Exam 1 Sample Question SOLUTIONS. y = 2x


 Howard Grant
 1 years ago
 Views:
Transcription
1 Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can go the long way: y x ln(x) t y e ln(x) x Find the arc length of the curve from t to t of the original parametric form, then for the (x, y) form. SOLUTION (Parametric form): In general form, the arc length is: ) β ( ) ( dx dy L + dt α dt dt So in our case: e t + 4e t dt SOLUTION (in the form y x) ( ) b dy L + dx a dx e 5e t dt 5(e e ) e + dx 5(e e ). Find dy/dx and d y/dx, if x t t and y t (Hint: We do NOT want to try to convert it first). We recall that, using the Chain Rule: and dy dx dy/dt dx/dt d d y dx (dy/dx) dt dx/dt. Convert the polar equation to Cartesian: t t ( ) d t dt (t 4) (t 4) r tan(θ) sec(θ) t (t 4) 9 t + 4 (t 4) SOLUTION: We recall that tan(θ) y/x and sec(θ) /cos(θ), where cos(θ) x/r. Substituting these, with r x + y, we have: x + y y x x + y y x x
2 4. Convert the equation from Cartesian to polar of the form r f(θ). xy 4 SOLUTION: Use our usual substitutions: x r cos(θ), y r sin(θ): r cos(θ) sin(θ) 4 r 4 cos(θ) sin(θ) 5. Find the area of the surface obtained by rotating the curve about the x axis: SOLUTIONS: x t t y t t NOTE: You should think of this as a generic curve given in parametric form You may assume it can be written as y f(x) (should have been given as a hint?) ) ( ) ( dx dy πy + dt π t 9t dt dt 4 + 8t + 9 dt 8π t (t + ) dt 8π t (t + ) dt 48 5 π 6. Find the slope of the tangent line to the given polar curve at the point specified by θ: SOLUTION: and After some algebra and trig, r sin(θ) θ π x r cos(θ) ( sin(θ)) cos(θ) cos(θ) sin(θ) cos(θ) y r sin(θ) ( sin(θ) sin(θ) sin(θ) sin (θ) dy dx dy/dθ dx/dθ 7. Show that the equation r a sin(θ) + b cos(θ), where ab, represents the equation of a circle. SOLUTION: Multiply through by r, r ar sin(θ) + ar cos(θ) x + y ay + bx x bx + y ay Complete the square in x and y: ( x b ) + ( y a ) a + b 4 NOTE: The restriction ab is more than we need (we just wanted that a, b are not both zero).
3 8. If we have two parallel planes, P and P : P : ax + by + cz + d P : ax + by + cz + d Then show that the distance between the planes is d d a + b + c SOLUTION: Recall that we pick a point off of one plane, then get the distance between that point and the other plane. For fun, let s take a point from Plane : (x, y, z ). We note that, since this point is from plane, ax + by + cz + d. Continuing, we use our distance formula: ax + by + cz + d a + b + c d + d a + b + c 9. Graphical problems: Like the back of Quiz (online), prob. 4, 5, 6 on p Do the lines below intersect? If so, find the point of intersection. If not, find the distance between them. x + t, y t, z x + s, y + s, z s SOLUTION: To see if the lines intersect, set the coordinates equal to each other: + t + s t + s s Choose any two to solve for t, s. Here, we choose the first and third equations and get: s t We see that in this case, the x coordinates match (x ) and the z coordinates match (z ), but the y coordinates do not match (y versus y ). Therefore the lines are skew, and we will find the distance between them. In class, we learned that we can do this by looking at the two lines as being in two parallel planes, then find the distance between the planes (we might use our newly found formula!). We have a point on each plane ((,, ) and (,, )) To find the normal vector, we take the cross product of the directions of each line: i j k <,, > If you d like, you can write the equations of the two planes out: Plane : (x ) + (y ) + (z ) x + y + z 8
4 Plane : (x ) + (y ) + (z ) x + y + z 9 From the distance formula we got earlier, the distance is:. Find an equation for the surface obtained by rotating the parabola y x about the y axis. (Hint: In d, if you fix a y value, what shape should you have in the xz plane?) SOLUTION: We can think of the graph y x as the result of plotting the trace when z. If we rotate the curve about the y axis, we ll get something like a rounded vase If we take a cross section parallel to the xz plane when y k, we should get a circle of radius k, so our equation is: x + z y. Find the distance between the origin and the line x + t y t z + t Hint: Take an arbitrary point on the line and form two vectors so that the distance can be found perhaps with a sine? Hint : It is possible to solve this with Calculus Use it to check your answer. SOLUTION: One point on the line can be found by letting t and we have P (,, ), and let Q(,, ). Now we have a triangle between P Q, b <,, > and the vector going formed by taking the projection of P Q Its easiest to draw a picture and you ll find that, if h is the length we re looking for, then sin(θ) h P Q h P Q b b 6 For fun, we can do this with calculus using the distance squared (you might remember this when we used to find the maximum/minimum back in Calc I): h ( + t ) + ( t ) + ( + t ) 6 6t + 6t The minimum occurs at t / (find by setting the derivative to zero), which gives 9/ (the distance squared).. Given the property: If vectors a and b are unit vectors, and a (b c) (a c)b (a b)c c a (a b) 4
5 Is c a unit vector? That doesn t necessarily follow If we look at the algebra we have a (a b) (a b)a (a a)b (a b)a b Now, the magnitude (squared) is the dot product: c ((a b)a b) ((a b)a b) (a b)(a a) (a b) +(b b) cos(θ) cos (θ)+ So the magnitude depends on the angle between them. Notice that, if the vectors a and b are orthogonal, then c b, and it would have unit length. Is c a? Yes. The resulting vector of the cross product is orthogonal to the vectors. Is c b? Not necessarily. For example, we saw that if a b, then c b, and they would be parallel. We could also pull out a numerical example: a <,, > b <,, > a b 6 <,, > c <,, > 4. Assume that a. Explain your answer (if No, provide an example): (a) If a b a c, does it follow that b c? No This says, in essence, that if two projections are the same, then the vectors were the same and that is false. For example, a <, > b <, > c <, > (b) If a b a c, does it follow that b c? Not necessarily. Think of vectors a, b, c all in the same plane, so that a b and a c would both give you the normal to the plane. (c) If a b a c and a b a c, does it follow that b c? Yes. Let s see The dot product implies: a b a c a (b c) a (b c) The cross product (rewritten to look more like the rules in the table): c a b a (c b) a a (b c) Can a vector a be both parallel and perpendicular to the same vector? Only if that vector is zero. Therefore, b c and therefore b c. 5
( 1)2 + 2 2 + 2 2 = 9 = 3 We would like to make the length 6. The only vectors in the same direction as v are those
1.(6pts) Which of the following vectors has the same direction as v 1,, but has length 6? (a), 4, 4 (b),, (c) 4,, 4 (d), 4, 4 (e) 0, 6, 0 The length of v is given by ( 1) + + 9 3 We would like to make
More information+ 4θ 4. We want to minimize this function, and we know that local minima occur when the derivative equals zero. Then consider
Math Xb Applications of Trig Derivatives 1. A woman at point A on the shore of a circular lake with radius 2 miles wants to arrive at the point C diametrically opposite A on the other side of the lake
More informationFigure 2.1: Center of mass of four points.
Chapter 2 Bézier curves are named after their inventor, Dr. Pierre Bézier. Bézier was an engineer with the Renault car company and set out in the early 196 s to develop a curve formulation which would
More information5.7 Maximum and Minimum Values
5.7 Maximum and Minimum Values Objectives Icandefinecriticalpoints. I know the di erence between local and absolute minimums/maximums. I can find local maximum(s), minimum(s), and saddle points for a given
More information2 Integrating Both Sides
2 Integrating Both Sides So far, the only general method we have for solving differential equations involves equations of the form y = f(x), where f(x) is any function of x. The solution to such an equation
More information3. INNER PRODUCT SPACES
. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.
More informationApproximating functions by Taylor Polynomials.
Chapter 4 Approximating functions by Taylor Polynomials. 4.1 Linear Approximations We have already seen how to approximate a function using its tangent line. This was the key idea in Euler s method. If
More informationI. Vectors and Geometry in Two and Three Dimensions
I. Vectors and Geometry in Two and Three Dimensions I.1 Points and Vectors Each point in two dimensions may be labeled by two coordinates (a,b) which specify the position of the point in some units with
More informationTHE CONGRUENT NUMBER PROBLEM
THE CONGRUENT NUMBER PROBLEM KEITH CONRAD 1. Introduction A right triangle is called rational when its legs and hypotenuse are all rational numbers. Examples of rational right triangles include Pythagorean
More informationIf A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C?
Problem 3 If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Suggested Questions to ask students about Problem 3 The key to this question
More informationIntroduction to Differential Calculus. Christopher Thomas
Mathematics Learning Centre Introduction to Differential Calculus Christopher Thomas c 1997 University of Sydney Acknowledgements Some parts of this booklet appeared in a similar form in the booklet Review
More informationRevised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m)
Chapter 23 Squares Modulo p Revised Version of Chapter 23 We learned long ago how to solve linear congruences ax c (mod m) (see Chapter 8). It s now time to take the plunge and move on to quadratic equations.
More information13. Write the decimal approximation of 9,000,001 9,000,000, rounded to three significant
æ If 3 + 4 = x, then x = 2 gold bar is a rectangular solid measuring 2 3 4 It is melted down, and three equal cubes are constructed from this gold What is the length of a side of each cube? 3 What is the
More informationYou know from calculus that functions play a fundamental role in mathematics.
CHPTER 12 Functions You know from calculus that functions play a fundamental role in mathematics. You likely view a function as a kind of formula that describes a relationship between two (or more) quantities.
More informationMEP Pupil Text 12. A list of numbers which form a pattern is called a sequence. In this section, straightforward sequences are continued.
MEP Pupil Text Number Patterns. Simple Number Patterns A list of numbers which form a pattern is called a sequence. In this section, straightforward sequences are continued. Worked Example Write down the
More informationMEP Y9 Practice Book A
1 Base Arithmetic 1.1 Binary Numbers We normally work with numbers in base 10. In this section we consider numbers in base 2, often called binary numbers. In base 10 we use the digits 0, 1, 2, 3, 4, 5,
More information1 CHAPTER 18 THE CATENARY. 18.1 Introduction
1 CHAPER 18 HE CAENARY 18.1 Introduction If a flexible chain or rope is loosely hung between two fixed points, it hangs in a curve that looks a little like a parabola, but in fact is not quite a parabola;
More informationMatthias Beck Gerald Marchesi Dennis Pixton Lucas Sabalka
Matthias Beck Gerald Marchesi Dennis Pixton Lucas Sabalka Version.5 Matthias Beck A First Course in Complex Analysis Version.5 Gerald Marchesi Department of Mathematics Department of Mathematical Sciences
More information1 Sets and Set Notation.
LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most
More informationPROOFS BY DESCENT KEITH CONRAD
PROOFS BY DESCENT KEITH CONRAD As ordinary methods, such as are found in the books, are inadequate to proving such difficult propositions, I discovered at last a most singular method... that I called the
More informationOPRE 6201 : 2. Simplex Method
OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2
More information4. FIRST STEPS IN THE THEORY 4.1. A
4. FIRST STEPS IN THE THEORY 4.1. A Catalogue of All Groups: The Impossible Dream The fundamental problem of group theory is to systematically explore the landscape and to chart what lies out there. We
More information3. Let A and B be two n n orthogonal matrices. Then prove that AB and BA are both orthogonal matrices. Prove a similar result for unitary matrices.
Exercise 1 1. Let A be an n n orthogonal matrix. Then prove that (a) the rows of A form an orthonormal basis of R n. (b) the columns of A form an orthonormal basis of R n. (c) for any two vectors x,y R
More informationDEFINITION 5.1.1 A complex number is a matrix of the form. x y. , y x
Chapter 5 COMPLEX NUMBERS 5.1 Constructing the complex numbers One way of introducing the field C of complex numbers is via the arithmetic of matrices. DEFINITION 5.1.1 A complex number is a matrix of
More informationGeoGebra Help Official Manual 3.2
GeoGebra Help Official Manual 3.2 Markus Hohenwarter and Judith Hohenwarter www.geogebra.org GeoGebra Help 3.2 Last modified: April 22, 2009 Authors Markus Hohenwarter, markus@geogebra.org Judith Hohenwarter,
More information1. Graphing Linear Inequalities
Notation. CHAPTER 4 Linear Programming 1. Graphing Linear Inequalities x apple y means x is less than or equal to y. x y means x is greater than or equal to y. x < y means x is less than y. x > y means
More informationAll of mathematics can be described with sets. This becomes more and
CHAPTER 1 Sets All of mathematics can be described with sets. This becomes more and more apparent the deeper into mathematics you go. It will be apparent in most of your upper level courses, and certainly
More information4.1 Modelling with Differential Equations
Chapter 4 Differential Equations The rate equations with which we began our study of calculus are called differential equations when we identify the rates of change that appear within them as derivatives
More informationFindTheNumber. 1 FindTheNumber With Comps
FindTheNumber 1 FindTheNumber With Comps Consider the following twoperson game, which we call FindTheNumber with Comps. Player A (for answerer) has a number x between 1 and 1000. Player Q (for questioner)
More informationSUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by
SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples
More information