# Secondary Math 2 Honors. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Secodr Mth Hoors Uit Polomils, Epoets, Rdicls & Comple Numbers. Addig, Subtrctig, d Multiplig Polomils Notes Moomil: A epressio tht is umber, vrible, or umbers d vribles multiplied together. Moomils ol hve vribles with whole umber epoets d ever hve vribles i the deomitor of frctio or vribles uder roots. Moomils: z b,, w,,, 8 4 Not Moomils: 4,,, z Costt: A moomil tht cotis o vribles, like or. Coefficiet: The umericl prt of moomil (the umber beig multiplied b the vribles.) Polomil: A moomil or severl moomils joied b + or sigs. Terms: The moomils tht mke up polomil. Terms re seprted b + or sigs. Like Terms: Terms whose vribles d epoets re ectl the sme. Biomil: A polomil with two ulike terms. Triomil: A polomil with three ulike terms. Emples: Decide whether ech epressio is polomil. If it is t, epli wh ot. ) b) 4 c) m + d) 6c + c e) 6z z + f) 7 g) 8 h) +

2 Addig d Subtrctig Polomils To dd or subtrct polomils, combie like terms. Add or subtrct the coefficiets. The vribles d epoets do ot chge. Remember to subtrct everthig iside the pretheses fter mius sig. Subtrct mes dd the opposite, so chge the mius sig to plus sig d the chge the sigs of ll the terms iside the pretheses. Emples: Simplif ech epressio. ) ( ) + ( 7 ) b) ( 4 + ) + ( + 6) c) ( w + w) ( 4w + w) d) ( 6 + ) ( 4 + ) i) ( 6m + m) ( 4m m) + ( m 7m) j) ( k+ ) + ( k k) ( 4k + 8) Multiplig Polomils To multipl two polomils, distribute ech term of oe polomil to ech term of the other polomil. The combie like terms. Whe ou re multiplig two biomils, this is sometimes clled the FOIL Method becuse ou multipl F the first terms, O the outside terms, I the iside terms, d L the lst terms. Emples: Multipl. + b) ( m+ )( m 8) ) ( 7 ) c) ( + )( ) d) ( t 4)( t+ 9)

3 e) ( u )( u 4) + f) ( ) g) ( + )( ) h) ( + )( ) k) ( )( 6+ 7) l) ( )( + 8). Rules of Epoets The followig properties re true for ll rel umbers d b d ll itegers m d, provided tht o 0 deomitors re 0 d tht 0 is ot cosidered. s epoet: = e.g.) ( ) 7 = 7, π = π, 0 = 0 0 s epoet: = e.g.) ( ) 0 8 =, 7 =, = The Product Rule: m m = + e.g.) = = + 7 The Quotiet Rule: m m = e.g.) = = m The Power Rule: ( ) m ( )( ) 0 = e.g.) ( ) = = Risig product to power: ( ) b = b e.g.) ( ) k = k = 6k Risig quotiet to power: = b b e.g.) p p p = = q q ( q ) 6

4 Negtive epoets: = e.g.) 7, 7 4 = = 4 = e.g.) 9 b bc =, = 9 c d d b b = = b e.g.) v v v = = = v 8 To simplif epressio cotiig powers mes to rewrite the epressio without pretheses or egtive epoets. Emples: Simplif the followig epressios. ) m 4 m b) ( b)( b ) c) 7 r r 9 d) p p 7 e) f) ( ) 4 g) 4 h) 4 i) 6 j) k) l) 4 4 m) ( ) 7 ) ( ) o) ( ) p) z

5 . Rtiol Epoets If is positive iteger greter th d is rel umber the =. The deomitor of the epoet tells ou wht tpe of root to tke. Emples: Write equivlet epressio usig rdicl ottio d, if possible, simplif. ) b) 64 c) ( z ) 6 0 d) ( 6 ) e) 4 f) ( ) 4 Emples: Write equivlet epressio usig epoetil ottio. b ) 7 b) 4 c) z d) z e) 7 z Positive Rtiol Epoets = = If m d re positive itegers (where ) d eists, the ( ) m m. 8 = 8 = = 4 or 8 = 8 = 64 = 4 e.g.) ( ) m Emples: Write equivlet epressio usig rdicl ottio d simplif. 6 ) t b) 9 c) 64 d) ( ) 4 e) 4 Emples: Write equivlet epressio usig epoetil ottio. ) b) 7 9 c) ( ) 6 d) 6 e) ( ) 4 m

6 Negtive Rtiol Epoets m For rtiol umber m, d ozero rel umber, The sig of the bse is ot ffected b the sig of the epoet. m = m. Emples: Write equivlet epressio usig positive epoets d, if possible, simplif. ) 49 b) ( m) c) 7 Lws of Epoets: The lws of epoets ppl to rtiol epoets s well s iteger epoets. Emples: Use the lws of epoets to simplif. 7 ) b) 4 c) ( 9 ) d) e) f) z z 4 g) 4 6 ( h) ) To Simplif Rdicl Epressios usig the Rules of Epoets:. Covert rdicl epressios to epoetil epressios.. Use rithmetic d the lws of epoets to simplif.. Covert bck to rdicl ottio s eeded. Emples: Use rtiol epoets to simplif. Do ot use epoets tht re frctios i the fil swer. ) z b) ( 4 ) bc c) 4 d) 6 9 e) k k 7 f) m m g) 4 h)

7 .4 Simplifig Rdicl Epressios Squre Root: A umber tht ou squre (multipl b itself) to ed up with is clled squre root of. I smbols, k = if k =. Rdicl Sig: The smbol. The rdicl sig is used to idicte the pricipl (positive) squre root of the umber over which it ppers. Rdicd: The umber uder the rdicl sig. Perfect squres: Numbers tht re the squres of rtiol umbers. Emples: 6, 4, 9, 8,,, etc. 6 Emples: Simplif ech of the followig: ) 96 b) 6 c) 49 8 d) 4 e) 4 z th Root: A umber tht ou rise to the th power (multipl b itself times) to ed up with is clled th root of. I smbols, k = if k =. Ide: I the epressio, is clled the ide. It tells ou wht root to tke. Emples: Simplif ech epressio, if possible. ) b) 4 8 c) d) 6 8 Simplified Rdicl Epressios: No perfect th power fctors i the rdicd No epoets i the rdicd bigger th the ide No frctios i the rdicd The ide is s smll s possible

8 To Simplif Rdicl Epressio with Ide b Fctorig:. Write the rdicd s the product of perfect th powers d fctors tht re ot perfect th powers.. Rewrite the epressio s the product of seprte th roots.. Simplif ech epressio cotiig the th root of perfect th power. To Simplif Rdicl Epressio with Ide Usig Fctor Tree:. Mke fctor tree. Split the rdicd ito its prime fctors.. Circle groups of ideticl fctors.. List the umber or vrible from ech group ol oce outside the rdicl. 4. Leve fctors tht re ot prt of group uder the rdicl.. Multipl the fctors outside of the rdicl together. Do the sme for the fctors uder the rdicl. Emples: Simplif ech epressio. ) b) 40 c) 7 d) 0 e) 00 f) 4 g) 7 40 h) t 7 u 9 i) m 40m 6 j) 4 40 k) z l) 7 4 pr p q r

9 . Opertios with Rdicls Addig d Subtrctig Rdicls:. Simplif ech rdicl completel.. Combie like rdicls. Whe ou dd or subtrct rdicls, ou c ol combie rdicls tht hve the sme ide d the sme rdicd. The rdicl itself (the root) does ot chge. You simpl dd or subtrct the coefficiets. Like Rdicls: Rdicls with the sme ide d the sme rdicd. Emples: Determie whether the followig re like rdicls. If the re ot, epli wh ot. ) d b) 4 d c) d Emples: Add or subtrct. ) 7 b) c) d) e) f) Do t mke the followig mistkes: m m Multiplig Rdicls The Product Rule for Rdicls: For rel umbers d b, b= b. Cutio: The product rule does t work if ou re trig to multipl the eve roots of egtive umbers, becuse those roots re ot rel umbers. For emple, 8 6. Re-write the rdicl i terms of i first, d the multipl. For emple, 8 = i i 8 = i 6 = ( ) 6 = 4 Cutio: The product ol pplies whe the rdicls hve the sme ide:

10 Emples: Multipl. ) 7 b) 8 c) 7 d) e) ( ) 8 f) ( ) g) 9 h) 0 6 Questio: C ou dd d subtrct rdicls the sme w ou multipl d divide them? e.g.) Sice b = b, does + b = + b? NO!!!!!!!!!! Do t mke the followig mistkes: 4 ( ) + + Multiplig Rdicl Epressios: Use the Product Propert. Use the Distributive Propert d FOIL to multipl rdicl epressios with more th oe term. Emples: Multipl. ) ( + 0 ) b) ( 6 ) c) ( 6)( 7+ ) d) ( 4 )( + ) e) ( 4 ) f) ( + )( )

11 .6 Dividig Rdicls The Quotiet Rule for Rdicls For rel umbers d b, where b 0, =. b b Emples: Simplif. ) 9 b) 7 c) m 6 d) Emples: Divide d, if possible, simplif. ) 7 b) 0 c) Rtiolizig Deomitors with Oe Term: Rtiolizig the deomitor mes to write the epressio s equivlet epressio but without rdicl i the deomitor. To do this, multipl b uder the rdicl or multipl b outside the rdicl to mke the deomitor perfect power. Emples: Rtiolize ech deomitor. ) b) c) d)

12 Rtiolizig Deomitors with Two Terms: To do this, multipl b uder the rdicl or multipl b outside the rdicl to mke the deomitor perfect power. However, sice the deomitor ow hs two terms, we will hve to multipl b the cojugte of the deomitor. Cojugte of biomil Rdicl Epressio: Cojugtes hve the sme first term, with the secod terms beig opposites. For emple, these two epressios re cojugtes: d +. Wht hppes whe ou multipl these cojugtes together? ( )( + ) = Emples: Fid the cojugte of ech umber. ) 4+ b) 7 c) Emples: Rtiolize ech deomitor b multiplig b the cojugte. ) 4 + b) 8 c) +

13 .7 Simplifig with Comple Numbers Imgir Numbers For ceturies, mthemticis kept ruig ito problems tht required them to tke the squre roots of egtive umbers i the process of fidig solutio. Noe of the umbers tht mthemticis were used to delig with (the rel umbers) could be multiplied b themselves to give egtive. These squre roots of egtive umbers were ew tpe of umber. The Frech mthemtici Reé Descrtes med these umbers imgir umbers i 67. Ufortutel, the me imgir mkes it soud like imgir umbers do t eist. The do eist, but the seem strge to us becuse most of us do t use them i d-to-d life, so we hve hrd time visulizig wht the me. However, imgir umbers re etremel useful (especill i electricl egieerig) d mke m of the techologies we use tod (rdio, electricl circuits) possible. The umber i: i is the umber whose squre is. Tht is, i = = d i. We defie the squre root of egtive umber s follows: = = = i or i. Emples: Epress i terms of i. ) 64 b) c) 49 d) 8 Imgir Number: A umber tht c be writte i the form + bi, where d b re rel umbers d b 0. A umber with i i it is imgir. Comple Number: A umber tht c be writte i the form + bi, where d b re rel umbers. ( or b or both c be 0.) The set of comple umbers is the set cotiig ll of the rel umbers d ll of the imgir umbers.

14 Addig or Subtrctig Comple Numbers i cts like other vrible i dditio d subtrctio problems. Distribute egtive sigs d combie like terms (dd or subtrct the rel prts d dd or subtrct the imgir prts). Write our swer with the rel prt first, the the imgir prt. Emples: Add or subtrct d simplif. ) ( + i) + ( i) b) ( 4 i) ( + i) c) ( 7i) ( 6) d) i ( i) Multiplig Comple Numbers Multiplig Comple Numbers: To multipl imgir umbers, first write squre roots of egtive umbers i terms of i. Multipl s usul b distributig, FOILig, d usig epoet rules. Tret i like other vrible. Use the fct tht i =. Awhere ou see i, chge it to. o 8i = 8( ) = 8 i = = o ( )( ) Emples: Multipl d simplif. If the swer is imgir, write it i the form + bi. ) 9 4 b) c) i 7i d) ii e) i( i) f) ( 7+ i)( 9 8i) g) ( i) h) ( 4i)( + 4i) Simplif Power of i : Epress the give power of i i terms of powers of i, d use the fct tht Emples: Simplif ech epressio. ) i b) i c) i 7 d) i 47 i =.

15 .8 Dividig Comple Numbers Cojugte of Comple Number: The comple cojugte of comple umber + bi is bi. ( + bi)( bi) = + b. Emples: Fid the cojugte of ech umber. ) + 4i b) i c) i Dividig Comple Numbers: Multipl both the umertor d the deomitor b the comple cojugte of the deomitor. Emples: Divide d simplif to the form + bi. ) 7 i b) + 6 i i c) 9i 7+ 6i d) + i 4 i

### MATH 90 CHAPTER 5 Name:.

MATH 90 CHAPTER 5 Nme:. 5.1 Multiplictio of Expoets Need To Kow Recll expoets The ide of expoet properties Apply expoet properties Expoets Expoets me repeted multiplictio. 3 4 3 4 4 ( ) Expoet Properties

### Chapter 3 Section 3 Lesson Additional Rules for Exponents

Chpter Sectio Lesso Additiol Rules for Epoets Itroductio I this lesso we ll eie soe dditiol rules tht gover the behvior of epoets The rules should be eorized; they will be used ofte i the reiig chpters

### Repeated multiplication is represented using exponential notation, for example:

Appedix A: The Lws of Expoets Expoets re short-hd ottio used to represet my fctors multiplied together All of the rules for mipultig expoets my be deduced from the lws of multiplictio d divisio tht you

### MATHEMATICS FOR ENGINEERING BASIC ALGEBRA

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL - INDICES, LOGARITHMS AND FUNCTION This is the oe of series of bsic tutorils i mthemtics imed t begiers or yoe wtig to refresh themselves o fudmetls.

### A function f whose domain is the set of positive integers is called a sequence. The values

EQUENCE: A fuctio f whose domi is the set of positive itegers is clled sequece The vlues f ( ), f (), f (),, f (), re clled the terms of the sequece; f() is the first term, f() is the secod term, f() is

### Arithmetic Sequences

Arithmetic equeces A simple wy to geerte sequece is to strt with umber, d dd to it fixed costt d, over d over gi. This type of sequece is clled rithmetic sequece. Defiitio: A rithmetic sequece is sequece

### Polynomials. Common Mistakes

Polnomils Polnomils Definition A polnomil is single term or sum or difference of terms in which ll vribles hve whole-number eponents nd no vrible ppers in the denomintor. Ech term cn be either constnt,

### THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction

THE ARITHMETIC OF INTEGERS - multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,

### We will begin this chapter with a quick refresher of what an exponent is.

.1 Exoets We will egi this chter with quick refresher of wht exoet is. Recll: So, exoet is how we rereset reeted ultilictio. We wt to tke closer look t the exoet. We will egi with wht the roerties re for

### UNIT FIVE DETERMINANTS

UNIT FIVE DETERMINANTS. INTRODUTION I uit oe the determit of mtrix ws itroduced d used i the evlutio of cross product. I this chpter we exted the defiitio of determit to y size squre mtrix. The determit

### Chapter 04.05 System of Equations

hpter 04.05 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee

### m n Use technology to discover the rules for forms such as a a, various integer values of m and n and a fixed integer value a.

TIth.co Alger Expoet Rules ID: 988 Tie required 25 iutes Activity Overview This ctivity llows studets to work idepedetly to discover rules for workig with expoets, such s Multiplictio d Divisio of Like

### Section A-4 Rational Expressions: Basic Operations

A- Appendi A A BASIC ALGEBRA REVIEW 7. Construction. A rectngulr open-topped bo is to be constructed out of 9- by 6-inch sheets of thin crdbord by cutting -inch squres out of ech corner nd bending the

### Soving Recurrence Relations

Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

### PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY

MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive

### Algebra Review. How well do you remember your algebra?

Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then

### Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

### Tallahassee Community College. Simplifying Radicals

Tllhssee Communit College Simplifing Rdils The squre root of n positive numer is the numer tht n e squred to get the numer whose squre root we re seeking. For emple, 1 euse if we squre we get 1, whih is

### Operations with Polynomials

38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply

### Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:

Appendi D: Completing the Squre nd the Qudrtic Formul Fctoring qudrtic epressions such s: + 6 + 8 ws one of the topics introduced in Appendi C. Fctoring qudrtic epressions is useful skill tht cn help you

### Math 114- Intermediate Algebra Integral Exponents & Fractional Exponents (10 )

Math 4 Math 4- Itermediate Algebra Itegral Epoets & Fractioal Epoets (0 ) Epoetial Fuctios Epoetial Fuctios ad Graphs I. Epoetial Fuctios The fuctio f ( ) a, where is a real umber, a 0, ad a, is called

### Math 135 Circles and Completing the Square Examples

Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for

### Section 6.1 Radicals and Rational Exponents

Sectio 6.1 Radicals ad Ratioal Expoets Defiitio of Square Root The umber b is a square root of a if b The priciple square root of a positive umber is its positive square root ad we deote this root by usig

### Hermitian Operators. Eigenvectors of a Hermitian operator. Definition: an operator is said to be Hermitian if it satisfies: A =A

Heriti Opertors Defiitio: opertor is sid to be Heriti if it stisfies: A A Altertively clled self doit I QM we will see tht ll observble properties st be represeted by Heriti opertors Theore: ll eigevles

### Equation of a line. Line in coordinate geometry. Slope-intercept form ( 斜 截 式 ) Intercept form ( 截 距 式 ) Point-slope form ( 點 斜 式 )

Chapter : Liear Equatios Chapter Liear Equatios Lie i coordiate geometr I Cartesia coordiate sstems ( 卡 笛 兒 坐 標 系 統 ), a lie ca be represeted b a liear equatio, i.e., a polomial with degree. But before

### Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )

Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +

### REVISION SHEET FP2 (AQA) CALCULUS. x x π π. Standard Calculus of Inverse Trig and Hyperbolic Trig Functions = + arcsin x = + ar sinh x

the Further Mathematics etwork www.fmetwork.org.uk V 07 REVISION SHEET FP (AQA) CALCULUS The mai ideas are: Calculus usig iverse trig fuctios & hperbolic trig fuctios ad their iverses. Calculatig arc legths.

### Unit 6: Exponents and Radicals

Eponents nd Rdicls -: The Rel Numer Sstem Unit : Eponents nd Rdicls Pure Mth 0 Notes Nturl Numers (N): - counting numers. {,,,,, } Whole Numers (W): - counting numers with 0. {0,,,,,, } Integers (I): -

### 1. MATHEMATICAL INDUCTION

1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1

### Complex Numbers. where x represents a root of Equation 1. Note that the ± sign tells us that quadratic equations will have

Comple Numbers I spite of Calvi s discomfiture, imagiar umbers (a subset of the set of comple umbers) eist ad are ivaluable i mathematics, egieerig, ad sciece. I fact, i certai fields, such as electrical

### Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

### Summation Notation The sum of the first n terms of a sequence is represented by the summation notation i the index of summation

Lesso 0.: Sequeces d Summtio Nottio Def. of Sequece A ifiite sequece is fuctio whose domi is the set of positive rel itegers (turl umers). The fuctio vlues or terms of the sequece re represeted y, 2, 3,...,....

### Application: Volume. 6.1 Overture. Cylinders

Applictio: Volume 61 Overture I this chpter we preset other pplictio of the defiite itegrl, this time to fid volumes of certi solids As importt s this prticulr pplictio is, more importt is to recogize

### Laws of Exponents Learning Strategies

Laws of Epoets Learig Strategies What should studets be able to do withi this iteractive? Studets should be able to uderstad ad use of the laws of epoets. Studets should be able to simplify epressios that

### The second difference is the sequence of differences of the first difference sequence, 2

Differece Equatios I differetial equatios, you look for a fuctio that satisfies ad equatio ivolvig derivatives. I differece equatios, istead of a fuctio of a cotiuous variable (such as time), we look for

### Multiplication and Division - Left to Right. Addition and Subtraction - Left to Right.

Order of Opertions r of Opertions Alger P lese Prenthesis - Do ll grouped opertions first. E cuse Eponents - Second M D er Multipliction nd Division - Left to Right. A unt S hniqu Addition nd Sutrction

### Solving Logarithms and Exponential Equations

Solvig Logarithms ad Epoetial Equatios Logarithmic Equatios There are two major ideas required whe solvig Logarithmic Equatios. The first is the Defiitio of a Logarithm. You may recall from a earlier topic:

### Sequences and Series

Secto 9. Sequeces d Seres You c thk of sequece s fucto whose dom s the set of postve tegers. f ( ), f (), f (),... f ( ),... Defto of Sequece A fte sequece s fucto whose dom s the set of postve tegers.

### Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.

5.5 Fractios ad Decimals Steps for Chagig a Fractio to a Decimal. Simplify the fractio, if possible. 2. Divide the umerator by the deomiator. d d Repeatig Decimals Repeatig Decimals are decimal umbers

### Present and future value formulae for uneven cash flow Based on performance of a Business

Advces i Mgemet & Applied Ecoomics, vol., o., 20, 93-09 ISSN: 792-7544 (prit versio), 792-7552 (olie) Itertiol Scietific Press, 20 Preset d future vlue formule for ueve csh flow Bsed o performce of Busiess

### SPECIAL PRODUCTS AND FACTORIZATION

MODULE - Specil Products nd Fctoriztion 4 SPECIAL PRODUCTS AND FACTORIZATION In n erlier lesson you hve lernt multipliction of lgebric epressions, prticulrly polynomils. In the study of lgebr, we come

### Engineering 323 Beautiful Homework Set 3 1 of 7 Kuszmar Problem 2.51

Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log

### x(x 1)(x 2)... (x k + 1) = [x] k n+m 1

1 Coutig mappigs For every real x ad positive iteger k, let [x] k deote the fallig factorial ad x(x 1)(x 2)... (x k + 1) ( ) x = [x] k k k!, ( ) k = 1. 0 I the sequel, X = {x 1,..., x m }, Y = {y 1,...,

### The Euler Totient, the Möbius and the Divisor Functions

The Euler Totiet, the Möbius ad the Divisor Fuctios Rosica Dieva July 29, 2005 Mout Holyoke College South Hadley, MA 01075 1 Ackowledgemets This work was supported by the Mout Holyoke College fellowship

### 4.1 Sigma Notation and Riemann Sums

0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas

### .04. This means \$1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth

Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,

A pie chrt shows how somethig is divided ito prts - it is good wy of showig the proportio (or frctio) of the dt tht is i ech ctegory. To drw pie chrt:. Fid the totl umer of items.. Fid how my degrees represet

### Section 7-4 Translation of Axes

62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 7-4 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the

### P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn

33337_0P03.qp 2/27/06 24 9:3 AM Chpter P Pge 24 Prerequisites P.3 Polynomils nd Fctoring Wht you should lern Polynomils An lgeric epression is collection of vriles nd rel numers. The most common type of

### SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

### CS103X: Discrete Structures Homework 4 Solutions

CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

### SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. Basic Algebra

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT Mthemtics Bsic Alger. Opertions nd Epressions. Common Mistkes. Division of Algeric Epressions. Eponentil Functions nd Logrithms. Opertions nd their Inverses. Mnipulting

### NUMBERS COMMON TO TWO POLYGONAL SEQUENCES

NUMBERS COMMON TO TWO POLYGONAL SEQUENCES DIANNE SMITH LUCAS Chia Lake, Califoria a iteger, The polygoal sequece (or sequeces of polygoal umbers) of order r (where r is r > 3) may be defied recursively

### Divide and Conquer. Maximum/minimum. Integer Multiplication. CS125 Lecture 4 Fall 2015

CS125 Lecture 4 Fall 2015 Divide ad Coquer We have see oe geeral paradigm for fidig algorithms: the greedy approach. We ow cosider aother geeral paradigm, kow as divide ad coquer. We have already see a

### Introduction to Hypothesis Testing

Itroductio to Hypothesis Testig I Cosumer Reports, April, 978, the results of tste test were reported. Cosumer Reports commeted, "we do't cosider this result to be sttisticlly sigifict." At the time, Miller

### Linear Equations in Two Variables

Liner Equtions in Two Vribles In this chpter, we ll use the geometry of lines to help us solve equtions. Liner equtions in two vribles If, b, ndr re rel numbers (nd if nd b re not both equl to 0) then

### 8.1 Arithmetic Sequences

MCR3U Uit 8: Sequeces & Series Page 1 of 1 8.1 Arithmetic Sequeces Defiitio: A sequece is a comma separated list of ordered terms that follow a patter. Examples: 1, 2, 3, 4, 5 : a sequece of the first

### Solving Divide-and-Conquer Recurrences

Solvig Divide-ad-Coquer Recurreces Victor Adamchik A divide-ad-coquer algorithm cosists of three steps: dividig a problem ito smaller subproblems solvig (recursively) each subproblem the combiig solutios

### A. Description: A simple queueing system is shown in Fig. 16-1. Customers arrive randomly at an average rate of

Queueig Theory INTRODUCTION Queueig theory dels with the study of queues (witig lies). Queues boud i rcticl situtios. The erliest use of queueig theory ws i the desig of telehoe system. Alictios of queueig

### PREMIUMS CALCULATION FOR LIFE INSURANCE

ls of the Uiversity of etroşi, Ecoomics, 2(3), 202, 97-204 97 REIUS CLCULTIO FOR LIFE ISURCE RE, RI GÎRBCI * BSTRCT: The pper presets the techiques d the formuls used o itertiol prctice for estblishig

### 5.3. Generalized Permutations and Combinations

53 GENERALIZED PERMUTATIONS AND COMBINATIONS 73 53 Geeralized Permutatios ad Combiatios 53 Permutatios with Repeated Elemets Assume that we have a alphabet with letters ad we wat to write all possible

### MATH 083 Final Exam Review

MATH 08 Fial Eam Review Completig the problems i this review will greatly prepare you for the fial eam Calculator use is ot required, but you are permitted to use a calculator durig the fial eam period

### Factoring Polynomials

Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles

### Section 11.3: The Integral Test

Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult

### 2-3 The Remainder and Factor Theorems

- The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x

### MATH 181-Exponents and Radicals ( 8 )

Mth 8 S. Numkr MATH 8-Epots d Rdicls ( 8 ) Itgrl Epots & Frctiol Epots Epotil Fuctios Epotil Fuctios d Grphs I. Epotil Fuctios Th fuctio f ( ), whr is rl umr, 0, d, is clld th potil fuctio, s. Rquirig

### Square Roots Teacher Notes

Henri Picciotto Squre Roots Techer Notes This unit is intended to help students develop n understnding of squre roots from visul / geometric point of view, nd lso to develop their numer sense round this

### Graphs on Logarithmic and Semilogarithmic Paper

0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl

### Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

### www.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values)

www.mthsbo.org.uk CORE SUMMARY NOTES Functions A function is rule which genertes ectl ONE OUTPUT for EVERY INPUT. To be defined full the function hs RULE tells ou how to clculte the output from the input

### 6.2 Volumes of Revolution: The Disk Method

mth ppliction: volumes of revolution, prt ii Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem ) nd the ccumultion process is to determine so-clled volumes of

### Or more simply put, when adding or subtracting quantities, their uncertainties add.

Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re

### Sequences and Series

CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their

### CHAPTER-10 WAVEFUNCTIONS, OBSERVABLES and OPERATORS

Lecture Notes PH 4/5 ECE 598 A. L Ros INTRODUCTION TO QUANTUM MECHANICS CHAPTER-0 WAVEFUNCTIONS, OBSERVABLES d OPERATORS 0. Represettios i the sptil d mometum spces 0..A Represettio of the wvefuctio i

### Released Assessment Questions, 2015 QUESTIONS

Relesed Assessmet Questios, 15 QUESTIONS Grde 9 Assessmet of Mthemtis Ademi Red the istrutios elow. Alog with this ooklet, mke sure you hve the Aswer Booklet d the Formul Sheet. You my use y spe i this

### Module Summary Sheets. C3, Methods for Advanced Mathematics (Version B reference to new book) Topic 2: Natural Logarithms and Exponentials

MEI Mthemtics in Ection nd Instry Topic : Proof MEI Structured Mthemtics Mole Summry Sheets C, Methods for Anced Mthemtics (Version B reference to new book) Topic : Nturl Logrithms nd Eponentils Topic

### Using Excel to Construct Confidence Intervals

OPIM 303 Statistics Ja Stallaert Usig Excel to Costruct Cofidece Itervals This hadout explais how to costruct cofidece itervals i Excel for the followig cases: 1. Cofidece Itervals for the mea of a populatio

### CHAPTER 11 Financial mathematics

CHAPTER 11 Fiacial mathematics I this chapter you will: Calculate iterest usig the simple iterest formula ( ) Use the simple iterest formula to calculate the pricipal (P) Use the simple iterest formula

### Gray level image enhancement using the Bernstein polynomials

Buletiul Ştiiţiic l Uiersităţii "Politehic" di Timişor Seri ELECTRONICĂ şi TELECOMUNICAŢII TRANSACTIONS o ELECTRONICS d COMMUNICATIONS Tom 47(6), Fscicol -, 00 Gry leel imge ehcemet usig the Berstei polyomils

### THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n

We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample

### The Field Q of Rational Numbers

Chapter 3 The Field Q of Ratioal Numbers I this chapter we are goig to costruct the ratioal umber from the itegers. Historically, the positive ratioal umbers came first: the Babyloias, Egyptias ad Grees

### Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable

Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5

### Determining the sample size

Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors

### SINCLAIR COMMUNITY COLLEGE DAYTON, OHIO DEPARTMENT SYLLABUS FOR COURSE IN MAT 1355 - INTERMEDIATE ALGEBRA I (3 CREDIT HOURS)

SINCLAIR COMMUNITY COLLEGE DAYTON OHIO DEPARTMENT SYLLABUS FOR COURSE IN MAT 1355 - INTERMEDIATE ALGEBRA I (3 CREDIT HOURS) 1. COURSE DESCRIPTION: Ftorig; opertios with polyoils d rtiol expressios; solvig

### Infinite Sequences and Series

CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...

### Recursion and Recurrences

Chapter 5 Recursio ad Recurreces 5.1 Growth Rates of Solutios to Recurreces Divide ad Coquer Algorithms Oe of the most basic ad powerful algorithmic techiques is divide ad coquer. Cosider, for example,

### Factors of sums of powers of binomial coefficients

ACTA ARITHMETICA LXXXVI.1 (1998) Factors of sums of powers of biomial coefficiets by Neil J. Cali (Clemso, S.C.) Dedicated to the memory of Paul Erdős 1. Itroductio. It is well ow that if ( ) a f,a = the

### Chapter 13 Volumetric analysis (acid base titrations)

Chpter 1 Volumetric lysis (cid se titrtios) Ope the tp d ru out some of the liquid util the tp coectio is full of cid d o ir remis (ir ules would led to iccurte result s they will proly dislodge durig

### n Using the formula we get a confidence interval of 80±1.64

9.52 The professor of sttistics oticed tht the rks i his course re orlly distributed. He hs lso oticed tht his orig clss verge is 73% with stdrd devitio of 12% o their fil exs. His fteroo clsses verge

### Section 8.3 : De Moivre s Theorem and Applications

The Sectio 8 : De Moivre s Theorem ad Applicatios Let z 1 ad z be complex umbers, where z 1 = r 1, z = r, arg(z 1 ) = θ 1, arg(z ) = θ z 1 = r 1 (cos θ 1 + i si θ 1 ) z = r (cos θ + i si θ ) ad z 1 z =

### Lecture 15 - Curve Fitting Techniques

Lecture 15 - Curve Fitting Techniques Topics curve fitting motivtion liner regression Curve fitting - motivtion For root finding, we used given function to identify where it crossed zero where does fx

### {{1}, {2, 4}, {3}} {{1, 3, 4}, {2}} {{1}, {2}, {3, 4}} 5.4 Stirling Numbers

. Stirlig Numbers Whe coutig various types of fuctios from., we quicly discovered that eumeratig the umber of oto fuctios was a difficult problem. For a domai of five elemets ad a rage of four elemets,

### BINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients

652 (12-26) Chapter 12 Sequeces ad Series 12.5 BINOMIAL EXPANSIONS I this sectio Some Examples Otaiig the Coefficiets The Biomial Theorem I Chapter 5 you leared how to square a iomial. I this sectio you

### Warm-up for Differential Calculus

Summer Assignment Wrm-up for Differentil Clculus Who should complete this pcket? Students who hve completed Functions or Honors Functions nd will be tking Differentil Clculus in the fll of 015. Due Dte:

### S. Tanny MAT 344 Spring 1999. be the minimum number of moves required.

S. Tay MAT 344 Sprig 999 Recurrece Relatios Tower of Haoi Let T be the miimum umber of moves required. T 0 = 0, T = 7 Iitial Coditios * T = T + \$ T is a sequece (f. o itegers). Solve for T? * is a recurrece,

### Basic Elements of Arithmetic Sequences and Series

MA40S PRE-CALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic

### Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100

hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by