An Intoduction to Omega Con Keating and William F. Shadwick These distibutions have the same mean and vaiance. Ae you indiffeent to thei isk-ewad chaacteistics? The Finance Development Cente 2002 1 Fom

More information

MULTIPLE SOLUTIONS OF THE PRESCRIBED MEAN CURVATURE EQUATION

MULTIPLE SOLUTIONS OF THE PRESCRIBED MEAN CURVATURE EQUATION MULTIPLE SOLUTIONS OF THE PRESCRIBED MEAN CURVATURE EQUATION K.C. CHANG AND TAN ZHANG In memoy of Pofesso S.S. Chen Abstact. We combine heat flow method with Mose theoy, supe- and subsolution method with

More information

STUDENT RESPONSE TO ANNUITY FORMULA DERIVATION

STUDENT RESPONSE TO ANNUITY FORMULA DERIVATION Page 1 STUDENT RESPONSE TO ANNUITY FORMULA DERIVATION C. Alan Blaylock, Hendeson State Univesity ABSTRACT This pape pesents an intuitive appoach to deiving annuity fomulas fo classoom use and attempts

More information

The Gravity Field of the Earth - Part 1 (Copyright 2002, David T. Sandwell)

The Gravity Field of the Earth - Part 1 (Copyright 2002, David T. Sandwell) 1 The Gavity Field of the Eath - Pat 1 (Copyight 00, David T. Sandwell) This chapte coves physical geodesy - the shape of the Eath and its gavity field. This is just electostatic theoy applied to the Eath.

More information

Spirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project

Spirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project Spiotechnics! Septembe 7, 2011 Amanda Zeingue, Michael Spannuth and Amanda Zeingue Dieential Geomety Poject 1 The Beginning The geneal consensus of ou goup began with one thought: Spiogaphs ae awesome.

More information

3.02 Potential Theory and Static Gravity Field of the Earth

3.02 Potential Theory and Static Gravity Field of the Earth 3.02 Potential Theoy and Static Gavity Field of the Eath C. Jekeli, The Ohio State Univesity, Columbus, OH, USA ª 2007 Elsevie B.V. All ights eseved. 3.02. Intoduction 2 3.02.. Histoical Notes 2 3.02..2

More information

A r. (Can you see that this just gives the formula we had above?)

A r. (Can you see that this just gives the formula we had above?) 24-1 (SJP, Phys 1120) lectic flux, and Gauss' law Finding the lectic field due to a bunch of chages is KY! Once you know, you know the foce on any chage you put down - you can pedict (o contol) motion

More information

Skills Needed for Success in Calculus 1

Skills Needed for Success in Calculus 1 Skills Needed fo Success in Calculus Thee is much appehension fom students taking Calculus. It seems that fo man people, "Calculus" is snonmous with "difficult." Howeve, an teache of Calculus will tell

More information

AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM

AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM Main Golub Faculty of Electical Engineeing and Computing, Univesity of Zageb Depatment of Electonics, Micoelectonics,

More information

Continuous Compounding and Annualization

Continuous Compounding and Annualization Continuous Compounding and Annualization Philip A. Viton Januay 11, 2006 Contents 1 Intoduction 1 2 Continuous Compounding 2 3 Pesent Value with Continuous Compounding 4 4 Annualization 5 5 A Special Poblem

More information

Moment and couple. In 3-D, because the determination of the distance can be tedious, a vector approach becomes advantageous. r r

Moment and couple. In 3-D, because the determination of the distance can be tedious, a vector approach becomes advantageous. r r Moment and couple In 3-D, because the detemination of the distance can be tedious, a vecto appoach becomes advantageous. o k j i M k j i M o ) ( ) ( ) ( + + M o M + + + + M M + O A Moment about an abita

More information

Financing Terms in the EOQ Model

Financing Terms in the EOQ Model Financing Tems in the EOQ Model Habone W. Stuat, J. Columbia Business School New Yok, NY 1007 hws7@columbia.edu August 6, 004 1 Intoduction This note discusses two tems that ae often omitted fom the standad

More information

CRRC-1 Method #1: Standard Practice for Measuring Solar Reflectance of a Flat, Opaque, and Heterogeneous Surface Using a Portable Solar Reflectometer

CRRC-1 Method #1: Standard Practice for Measuring Solar Reflectance of a Flat, Opaque, and Heterogeneous Surface Using a Portable Solar Reflectometer CRRC- Method #: Standad Pactice fo Measuing Sola Reflectance of a Flat, Opaque, and Heteogeneous Suface Using a Potable Sola Reflectomete Scope This standad pactice coves a technique fo estimating the

More information

Classical Mechanics (CM):

Classical Mechanics (CM): Classical Mechanics (CM): We ought to have some backgound to aeciate that QM eally does just use CM and makes one slight modification that then changes the natue of the oblem we need to solve but much

More information

Functions of a Random Variable: Density. Math 425 Intro to Probability Lecture 30. Definition Nice Transformations. Problem

Functions of a Random Variable: Density. Math 425 Intro to Probability Lecture 30. Definition Nice Transformations. Problem Intoduction One Function of Random Vaiables Functions of a Random Vaiable: Density Math 45 Into to Pobability Lectue 30 Let gx) = y be a one-to-one function whose deiatie is nonzeo on some egion A of the

More information

ON THE (Q, R) POLICY IN PRODUCTION-INVENTORY SYSTEMS

ON THE (Q, R) POLICY IN PRODUCTION-INVENTORY SYSTEMS ON THE R POLICY IN PRODUCTION-INVENTORY SYSTEMS Saifallah Benjaafa and Joon-Seok Kim Depatment of Mechanical Engineeing Univesity of Minnesota Minneapolis MN 55455 Abstact We conside a poduction-inventoy

More information

Impulse and Linear Momentum 5

Impulse and Linear Momentum 5 Implse and Linea Momentm 5 How does jet poplsion wok? How can yo mease the speed of a bllet? Wold a meteoite collision significantly change Eath s obit? In pevios chaptes we discoveed that the pshing inteaction

More information

Concept and Experiences on using a Wiki-based System for Software-related Seminar Papers

Concept and Experiences on using a Wiki-based System for Software-related Seminar Papers Concept and Expeiences on using a Wiki-based System fo Softwae-elated Semina Papes Dominik Fanke and Stefan Kowalewski RWTH Aachen Univesity, 52074 Aachen, Gemany, {fanke, kowalewski}@embedded.wth-aachen.de,

More information

SAMPLE CHAPTERS UNESCO EOLSS THE MOTION OF CELESTIAL BODIES. Kaare Aksnes Institute of Theoretical Astrophysics University of Oslo

SAMPLE CHAPTERS UNESCO EOLSS THE MOTION OF CELESTIAL BODIES. Kaare Aksnes Institute of Theoretical Astrophysics University of Oslo THE MOTION OF CELESTIAL BODIES Kaae Aksnes Institute of Theoetical Astophysics Univesity of Oslo Keywods: celestial mechanics, two-body obits, thee-body obits, petubations, tides, non-gavitational foces,

More information

CHAPTER 9 THE TWO BODY PROBLEM IN TWO DIMENSIONS

CHAPTER 9 THE TWO BODY PROBLEM IN TWO DIMENSIONS 9. Intoduction CHAPTER 9 THE TWO BODY PROBLEM IN TWO DIMENSIONS In this chapte we show how Keple s laws can be deived fom Newton s laws of motion and gavitation, and consevation of angula momentum, and

More information

GAUSS S LAW APPLIED TO CYLINDRICAL AND PLANAR CHARGE DISTRIBUTIONS ` E MISN-0-133. CHARGE DISTRIBUTIONS by Peter Signell, Michigan State University

GAUSS S LAW APPLIED TO CYLINDRICAL AND PLANAR CHARGE DISTRIBUTIONS ` E MISN-0-133. CHARGE DISTRIBUTIONS by Peter Signell, Michigan State University MISN-0-133 GAUSS S LAW APPLIED TO CYLINDRICAL AND PLANAR CHARGE DISTRIBUTIONS GAUSS S LAW APPLIED TO CYLINDRICAL AND PLANAR CHARGE DISTRIBUTIONS by Pete Signell, Michigan State Univesity 1. Intoduction..............................................

More information

Questions & Answers Chapter 10 Software Reliability Prediction, Allocation and Demonstration Testing

Questions & Answers Chapter 10 Software Reliability Prediction, Allocation and Demonstration Testing M13914 Questions & Answes Chapte 10 Softwae Reliability Pediction, Allocation and Demonstation Testing 1. Homewok: How to deive the fomula of failue ate estimate. λ = χ α,+ t When the failue times follow

More information

Explicit, analytical solution of scaling quantum graphs. Abstract

Explicit, analytical solution of scaling quantum graphs. Abstract Explicit, analytical solution of scaling quantum gaphs Yu. Dabaghian and R. Blümel Depatment of Physics, Wesleyan Univesity, Middletown, CT 06459-0155, USA E-mail: ydabaghian@wesleyan.edu (Januay 6, 2003)

More information

Week 3-4: Permutations and Combinations

Week 3-4: Permutations and Combinations Week 3-4: Pemutations and Combinations Febuay 24, 2016 1 Two Counting Pinciples Addition Pinciple Let S 1, S 2,, S m be disjoint subsets of a finite set S If S S 1 S 2 S m, then S S 1 + S 2 + + S m Multiplication

More information