Student Name: Instructor:


 Rosaline Butler
 1 years ago
 Views:
Transcription
1 Math 30  Final Exam Version Student Name: Instructor: INSTRUCTIONS READ THIS NOW Print your name in CAPITAL letters. It is your responsibility that your test paper is submitted to your professor. Please turn off all cellphones, audio recording/playing devices and any other electronic devices, and put them in your backpack. For each problem clearly put a circle around ONE and ONLY ONE correct answer, both on the problem page and on the front page; if your answers on the problem page and on the front page do not match, the answer on the front page will be taken as your final answer. Do not separate the front page from the rest of your exam; if you do so, your exam will not be graded! OFFICIAL USE ONLY VERSION T F B Total: Over: 00 For each problem, a correct answer is worth 4 points; selecting a wrong answer or more than one answer will result in  point; not selecting any answer gets 0 point. P. a b c d e P. a b c d e P3. a b c d e P4. a b c d e P5. a b c d e P6. a b c d e P7. a b c d e P8. a b c d e P9. a b c d e P0. a b c d e P. a b c d e P. a b c d e P4. a b c d e P5. a b c d e P6. a b c d e P7. a b c d e P8. a b c d e P9. a b c d e P0. a b c d e P. a b c d e P. a b c d e P3. a b c d e P4. a b c d e P5. a b c d e P3. a b c d e
2 Tulane University Mathematics Department FORMULAS x n dx = xn+ + C (n ) n + e x dx = e x + C sin x dx = cos x + C sec x dx = tan x + C sec x tan x dx = sec x + C tan x dx = ln sec x + C x + a dx = ( x ) a tan + C a ( x ) a x dx = sin + C a [ ] cos(a b)+cos(a+b) = cos a cos b [ ] sin(a b)+sin(a+b) = sin a cos b dx = ln x + C x a x dx = ax ln a + C cos x dx = sin x + C sec x dx = ln sec x + tan x + C csc x dx = cot x + C csc x cot x dx = csc x + C cot x dx = ln sin x + C + cos(θ) = cos θ cos(θ) = sin θ [ ] cos(a b) cos(a + b) = sin a sin b tan x + = sec x PROBLEMS START ON NEXT PAGE
3 Tulane University Mathematics Department 3 P. The domain of the function f(x) = x 3 4x x is (a) x and < x 0 and < x (b) x 0 and x (c) < x < and < x < 0 and 0 < x < and < x < (d) x < and < x 0 and x P. The limit below represents the derivative of a certain function f(x), evaluated at a particular point: ( 5 + h) 5 lim. h 0 h (a) This is the derivative of f(x) = 5x evaluated at x = 0 (b) This is the derivative of f(x) = (x 5) 5 evaluated at x = 5 (c) This is the derivative of f(x) = x evaluated at x = 5 (d) This is the derivative of f(x) = 5x evaluated at x = (e) none of the above statements is correct. P3. For what value of x does the curve y = e x x have a horizontal tangent line? (a) ln (b) x (c) e (d) 0 P4. What values of a and b make the piecewise function { ax + b x f(x) = x x < continuous and differentiable for all values of x? (a) a = and b = 3 (b) a = 3 and b = (c) a = and b = 3 (d) a = 3 and b =
4 Tulane University Mathematics Department 4 P5. For what value of x is the corresponding point on the graph of y = 4 x closest to the point (, )? (a) x = 0 (c) x = (b) x = (d) x = P6. Given the equation y 3 + xy x 3 = 6. Then dy dx is (a) dy dx = 3x + y 3y + x (b) dy dx = 3x y 3y + x (c) dy dx = 3x + y 3y x (d) dy dx = 3x y 3y x ( P7. The limit lim x 0 x sin x ) equals to x 3 (a) 6 (c) (b) 3 (d) P8. The value of the definite integral (a) (b) 9 (c) 5 (d) 7 6 (x + x ) dx is P9. The area of the region enclosed by y = x and y = 3 x is (a) 3 (c) (b) 9 (d) 3 5
5 Tulane University Mathematics Department 5 P0. A cable that weighs lb/ft is used to lift 800 lb of coal up a mineshaft 500 ft deep. The total work done is (a) 50,000 (ftlb) (c) 650,000 (ftlb) (b) 400,000 (ftlb) (d) 800,000 (ftlb) x 3 + 4x x + P. In computing the integral dx, which of the following gives the x 4 + x correct partial fraction decomposition of the rational function x3 + 4x x +? x 4 + x (a) x (c) x + x x + 3x x + (b) x + x x + (d) x + x x + P. Which of the following improper integrals diverges? (a) (b) 0 0 x dx x dx P3. In order to evaluate the integral (c) (d) x dx e x dx x x x + 4 dx a trigonometric substitution is made. Which of the following is the integral that results after making the appropriate substitution? (a) sec θ tan θ( tan θ ) dθ (b) (c) (d) tan θ( tan θ ) dθ sec θ sec θ( sec θ ) dθ tan θ sec θ( sec θ ) dθ
6 Tulane University Mathematics Department 6 P4. A solid is made by rotating the region that is below the curve y = sin x and above the xaxis for 0 x π about the line x =. The volume of the resulting solid is (a) π (b) π / (c) π + 4π (d) π / + 4π P5. Which of the following integrals represents the area of the surface obtained by rotating the curve y = x + 4, for x 5, about the yaxis? (a) (b) (c) (d) π(y + 4) + (y) dy π y 4 + 4(y 4) dy πx + 4(y 4) dy π(x + 4) + 4(y 4) dy P6. In solving the linear differential equation y xy = ( x)e x, the integrating factor is (a) e x (c) e x3 (b) e x (d) e x3 { y P7. Given the initialvalued problem xy = ( x)e x y(0) = (a) e e 4 (b) e + e 4 (c) e e 4 (d) e + e 4. Then y() is P8. The population P of wolves in a certain forest is modeled by the logistic equation ( dp dt = P P ), where t refers to time and is measured in years. 500 Initially, there are 50 wolves in the forest. Then lim P (t) is equal to t (a) 0 (c) 5 (b) 45 (d) 500
7 Tulane University Mathematics Department 7 P9. At which of the following points on the parametric curve { x = t 3 y = + 4t t does the tangent line have slope? (a) (, 4) (c) (0, ) (b) (, 4) (d) (, /3) P0. The arc length of the polar curve r = 4 cos θ, for 0 θ π, is (a) π/ (c) π (b) π (d) 4π P. Find the area enclosed by the limaçon given in polar coordinates by the equation r = + sin θ. (a) 5π/8 (c) 9π/8 (b) π (d) π P. If the series n= a n converges to, and s n = a + a + + a n is its nth partial sum, then (a) lim a n = and lim s n = 0 n n (b) lim a n = 0 and lim s n = n n (c) lim a n = and lim s n = n n (d) lim a n = 0 and lim s n = 0 n n (e) none of the above statements is correct. { P3. The sequence a n = ( )n (n + 3) } is 3n + n= (a) convergent to 0 (c) convergent to 3/ (b) convergent to /3 (d) divergent
8 Tulane University Mathematics Department 8 P4. Consider the following series: () n= n () n= cos n n (3) ne n. n= Then (a) only () and () are convergent (b) only () and (3) are convergent (c) only () and (3) are convergent (d) all of these series are convergent (e) none of these series are convergent. P5. The series n= ( ) n n + is (a) absolutely convergent (b) conditionally convergent (c) divergent (d) convergent on weekdays, but divergent on weekends STOP. THIS IS THE END.
MATH 132: CALCULUS II SYLLABUS
MATH 32: CALCULUS II SYLLABUS Prerequisites: Successful completion of Math 3 (or its equivalent elsewhere). Math 27 is normally not a sufficient prerequisite for Math 32. Required Text: Calculus: Early
More informationPractice Final Math 122 Spring 12 Instructor: Jeff Lang
Practice Final Math Spring Instructor: Jeff Lang. Find the limit of the sequence a n = ln (n 5) ln (3n + 8). A) ln ( ) 3 B) ln C) ln ( ) 3 D) does not exist. Find the limit of the sequence a n = (ln n)6
More informationMATH SOLUTIONS TO PRACTICE FINAL EXAM. (x 2)(x + 2) (x 2)(x 3) = x + 2. x 2 x 2 5x + 6 = = 4.
MATH 55 SOLUTIONS TO PRACTICE FINAL EXAM x 2 4.Compute x 2 x 2 5x + 6. When x 2, So x 2 4 x 2 5x + 6 = (x 2)(x + 2) (x 2)(x 3) = x + 2 x 3. x 2 4 x 2 x 2 5x + 6 = 2 + 2 2 3 = 4. x 2 9 2. Compute x + sin
More informationMATH 2300 review problems for Exam 3 ANSWERS
MATH 300 review problems for Exam 3 ANSWERS. Check whether the following series converge or diverge. In each case, justify your answer by either computing the sum or by by showing which convergence test
More informationMark Howell Gonzaga High School, Washington, D.C.
Be Prepared for the Calculus Exam Mark Howell Gonzaga High School, Washington, D.C. Martha Montgomery Fremont City Schools, Fremont, Ohio Practice exam contributors: Benita Albert Oak Ridge High School,
More informationEngineering Math II Spring 2015 Solutions for Class Activity #2
Engineering Math II Spring 15 Solutions for Class Activity # Problem 1. Find the area of the region bounded by the parabola y = x, the tangent line to this parabola at 1, 1), and the xaxis. Then find
More informationPreCalculus II. where 1 is the radius of the circle and t is the radian measure of the central angle.
PreCalculus II 4.2 Trigonometric Functions: The Unit Circle The unit circle is a circle of radius 1, with its center at the origin of a rectangular coordinate system. The equation of this unit circle
More information2008 AP Calculus AB Multiple Choice Exam
008 AP Multiple Choice Eam Name 008 AP Calculus AB Multiple Choice Eam Section No Calculator Active AP Calculus 008 Multiple Choice 008 AP Calculus AB Multiple Choice Eam Section Calculator Active AP Calculus
More informationExam 1 Sample Question SOLUTIONS. y = 2x
Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can
More information1 TRIGONOMETRY. 1.0 Introduction. 1.1 Sum and product formulae. Objectives
TRIGONOMETRY Chapter Trigonometry Objectives After studying this chapter you should be able to handle with confidence a wide range of trigonometric identities; be able to express linear combinations of
More informationL 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has
The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:
More informationDefinition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: f (x) =
Vertical Asymptotes Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: lim f (x) = x a lim f (x) = lim x a lim f (x) = x a
More informationy cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx
Trigonometric Integrals In this section we use trigonometric identities to integrate certain combinations of trigonometric functions. We start with powers of sine and cosine. EXAMPLE Evaluate cos 3 x dx.
More informationcorrectchoice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:
Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that
More informationGRAPHING IN POLAR COORDINATES SYMMETRY
GRAPHING IN POLAR COORDINATES SYMMETRY Recall from Algebra and Calculus I that the concept of symmetry was discussed using Cartesian equations. Also remember that there are three types of symmetry  yaxis,
More informationSolutions to Vector Calculus Practice Problems
olutions to Vector alculus Practice Problems 1. Let be the region in determined by the inequalities x + y 4 and y x. Evaluate the following integral. sinx + y ) da Answer: The region looks like y y x x
More informationIntegration Involving Trigonometric Functions and Trigonometric Substitution
Integration Involving Trigonometric Functions and Trigonometric Substitution Dr. Philippe B. Laval Kennesaw State University September 7, 005 Abstract This handout describes techniques of integration involving
More informationSection 12.6: Directional Derivatives and the Gradient Vector
Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate
More informationThe Mathematics Diagnostic Test
The Mathematics iagnostic Test Mock Test and Further Information 010 In welcome week, students will be asked to sit a short test in order to determine the appropriate lecture course, tutorial group, whether
More information18.4. Errors and Percentage Change. Introduction. Prerequisites. Learning Outcomes
Errors and Percentage Change 18.4 Introduction When one variable is related to several others by a functional relationship it is possible to estimate the percentage change in that variable caused by given
More informationAP Calculus AB. Practice Exam. Advanced Placement Program
Advanced Placement Program AP Calculus AB Practice Exam The questions contained in this AP Calculus AB Practice Exam are written to the content specifications of AP Exams for this subject. Taking this
More informationThis function is symmetric with respect to the yaxis, so I will let  /2 /2 and multiply the area by 2.
INTEGRATION IN POLAR COORDINATES One of the main reasons why we study polar coordinates is to help us to find the area of a region that cannot easily be integrated in terms of x. In this set of notes,
More informationName: ID: Discussion Section:
Math 28 Midterm 3 Spring 2009 Name: ID: Discussion Section: This exam consists of 6 questions: 4 multiple choice questions worth 5 points each 2 handgraded questions worth a total of 30 points. INSTRUCTIONS:
More informationExample 1. Example 1 Plot the points whose polar coordinates are given by
Polar Coordinates A polar coordinate system, gives the coordinates of a point with reference to a point O and a half line or ray starting at the point O. We will look at polar coordinates for points
More information6.8 Taylor and Maclaurin s Series
6.8. TAYLOR AND MACLAURIN S SERIES 357 6.8 Taylor and Maclaurin s Series 6.8.1 Introduction The previous section showed us how to find the series representation of some functions by using the series representation
More informationMark Howell Gonzaga High School, Washington, D.C.
Be Prepared for the Calculus Exam Mark Howell Gonzaga High School, Washington, D.C. Martha Montgomery Fremont City Schools, Fremont, Ohio Practice exam contributors: Benita Albert Oak Ridge High School,
More informationStudent Performance Q&A:
Student Performance Q&A: AP Calculus AB and Calculus BC FreeResponse Questions The following comments on the freeresponse questions for AP Calculus AB and Calculus BC were written by the Chief Reader,
More informationTaylor Polynomials and Taylor Series Math 126
Taylor Polynomials and Taylor Series Math 26 In many problems in science and engineering we have a function f(x) which is too complicated to answer the questions we d like to ask. In this chapter, we will
More informationMathematical Procedures
CHAPTER 6 Mathematical Procedures 168 CHAPTER 6 Mathematical Procedures The multidisciplinary approach to medicine has incorporated a wide variety of mathematical procedures from the fields of physics,
More informationSAT Subject Test Practice Test II: Math Level II Time 60 minutes, 50 Questions
SAT Subject Test Practice Test II: Math Level II Time 60 minutes, 50 Questions All questions in the Math Level 1 and Math Level Tests are multiplechoice questions in which you are asked to choose the
More informationMath 241, Exam 1 Information.
Math 241, Exam 1 Information. 9/24/12, LC 310, 11:1512:05. Exam 1 will be based on: Sections 12.112.5, 14.114.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)
More informationAPPLICATIONS OF DIFFERENTIATION
4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION So far, we have been concerned with some particular aspects of curve sketching: Domain, range, and symmetry (Chapter 1) Limits, continuity,
More informationAP Calculus BC Exam. The Calculus BC Exam. At a Glance. Section I. SECTION I: MultipleChoice Questions. Instructions. About Guessing.
The Calculus BC Exam AP Calculus BC Exam SECTION I: MultipleChoice Questions At a Glance Total Time 1 hour, 45 minutes Number of Questions 45 Percent of Total Grade 50% Writing Instrument Pencil required
More informationMATH 121 FINAL EXAM FALL 20102011. December 6, 2010
MATH 11 FINAL EXAM FALL 010011 December 6, 010 NAME: SECTION: Instructions: Show all work and mark your answers clearly to receive full credit. This is a closed notes, closed book exam. No electronic
More informationAP Calculus BC. Course content and suggested texts and reference materials align with the College Board framework for AP Calculus BC.
AP Calculus BC Course Overview Topic Description AP Calculus BC Course Details In AP Calculus BC, students study functions, limits, derivatives, integrals, and infinite series This document details the
More informationAP Calculus BC 2004 FreeResponse Questions
AP Calculus BC 004 FreeResponse Questions The materials included in these files are intended for noncommercial use by AP teachers for course and exam preparation; permission for any other use must be
More informationWS 7.5: Partial Fractions & Logistic. Name Date Period
Name Date Period Worksheet 7.5 Partial Fractions & Logistic Growth Show all work. No calculator unless stated. Multiple Choice 1. The spread of a disease through a community can be modeled with the logistic
More informationLearning Objectives for Math 165
Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given
More informationDouble integrals. Notice: this material must not be used as a substitute for attending the lectures
ouble integrals Notice: this material must not be used as a substitute for attending the lectures . What is a double integral? Recall that a single integral is something of the form b a f(x) A double integral
More informationList the elements of the given set that are natural numbers, integers, rational numbers, and irrational numbers. (Enter your answers as commaseparated
MATH 142 Review #1 (4717995) Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Description This is the review for Exam #1. Please work as many problems as possible
More informationApr 23, 2015. Calculus with Algebra and Trigonometry II Lecture 23Final Review: Apr Curve 23, 2015 sketching 1 / and 19pa
Calculus with Algebra and Trigonometry II Lecture 23 Final Review: Curve sketching and parametric equations Apr 23, 2015 Calculus with Algebra and Trigonometry II Lecture 23Final Review: Apr Curve 23,
More informationGeorgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1
Accelerated Mathematics 3 This is a course in precalculus and statistics, designed to prepare students to take AB or BC Advanced Placement Calculus. It includes rational, circular trigonometric, and inverse
More informationAP Calculus BC. All students enrolling in AP Calculus BC should have successfully completed AP Calculus AB.
AP Calculus BC Course Description: Advanced Placement Calculus BC is primarily concerned with developing the students understanding of the concepts of calculus and providing experiences with its methods
More informationReview Sheet for Third Midterm Mathematics 1300, Calculus 1
Review Sheet for Third Midterm Mathematics 1300, Calculus 1 1. For f(x) = x 3 3x 2 on 1 x 3, find the critical points of f, the inflection points, the values of f at all these points and the endpoints,
More informationNational Quali cations 2015
H National Quali cations 05 X77/76/ WEDNESDAY, 0 MAY 9:00 AM 0:0 AM Mathematics Paper (NonCalculator) Total marks 60 Attempt ALL questions. You may NOT use a calculator. Full credit will be given only
More informationMath Placement Test Sample Problems PREALGEBRA
Math Placement Test Sample Problems The Math Placement Test is an untimed, multiplechoice, computerbased test. The test is composed of four sections: prealgebra, algebra, college algebra, and trigonometry.
More informationSection 10.7 Parametric Equations
299 Section 10.7 Parametric Equations Objective 1: Defining and Graphing Parametric Equations. Recall when we defined the x (rcos(θ), rsin(θ)) and ycoordinates on a circle of radius r as a function of
More informationJune 2011 PURDUE UNIVERSITY Study Guide for the Credit Exams in Single Variable Calculus (MA 165, 166)
June PURDUE UNIVERSITY Stud Guide for the Credit Eams in Single Variable Calculus (MA 65, 66) Eam and Eam cover respectivel the material in Purdue s courses MA 65 (MA 6) and MA 66 (MA 6). These are two
More informationAP Calculus AB 2004 FreeResponse Questions
AP Calculus AB 2004 FreeResponse Questions The materials included in these files are intended for noncommercial use by AP teachers for course and exam preparation; permission for any other use must be
More informationAP Calculus BC 2006 FreeResponse Questions
AP Calculus BC 2006 FreeResponse Questions The College Board: Connecting Students to College Success The College Board is a notforprofit membership association whose mission is to connect students to
More informationF.IF.7b: Graph Root, Piecewise, Step, & Absolute Value Functions
F.IF.7b: Graph Root, Piecewise, Step, & Absolute Value Functions F.IF.7b: Graph Root, Piecewise, Step, & Absolute Value Functions Analyze functions using different representations. 7. Graph functions expressed
More informationCalculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum
Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum UNIT I: The Hyperbolic Functions basic calculus concepts, including techniques for curve sketching, exponential and logarithmic
More informationVisualizing Differential Equations Slope Fields. by Lin McMullin
Visualizing Differential Equations Slope Fields by Lin McMullin The topic of slope fields is new to the AP Calculus AB Course Description for the 2004 exam. Where do slope fields come from? How should
More informationAP Calculus AB 2006 FreeResponse Questions
AP Calculus AB 2006 FreeResponse Questions The College Board: Connecting Students to College Success The College Board is a notforprofit membership association whose mission is to connect students to
More information2 Integrating Both Sides
2 Integrating Both Sides So far, the only general method we have for solving differential equations involves equations of the form y = f(x), where f(x) is any function of x. The solution to such an equation
More informationThe Math Circle, Spring 2004
The Math Circle, Spring 2004 (Talks by Gordon Ritter) What is NonEuclidean Geometry? Most geometries on the plane R 2 are noneuclidean. Let s denote arc length. Then Euclidean geometry arises from the
More informationTechniques of Integration
CHPTER 7 Techniques of Integration 7.. Substitution Integration, unlike differentiation, is more of an artform than a collection of algorithms. Many problems in applied mathematics involve the integration
More informationSolutions to Homework 10
Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x
More informationAP Calculus AB First Semester Final Exam Practice Test Content covers chapters 13 Name: Date: Period:
AP Calculus AB First Semester Final Eam Practice Test Content covers chapters 1 Name: Date: Period: This is a big tamale review for the final eam. Of the 69 questions on this review, questions will be
More informationSAT Subject Math Level 2 Facts & Formulas
Numbers, Sequences, Factors Integers:..., 3, 2, 1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Arithmetic Sequences: PEMDAS (Parentheses
More informationRoots and Coefficients of a Quadratic Equation Summary
Roots and Coefficients of a Quadratic Equation Summary For a quadratic equation with roots α and β: Sum of roots = α + β = and Product of roots = αβ = Symmetrical functions of α and β include: x = and
More informationReview Solutions MAT V1102. 1. (a) If u = 4 x, then du = dx. Hence, substitution implies 1. dx = du = 2 u + C = 2 4 x + C.
Review Solutions MAT V. (a) If u 4 x, then du dx. Hence, substitution implies dx du u + C 4 x + C. 4 x u (b) If u e t + e t, then du (e t e t )dt. Thus, by substitution, we have e t e t dt e t + e t u
More informationAP Calculus BC 2001 FreeResponse Questions
AP Calculus BC 001 FreeResponse Questions The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other use must
More informationMath 113 HW #7 Solutions
Math 3 HW #7 Solutions 35 0 Given find /dx by implicit differentiation y 5 + x 2 y 3 = + ye x2 Answer: Differentiating both sides with respect to x yields 5y 4 dx + 2xy3 + x 2 3y 2 ) dx = dx ex2 + y2x)e
More informationPRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.
PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle
More informationy cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx y 1 u 2 du u 1 3u 3 C
Trigonometric Integrals In this section we use trigonometric identities to integrate certain combinations of trigonometric functions. We start with powers of sine and cosine. EXAMPLE Evaluate cos 3 x dx.
More informationMATHEMATICS (CLASSES XI XII)
MATHEMATICS (CLASSES XI XII) General Guidelines (i) All concepts/identities must be illustrated by situational examples. (ii) The language of word problems must be clear, simple and unambiguous. (iii)
More informationAP Calculus BC 2013 FreeResponse Questions
AP Calculus BC 013 FreeResponse Questions About the College Board The College Board is a missiondriven notforprofit organization that connects students to college success and opportunity. Founded in
More informationSolutions for Review Problems
olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector
More informationMath 1B, lecture 5: area and volume
Math B, lecture 5: area and volume Nathan Pflueger 6 September 2 Introduction This lecture and the next will be concerned with the computation of areas of regions in the plane, and volumes of regions in
More informationTrigonometry Lesson Objectives
Trigonometry Lesson Unit 1: RIGHT TRIANGLE TRIGONOMETRY Lengths of Sides Evaluate trigonometric expressions. Express trigonometric functions as ratios in terms of the sides of a right triangle. Use the
More informationDifferentiation of vectors
Chapter 4 Differentiation of vectors 4.1 Vectorvalued functions In the previous chapters we have considered real functions of several (usually two) variables f : D R, where D is a subset of R n, where
More informationThe Method of Partial Fractions Math 121 Calculus II Spring 2015
Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method
More information*X100/12/02* X100/12/02. MATHEMATICS HIGHER Paper 1 (Noncalculator) MONDAY, 21 MAY 1.00 PM 2.30 PM NATIONAL QUALIFICATIONS 2012
X00//0 NTIONL QULIFITIONS 0 MONY, MY.00 PM.0 PM MTHEMTIS HIGHER Paper (Noncalculator) Read carefully alculators may NOT be used in this paper. Section Questions 0 (40 marks) Instructions for completion
More informationNotes and questions to aid Alevel Mathematics revision
Notes and questions to aid Alevel Mathematics revision Robert Bowles University College London October 4, 5 Introduction Introduction There are some students who find the first year s study at UCL and
More informationThe Derivative. Philippe B. Laval Kennesaw State University
The Derivative Philippe B. Laval Kennesaw State University Abstract This handout is a summary of the material students should know regarding the definition and computation of the derivative 1 Definition
More informationSOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve
SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives
More informationIntroduction to Calculus
Introduction to Calculus Contents 1 Introduction to Calculus 3 11 Introduction 3 111 Origin of Calculus 3 112 The Two Branches of Calculus 4 12 Secant and Tangent Lines 5 13 Limits 10 14 The Derivative
More informationNumerical Solution of Differential Equations
Numerical Solution of Differential Equations Dr. Alvaro Islas Applications of Calculus I Spring 2008 We live in a world in constant change We live in a world in constant change We live in a world in constant
More informationSome Notes on Taylor Polynomials and Taylor Series
Some Notes on Taylor Polynomials and Taylor Series Mark MacLean October 3, 27 UBC s courses MATH /8 and MATH introduce students to the ideas of Taylor polynomials and Taylor series in a fairly limited
More informationa. all of the above b. none of the above c. B, C, D, and F d. C, D, F e. C only f. C and F
FINAL REVIEW WORKSHEET COLLEGE ALGEBRA Chapter 1. 1. Given the following equations, which are functions? (A) y 2 = 1 x 2 (B) y = 9 (C) y = x 3 5x (D) 5x + 2y = 10 (E) y = ± 1 2x (F) y = 3 x + 5 a. all
More informationWho uses this? Engineers can use angles measured in radians when designing machinery used to train astronauts. (See Example 4.)
1 The Unit Circle Objectives Convert angle measures between degrees and radians. Find the values of trigonometric functions on the unit circle. Vocabulary radian unit circle California Standards Preview
More informationCalculus AB 2014 Scoring Guidelines
P Calculus B 014 Scoring Guidelines 014 The College Board. College Board, dvanced Placement Program, P, P Central, and the acorn logo are registered trademarks of the College Board. P Central is the official
More informationCore Maths C3. Revision Notes
Core Maths C Revision Notes October 0 Core Maths C Algebraic fractions... Cancelling common factors... Multipling and dividing fractions... Adding and subtracting fractions... Equations... 4 Functions...
More informationCourse outline, MA 113, Spring 2014 Part A, Functions and limits. 1.1 1.2 Functions, domain and ranges, A1.11.2Review (9 problems)
Course outline, MA 113, Spring 2014 Part A, Functions and limits 1.1 1.2 Functions, domain and ranges, A1.11.2Review (9 problems) Functions, domain and range Domain and range of rational and algebraic
More informationRAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I  ORDINARY DIFFERENTIAL EQUATIONS PART A
RAJALAKSHMI ENGINEERING COLLEGE MA 26 UNIT I  ORDINARY DIFFERENTIAL EQUATIONS. Solve (D 2 + D 2)y = 0. 2. Solve (D 2 + 6D + 9)y = 0. PART A 3. Solve (D 4 + 4)x = 0 where D = d dt 4. Find Particular Integral:
More informationPOLAR COORDINATES DEFINITION OF POLAR COORDINATES
POLAR COORDINATES DEFINITION OF POLAR COORDINATES Before we can start working with polar coordinates, we must define what we will be talking about. So let us first set us a diagram that will help us understand
More informationCHAPTER 10 Limit Formulas
CHAPTER 10 Limit Formulas 10.1 Definition of Limit LIMIT OF A FUNCTION (INFORMAL DEFINITION) The notation D L is read the it of f(x)asx approaches c is L and means that the functional values f(x) can be
More informationExtra Credit Assignment Lesson plan. The following assignment is optional and can be completed to receive up to 5 points on a previously taken exam.
Extra Credit Assignment Lesson plan The following assignment is optional and can be completed to receive up to 5 points on a previously taken exam. The extra credit assignment is to create a typed up lesson
More informationItems related to expected use of graphing technology appear in bold italics.
 1  Items related to expected use of graphing technology appear in bold italics. Investigating the Graphs of Polynomial Functions determine, through investigation, using graphing calculators or graphing
More information55x 3 + 23, f(x) = x2 3. x x 2x + 3 = lim (1 x 4 )/x x (2x + 3)/x = lim
Slant Asymptotes If lim x [f(x) (ax + b)] = 0 or lim x [f(x) (ax + b)] = 0, then the line y = ax + b is a slant asymptote to the graph y = f(x). If lim x f(x) (ax + b) = 0, this means that the graph of
More informationDerive 5: The Easiest... Just Got Better!
Liverpool John Moores University, 115 July 000 Derive 5: The Easiest... Just Got Better! Michel Beaudin École de Technologie Supérieure, Canada Email; mbeaudin@seg.etsmtl.ca 1. Introduction Engineering
More information(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0,
Name: Solutions to Practice Final. Consider the line r(t) = 3 + t, t, 6. (a) Find symmetric equations for this line. (b) Find the point where the first line r(t) intersects the surface z = x + y. (a) We
More informationAlgebra II Notes Piecewise Functions Unit 1.5. Piecewise linear functions. Math Background
Piecewise linear functions Math Background Previousl, ou Related a table of values to its graph. Graphed linear functions given a table or an equation. In this unit ou will Determine when a situation requiring
More informationPreCalculus Semester 1 Course Syllabus
PreCalculus Semester 1 Course Syllabus The Plano ISD eschool Mission is to create a borderless classroom based on a positive studentteacher relationship that fosters independent, innovative critical
More informationAlgebra 2/Trigonometry Practice Test
Algebra 2/Trigonometry Practice Test Part I Answer all 27 questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed. For each question, write on the separate
More informationGRAPHING LINEAR EQUATIONS IN TWO VARIABLES
GRAPHING LINEAR EQUATIONS IN TWO VARIABLES The graphs of linear equations in two variables are straight lines. Linear equations may be written in several forms: SlopeIntercept Form: y = mx+ b In an equation
More informationMathematics (Project Maths Phase 3)
2014. M329 Coimisiún na Scrúduithe Stáit State Examinations Commission Leaving Certificate Examination 2014 Mathematics (Project Maths Phase 3) Paper 1 Higher Level Friday 6 June Afternoon 2:00 4:30 300
More informationAP Calculus BC 2012 FreeResponse Questions
AP Calculus BC 0 FreeResponse Questions About the College Board The College Board is a missiondriven notforprofit organization that connects students to college success and opportunity. Founded in
More information36 CHAPTER 1. LIMITS AND CONTINUITY. Figure 1.17: At which points is f not continuous?
36 CHAPTER 1. LIMITS AND CONTINUITY 1.3 Continuity Before Calculus became clearly de ned, continuity meant that one could draw the graph of a function without having to lift the pen and pencil. While this
More information