# MATH 121 FINAL EXAM FALL December 6, 2010

Save this PDF as:

Size: px
Start display at page:

Download "MATH 121 FINAL EXAM FALL 2010-2011. December 6, 2010" ## Transcription

1 MATH 11 FINAL EXAM FALL December 6, 010 NAME: SECTION: Instructions: Show all work and mark your answers clearly to receive full credit. This is a closed notes, closed book exam. No electronic devices are allowed. If your section number is missing or incorrect, 5 points will be deducted from the total score. You may only use techniques that were discussed in class. Simplify all of your answers. Points PAGE 1 4 points Score PAGE 1 points PAGE 1 points PAGE 4 18 points PAGE 5 16 points Points PAGE 6 16 points Score PAGE 7 7 points PAGE 8 10 points PAGES points Raw Score (out of 15): Final Score (100 * Raw Score / 15 ):

2 Final Exam MATH 11 Fall (6 points each) Compute dy dx. a. x x y 5x x x e b. 5 1 y x tan x 4 c. y cos x d. y x 1 x 1

3 Final Exam MATH 11 Fall x. (6 points) Find all values of x at which the tangent line to the curve y x 9 is horizontal.. (6 points) Suppose that y is an implicit function of x and that of x and y. dy dx x y. Express d y dx in terms

4 Final Exam MATH 11 Fall ( points each) During the first 10 seconds of a rocket flight, the rocket is propelled straight up 1 so that in t seconds it reaches a height of st () t feet. a. What is the average velocity of the rocket during the first 10 seconds of its flight? b. What is the instantaneous velocity of the rocket at t 10 seconds? 5. (6 points) (Version #1) Find values of the constants k and m that will make the following function continuous everywhere. x 5, x f( x) m( x1) k, 1 x x x7, x1

5 Final Exam MATH 11 Fall ( points each) During the first 10 seconds of a rocket flight, the rocket is propelled straight up 1 so that in t seconds it reaches a height of st () t feet. a. What is the average velocity of the rocket during the first 10 seconds of its flight? b. What is the instantaneous velocity of the rocket at t 10 seconds? 5. (6 points) (Version #) Find values of the constants k and m that will make the following function continuous everywhere. x x5, x1 f ( x) mk( x), x1 x 7, x

6 Final Exam MATH 11 Fall (6 points each) Compute the limits. a. x 9 lim x x b. lim x 4x x c. lim x x1 1 1 x 4

7 Final Exam MATH 11 Fall (8 points) A spherical snowball melts so that its surface area decreases at a rate of 1 cm min. At what rate is the radius of the snowball changing when the radius is 5 cm? Recall that the surface area S of a sphere with radius r is S 4 r. 8. (8 points) (Version #1) Use an appropriate local linear approximation to estimate.0. 5

8 Final Exam MATH 11 Fall (8 points) A spherical snowball melts so that its surface area decreases at a rate of 1 cm min. At what rate is the radius of the snowball changing when the radius is 5 cm? Recall that the surface area S of a sphere with radius r is S 4 r. 8. (8 points) (Version #) Use an appropriate local linear approximation to estimate

9 Final Exam MATH 11 Fall (8 points) Determine the locations of all relative maxima or minima, if any, of f ( x) xcosxon the interval 0 x. 10. (8 points) Find the absolute maximum and minimum values of f ( x) x lnxon the interval 1,5 5. Hint: ln

10 Final Exam MATH 11 Fall (7 points) (Version #1) The graph of the derivative f '( x ) is given below. Use this graph to find all critical points of f ( x) and at each critical point determine whether a relative maximum, relative minimum, or neither occurs. y y = f ' (x) x -1 7

11 Final Exam MATH 11 Fall (7 points) (Version #) The graph of the derivative f '( x ) is given below. Use this graph to find all critical points of f ( x) and at each critical point determine whether a relative maximum, relative minimum, or neither occurs. y 1 y = f ' (x) x -1-7

12 Final Exam MATH 11 Fall (10 points) Find the radius and height of the right circular cylinder of largest volume that can be inscribed in a right circular cone with radius 6 inches and height 10 inches. What is the maximum volume? Hint: Use similar triangles. Recall that the volume V of a right circular cylinder with radius r and height h is V r h. 8

13 Final Exam MATH 11 Fall (10 points) Find the radius and height of the right circular cylinder of largest volume that can be inscribed in a right circular cone with radius 6 inches and height 10 inches. What is the maximum volume? Hint: Use similar triangles. Recall that the volume V of a right circular cylinder with radius r and height h is V r h. (Alternate Solution) 8

14 Final Exam MATH 11 Fall (10 points) On the axes provided on the next page, sketch the graph of the given function f and identify the locations of all critical points and inflection points. Label all intercepts and asymptotes, if any. The first and second derivatives are given to you. Hint: f ( 0.5).6 1 x 1 4 x 1 f ( x) x x f '( x) f ''( x) 5 x x 9

15 Final Exam MATH 11 Fall (ADDITIONAL SPACE FOR PROBLEM 1) Sketch the graph of the given function f and identify the locations of all critical points and inflection points. Label all intercepts and asymptotes, if any. The first and second derivatives are given to you. Hint: f ( 0.5).6 1 x 1 4 x 1 f ( x) x x f '( x) f ''( x) 5 x x 15 y x -5 10

16 Final Exam MATH 11 Fall THIS PAGE LEFT BLANK (CAN BE USED FOR EXTRA SPACE FOR PROBLEMS) 11

### Review Sheet for Third Midterm Mathematics 1300, Calculus 1 Review Sheet for Third Midterm Mathematics 1300, Calculus 1 1. For f(x) = x 3 3x 2 on 1 x 3, find the critical points of f, the inflection points, the values of f at all these points and the endpoints,

More information

### Calculus 1st Semester Final Review Calculus st Semester Final Review Use the graph to find lim f ( ) (if it eists) 0 9 Determine the value of c so that f() is continuous on the entire real line if f ( ) R S T, c /, > 0 Find the limit: lim

More information

### Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: f (x) = Vertical Asymptotes Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: lim f (x) = x a lim f (x) = lim x a lim f (x) = x a

More information

### Free Response Questions Compiled by Kaye Autrey for face-to-face student instruction in the AP Calculus classroom Free Response Questions 1969-005 Compiled by Kaye Autrey for face-to-face student instruction in the AP Calculus classroom 1 AP Calculus Free-Response Questions 1969 AB 1 Consider the following functions

More information

### PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm. PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle

More information

### Math 41: Calculus Final Exam December 7, 2009 Math 41: Calculus Final Exam December 7, 2009 Name: SUID#: Select your section: Atoshi Chowdhury Yuncheng Lin Ian Petrow Ha Pham Yu-jong Tzeng 02 (11-11:50am) 08 (10-10:50am) 04 (1:15-2:05pm) 03 (11-11:50am)

More information

### Math 113 HW #7 Solutions Math 3 HW #7 Solutions 35 0 Given find /dx by implicit differentiation y 5 + x 2 y 3 = + ye x2 Answer: Differentiating both sides with respect to x yields 5y 4 dx + 2xy3 + x 2 3y 2 ) dx = dx ex2 + y2x)e

More information

### MATH FINAL EXAMINATION - 3/22/2012 MATH 22 - FINAL EXAMINATION - /22/22 Name: Section number: About this exam: Partial credit will be given on the free response questions. To get full credit you must show all of your work. This is a closed

More information

### MATH SOLUTIONS TO PRACTICE FINAL EXAM. (x 2)(x + 2) (x 2)(x 3) = x + 2. x 2 x 2 5x + 6 = = 4. MATH 55 SOLUTIONS TO PRACTICE FINAL EXAM x 2 4.Compute x 2 x 2 5x + 6. When x 2, So x 2 4 x 2 5x + 6 = (x 2)(x + 2) (x 2)(x 3) = x + 2 x 3. x 2 4 x 2 x 2 5x + 6 = 2 + 2 2 3 = 4. x 2 9 2. Compute x + sin

More information

### Introduction to Calculus Introduction to Calculus Contents 1 Introduction to Calculus 3 11 Introduction 3 111 Origin of Calculus 3 112 The Two Branches of Calculus 4 12 Secant and Tangent Lines 5 13 Limits 10 14 The Derivative

More information

### a b c d e You have two hours to do this exam. Please write your name on this page, and at the top of page three. GOOD LUCK! 3. a b c d e 12. MA123 Elem. Calculus Fall 2015 Exam 2 2015-10-22 Name: Sec.: Do not remove this answer page you will turn in the entire exam. No books or notes may be used. You may use an ACT-approved calculator during

More information

### Worksheet for Week 1: Circles and lines Worksheet Math 124 Week 1 Worksheet for Week 1: Circles and lines This worksheet is a review of circles and lines, and will give you some practice with algebra and with graphing. Also, this worksheet introduces

More information

### Chapter (AB/BC, non-calculator) (a) Write an equation of the line tangent to the graph of f at x 2. Chapter 1. (AB/BC, non-calculator) Let f( x) x 3 4. (a) Write an equation of the line tangent to the graph of f at x. (b) Find the values of x for which the graph of f has a horizontal tangent. (c) Find

More information

### APPLICATION OF DERIVATIVES 6. Overview 6.. Rate of change of quantities For the function y f (x), d (f (x)) represents the rate of change of y with respect to x. dx Thus if s represents the distance and t the time, then ds represents

More information

### Section 2.1 Rectangular Coordinate Systems P a g e 1 Section 2.1 Rectangular Coordinate Systems 1. Pythagorean Theorem In a right triangle, the lengths of the sides are related by the equation where a and b are the lengths of the legs and c is

More information

### 1. [20 Points] Evaluate each of the following limits. Please justify your answers. Be clear if the limit equals a value, + or, or Does Not Exist. Answer Key, Math, Final Eamination, December 9, 9. [ Points] Evaluate each of the following limits. Please justify your answers. Be clear if the limit equals a value, + or, or Does Not Eist. (a lim + 6

More information

### Curve Sketching. MATH 1310 Lecture 26 1 of 14 Ronald Brent 2016 All rights reserved. Curve Sketching 1. Domain. Intercepts. Symmetry. Asymptotes 5. Intervals of Increase or Decrease 6. Local Maimum and Minimum Values 7. Concavity and Points of Inflection 8. Sketch the curve MATH 110 Lecture

More information

### 55x 3 + 23, f(x) = x2 3. x x 2x + 3 = lim (1 x 4 )/x x (2x + 3)/x = lim Slant Asymptotes If lim x [f(x) (ax + b)] = 0 or lim x [f(x) (ax + b)] = 0, then the line y = ax + b is a slant asymptote to the graph y = f(x). If lim x f(x) (ax + b) = 0, this means that the graph of

More information

### SAT Subject Test Practice Test II: Math Level II Time 60 minutes, 50 Questions SAT Subject Test Practice Test II: Math Level II Time 60 minutes, 50 Questions All questions in the Math Level 1 and Math Level Tests are multiple-choice questions in which you are asked to choose the

More information

### Learning Objectives for Math 165 Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given

More information

### 2008 AP Calculus AB Multiple Choice Exam 008 AP Multiple Choice Eam Name 008 AP Calculus AB Multiple Choice Eam Section No Calculator Active AP Calculus 008 Multiple Choice 008 AP Calculus AB Multiple Choice Eam Section Calculator Active AP Calculus

More information

### Calculus Card Matching Card Matching Card Matching A Game of Matching Functions Description Give each group of students a packet of cards. Students work as a group to match the cards, by thinking about their card and what information

More information

### PRACTICE PAPER MATHEMATICS Extended Part Module 1 (Calculus and Statistics) Question-Answer Book PP-DSE MATH EP M1 Please stick the barcode label here. HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION Candidate Number PRACTICE PAPER MATHEMATICS Extended

More information

### 3.1 MAXIMUM, MINIMUM AND INFLECTION POINT & SKETCHING THE GRAPH. In Isaac Newton's day, one of the biggest problems was poor navigation at sea. BA01 ENGINEERING MATHEMATICS 01 CHAPTER 3 APPLICATION OF DIFFERENTIATION 3.1 MAXIMUM, MINIMUM AND INFLECTION POINT & SKETCHING THE GRAPH Introduction to Applications of Differentiation In Isaac Newton's

More information

### MATHEMATICS MATH*1030 Final (Mock) Exam. Student #: Instructor: M. R. Garvie 24 Nov, 2015 FALL 2015 MATHEMATICS MATH*1030 Final (Mock) Exam Last name: (PRINT) First name: Student #: Instructor: M. R. Garvie 24 Nov, 2015 INSTRUCTIONS: 1. This is a closed book examination. Scientific and/or graphing

More information

### AP Calculus AB 2006 Free-Response Questions AP Calculus AB 2006 Free-Response Questions The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to

More information

### a b c d e You have two hours to do this exam. Please write your name on this page, and at the top of page three. GOOD LUCK! 3. a b c d e 12. MA123 Elem. Calculus Fall 2015 Exam 3 2015-11-19 Name: Sec.: Do not remove this answer page you will turn in the entire exam. No books or notes may be used. You may use an ACT-approved calculator during

More information

### AP Calculus AB First Semester Final Exam Practice Test Content covers chapters 1-3 Name: Date: Period: AP Calculus AB First Semester Final Eam Practice Test Content covers chapters 1- Name: Date: Period: This is a big tamale review for the final eam. Of the 69 questions on this review, questions will be

More information

### Contents. 6 Graph Sketching 87. 6.1 Increasing Functions and Decreasing Functions... 87. 6.2 Intervals Monotonically Increasing or Decreasing... Contents 6 Graph Sketching 87 6.1 Increasing Functions and Decreasing Functions.......................... 87 6.2 Intervals Monotonically Increasing or Decreasing....................... 88 6.3 Etrema Maima

More information

### AP Calculus AB 2010 Free-Response Questions Form B AP Calculus AB 2010 Free-Response Questions Form B The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity.

More information

### correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were: Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that

More information

### Applications of Integration Day 1 Applications of Integration Day 1 Area Under Curves and Between Curves Example 1 Find the area under the curve y = x2 from x = 1 to x = 5. (What does it mean to take a slice?) Example 2 Find the area under

More information

### Curve Sketching GUIDELINES FOR SKETCHING A CURVE: A. Domain. B. Intercepts: x- and y-intercepts. Curve Sketching GUIDELINES FOR SKETCHING A CURVE: A. Domain. B. Intercepts: x- and y-intercepts. C. Symmetry: even (f( x) = f(x)) or odd (f( x) = f(x)) function or neither, periodic function. ( ) ( ) D.

More information

### Math 131 Exam 3 F04M Math 131 Exam 3 F04M131.3.1 Name ID Number Part I consists of 14 multiple choice questions (worth 5 points each) and 5 true/false question (worth 1 point each), for a total of 75 points. Mark the correct

More information

### AP Calculus AB 2006 Scoring Guidelines AP Calculus AB 006 Scoring Guidelines The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to college

More information

### Student Number: SOLUTION Page 1 of 14 Student Number: SOLUTION Page 1 of 14 QUEEN S UNIVERSITY FACULTY OF ARTS AND SCIENCE DEPARTMENT OF MATHEMATICS AND STATISTICS MATH126 December Examination December 14th, 2009 Instructors: P. Li (A), A.

More information

### Apr 23, 2015. Calculus with Algebra and Trigonometry II Lecture 23Final Review: Apr Curve 23, 2015 sketching 1 / and 19pa Calculus with Algebra and Trigonometry II Lecture 23 Final Review: Curve sketching and parametric equations Apr 23, 2015 Calculus with Algebra and Trigonometry II Lecture 23Final Review: Apr Curve 23,

More information

### x = y + 2, and the line WS 8.: Areas between Curves Name Date Period Worksheet 8. Areas between Curves Show all work on a separate sheet of paper. No calculator unless stated. Multiple Choice. Let R be the region in the first

More information

### So here s the next version of Homework Help!!! HOMEWORK HELP FOR MATH 52 So here s the next version of Homework Help!!! I am going to assume that no one had any great difficulties with the problems assigned this quarter from 4.3 and 4.4. However, if

More information

### Math 120 Final Exam Practice Problems, Form: A Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,

More information

### Calculus with Analytic Geometry I Exam 10 Take Home part Calculus with Analytic Geometry I Exam 10 Take Home part Textbook, Section 47, Exercises #22, 30, 32, 38, 48, 56, 70, 76 1 # 22) Find, correct to two decimal places, the coordinates of the point on the

More information

### f (x) has an absolute minimum value f (c) at the point x = c in its domain if Definitions - Absolute maximum and minimum values f (x) has an absolute maximum value f (c) at the point x = c in its domain if f (x) f (c) holds for every x in the domain of f (x). f (x) has an absolute

More information

### Average rate of change of y = f(x) with respect to x as x changes from a to a + h: L15-1 Lecture 15: Section 3.4 Definition of the Derivative Recall the following from Lecture 14: For function y = f(x), the average rate of change of y with respect to x as x changes from a to b (on [a,

More information

### APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION So far, we have been concerned with some particular aspects of curve sketching: Domain, range, and symmetry (Chapter 1) Limits, continuity,

More information

### Math 150, Fall 2009 Solutions to Practice Final Exam  The equation of the tangent line to the curve. cosh y = x + sin y + cos y Math 150, Fall 2009 Solutions to Practice Final Exam  The equation of the tangent line to the curve at the point (0, 0) is cosh y = x + sin y + cos y Answer : y = x Justification: The equation of the

More information

### MATH 10550, EXAM 2 SOLUTIONS. x 2 + 2xy y 2 + x = 2 MATH 10550, EXAM SOLUTIONS (1) Find an equation for the tangent line to at the point (1, ). + y y + = Solution: The equation of a line requires a point and a slope. The problem gives us the point so we

More information

### Math 113 HW #10 Solutions Math HW #0 Solutions. Exercise 4.5.4. Use the guidelines of this section to sketch the curve Answer: Using the quotient rule, y = x x + 9. y = (x + 9)(x) x (x) (x + 9) = 8x (x + 9). Since the denominator

More information

### Answer Key for the Review Packet for Exam #3 Answer Key for the Review Packet for Eam # Professor Danielle Benedetto Math Ma-Min Problems. Show that of all rectangles with a given area, the one with the smallest perimeter is a square. Diagram: y

More information

### Math 234 February 28. I.Find all vertical and horizontal asymptotes of the graph of the given function. Math 234 February 28 I.Find all vertical and horizontal asymptotes of the graph of the given function.. f(x) = /(x 3) x 3 = 0 when x = 3 Vertical Asymptotes: x = 3 H.A.: /(x 3) = 0 /(x 3) = 0 Horizontal

More information

### 3.5 Summary of Curve Sketching 3.5 Summary of Curve Sketching Follow these steps to sketch the curve. 1. Domain of f() 2. and y intercepts (a) -intercepts occur when f() = 0 (b) y-intercept occurs when = 0 3. Symmetry: Is it even or

More information

### 1. [2.3] Techniques for Computing Limits Limits of Polynomials/Rational Functions/Continuous Functions. Indeterminate Form-Eliminate the Common Factor Review for the BST MTHSC 8 Name : [] Techniques for Computing Limits Limits of Polynomials/Rational Functions/Continuous Functions Evaluate cos 6 Indeterminate Form-Eliminate the Common Factor Find the

More information

### AP Calculus BC 2006 Free-Response Questions AP Calculus BC 2006 Free-Response Questions The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to

More information

### + 4θ 4. We want to minimize this function, and we know that local minima occur when the derivative equals zero. Then consider Math Xb Applications of Trig Derivatives 1. A woman at point A on the shore of a circular lake with radius 2 miles wants to arrive at the point C diametrically opposite A on the other side of the lake

More information

### 5.1 Derivatives and Graphs 5.1 Derivatives and Graphs What does f say about f? If f (x) > 0 on an interval, then f is INCREASING on that interval. If f (x) < 0 on an interval, then f is DECREASING on that interval. A function has

More information

### Derivatives: rules and applications (Stewart Ch. 3/4) The derivative f (x) of the function f(x): Derivatives: rules and applications (Stewart Ch. 3/4) The derivative f (x) of the function f(x): f f(x + h) f(x) (x) = lim h 0 h (for all x for which f is differentiable/ the limit exists) Property:if

More information

### Math 21a Review Session for Exam 2 Solutions to Selected Problems Math 1a Review Session for Exam Solutions to Selected Problems John Hall April 5, 9 Note: Problems which do not have solutions were done in the review session. 1. Suppose that the temperature distribution

More information

### f(x) = lim 2) = 2 2 = 0 (c) Provide a rough sketch of f(x). Be sure to include your scale, intercepts and label your axis. Math 16 - Final Exam Solutions - Fall 211 - Jaimos F Skriletz 1 Answer each of the following questions to the best of your ability. To receive full credit, answers must be supported by a sufficient amount

More information

### Solution for Final Review Problems 1 Solution for Final Review Problems 1 (1) Compute the following its. (a) ( 2 + 1 2 1) ( 2 + 1 2 1) ( 2 + 1 2 1)( 2 + 1 + 2 1) 2 + 1 + 2 1 2 2 + 1 + 2 1 = (b) 1 3 3 1 (c) 3 1 3 1 ( 1)( 2 + ) 1 ( 1)( 2 +

More information

### Dr. Z s Math151 Handout #4.5 [Graph Sketching and Asymptotes] Dr. Z s Math151 Handout #4.5 [Graph Sketching and Asymptotes] By Doron Zeilberger Problem Type 4.5.1 : Sketch the curve y = P olynomial(x). Example Problem 4.5.1: Sketch the curve y = x 4 + 4x 3 Steps

More information

### Chapter 11 - Curve Sketching. Lecture 17. MATH10070 - Introduction to Calculus. maths.ucd.ie/modules/math10070. Kevin Hutchinson. Lecture 17 MATH10070 - Introduction to Calculus maths.ucd.ie/modules/math10070 Kevin Hutchinson 28th October 2010 Z Chain Rule (I): If y = f (u) and u = g(x) dy dx = dy du du dx Z Chain rule (II): d dx

More information

### Midterm Exam I, Calculus III, Sample A Midterm Exam I, Calculus III, Sample A 1. (1 points) Show that the 4 points P 1 = (,, ), P = (, 3, ), P 3 = (1, 1, 1), P 4 = (1, 4, 1) are coplanar (they lie on the same plane), and find the equation of

More information

### Winter 2016 Math 213 Final Exam. Points Possible. Subtotal 100. Total 100 Winter 2016 Math 213 Final Exam Name Instructions: Show ALL work. Simplify wherever possible. Clearly indicate your final answer. Problem Number Points Possible Score 1 25 2 25 3 25 4 25 Subtotal 100 Extra

More information

### Derivatives and Graphs. Review of basic rules: We have already discussed the Power Rule. Derivatives and Graphs Review of basic rules: We have already discussed the Power Rule. Product Rule: If y = f (x)g(x) dy dx = Proof by first principles: Quotient Rule: If y = f (x) g(x) dy dx = Proof,

More information

### Notes on Curve Sketching. B. Intercepts: Find the y-intercept (f(0)) and any x-intercepts. Skip finding x-intercepts if f(x) is very complicated. Notes on Curve Sketching The following checklist is a guide to sketching the curve y = f(). A. Domain: Find the domain of f. B. Intercepts: Find the y-intercept (f(0)) and any -intercepts. Skip finding

More information

### Section 2.4: Applications and Writing Functions CHAPTER 2 Polynomial and Rational Functions Section 2.4: Applications and Writing Functions Setting up Functions to Solve Applied Problems Maximum or Minimum Value of a Quadratic Function Setting up Functions

More information

### Week #15 - Word Problems & Differential Equations Section 8.1 Week #15 - Word Problems & Differential Equations Section 8.1 From Calculus, Single Variable by Hughes-Hallett, Gleason, McCallum et. al. Copyright 25 by John Wiley & Sons, Inc. This material is used by

More information

### 1.7 Cylindrical and Spherical Coordinates 56 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE 1.7 Cylindrical and Spherical Coordinates 1.7.1 Review: Polar Coordinates The polar coordinate system is a two-dimensional coordinate system in which the

More information

### MA107 Precalculus Algebra Exam 2 Review Solutions MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write

More information

### Solutions to old Exam 1 problems Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections

More information

### Test Information Guide: College-Level Examination Program 2013-14 Test Information Guide: College-Level Examination Program 01-14 Calculus X/ 01 The College Board. All righte reserved. Ccilege Board, College-Level Examination Program, CLEF', and the acorn logo are registered

More information

### Student Resource Book Unit 2 Student Resource Book Unit 2 1 2 3 4 5 6 7 8 9 10 ISBN 978-0-8251-7336-3 Copyright 2013 J. Weston Walch, Publisher Portland, ME 04103 www.walch.com Printed in the United States of America WALCH EDUCATION

More information

### Math 141 Final Exam Review Math 141 Final Eam Review Problems appearing on your in-class final will be similar to those here but will have numbers and functions changed. 1. (.1) Use the graph below to find the following: a) lim

More information

### AQA Level 2 Certificate FURTHER MATHEMATICS AQA Qualifications AQA Level 2 Certificate FURTHER MATHEMATICS Level 2 (8360) Our specification is published on our website (www.aqa.org.uk). We will let centres know in writing about any changes to the

More information

### PROBLEM SET. Practice Problems for Exam #2. Math 2350, Fall Nov. 7, 2004 Corrected Nov. 10 ANSWERS PROBLEM SET Practice Problems for Exam #2 Math 2350, Fall 2004 Nov. 7, 2004 Corrected Nov. 10 ANSWERS i Problem 1. Consider the function f(x, y) = xy 2 sin(x 2 y). Find the partial derivatives f x, f y,

More information

### Example. Suppose you has a 5m ladder resting against a wall. Move the base out at 2 m/s How fast does the top move down the wall? ??? Related rates Example Suppose you has a 5m ladder resting against a wall.??? 5m 2 mps Move the base out at 2 m/s How fast does the top move down the wall? Example Suppose you has a 5m ladder resting against

More information

### Good Questions. Answer: (a). Both f and g are given by the same rule, and are defined on the same domain, hence they are the same function. Good Questions Limits 1. [Q] Let f be the function defined by f(x) = sin x + cos x and let g be the function defined by g(u) = sin u + cos u, for all real numbers x and u. Then, (a) f and g are exactly

More information

### Math 103: Secants, Tangents and Derivatives Math 103: Secants, Tangents and Derivatives Ryan Blair University of Pennsylvania Thursday September 27, 2011 Ryan Blair (U Penn) Math 103: Secants, Tangents and Derivatives Thursday September 27, 2011

More information

### Math 1B, lecture 5: area and volume Math B, lecture 5: area and volume Nathan Pflueger 6 September 2 Introduction This lecture and the next will be concerned with the computation of areas of regions in the plane, and volumes of regions in

More information

### = f x 1 + h. 3. Geometrically, the average rate of change is the slope of the secant line connecting the pts (x 1 )). Math 1205 Calculus/Sec. 3.3 The Derivative as a Rates of Change I. Review A. Average Rate of Change 1. The average rate of change of y=f(x) wrt x over the interval [x 1, x 2 ]is!y!x ( ) - f( x 1 ) = y

More information

### MATH 100 PRACTICE FINAL EXAM MATH 100 PRACTICE FINAL EXAM Lecture Version Name: ID Number: Instructor: Section: Do not open this booklet until told to do so! On the separate answer sheet, fill in your name and identification number

More information

### 4.4 Concavity and Curve Sketching Concavity and Curve Sketching Section Notes Page We can use the second derivative to tell us if a graph is concave up or concave down To see if something is concave down or concave up we need to look at

More information

### Math 226 Quiz IV Review Math 226 Quiz IV Review. A stone dropped into a still pond sends out a circular ripple whose radius increases at a constant rate of 3 ft/s. How rapidly is the area enclosed by the ripple increasing at

More information

### Student Performance Q&A: Student Performance Q&A: 2008 AP Calculus AB and Calculus BC Free-Response Questions The following comments on the 2008 free-response questions for AP Calculus AB and Calculus BC were written by the Chief

More information

### 17.1 Cross Sections and Solids of Rotation Name Class Date 17.1 Cross Sections and Solids of Rotation Essential Question: What tools can you use to visualize solid figures accurately? Explore G.10.A Identify the shapes of two-dimensional cross-sections

More information

### AP Calculus BC 2003 Free-Response Questions AP Calculus BC 2003 Free-Response Questions The materials included in these files are intended for use by AP teachers for course and exam preparation; permission for any other use must be sought from the

More information

### In Problems #1 - #4, find the surface area and volume of each prism. Geometry Unit Seven: Surface Area & Volume, Practice In Problems #1 - #4, find the surface area and volume of each prism. 1. CUBE. RECTANGULAR PRISM 9 cm 5 mm 11 mm mm 9 cm 9 cm. TRIANGULAR PRISM 4. TRIANGULAR

More information

### Math 220 October 11 I. Exponential growth and decay A. The half-life of fakeium-20 is 40 years. Suppose we have a 100-mg sample. Math 220 October 11 I. Exponential growth and decay A. The half-life of fakeium-20 is 40 years. Suppose we have a 100-mg sample. 1. Find the mass that remains after t years. 2. How much of the sample remains

More information

### Readings this week. 1 Parametric Equations Supplement. 2 Section 10.1. 3 Sections 2.1-2.2. Professor Christopher Hoffman Math 124 Readings this week 1 Parametric Equations Supplement 2 Section 10.1 3 Sections 2.1-2.2 Precalculus Review Quiz session Thursday equations of lines and circles worksheet available at http://www.math.washington.edu/

More information

### Math 113 HW #9 Solutions Math 3 HW #9 Solutions 4. 50. Find the absolute maximum and absolute minimum values of on the interval [, 4]. f(x) = x 3 6x 2 + 9x + 2 Answer: First, we find the critical points of f. To do so, take the

More information

### Items related to expected use of graphing technology appear in bold italics. - 1 - Items related to expected use of graphing technology appear in bold italics. Investigating the Graphs of Polynomial Functions determine, through investigation, using graphing calculators or graphing

More information

### Surface Area Quick Review: CH 5 I hope you had an exceptional Christmas Break.. Now it's time to learn some more math!! :) Surface Area Quick Review: CH 5 Find the surface area of each of these shapes: 8 cm 12 cm 4cm 11 cm 7 cm Find

More information

### AP Calculus BC. All students enrolling in AP Calculus BC should have successfully completed AP Calculus AB. AP Calculus BC Course Description: Advanced Placement Calculus BC is primarily concerned with developing the students understanding of the concepts of calculus and providing experiences with its methods

More information

### 106 Chapter 5 Curve Sketching. If f(x) has a local extremum at x = a and. THEOREM 5.1.1 Fermat s Theorem f is differentiable at a, then f (a) = 0. 5 Curve Sketching Whether we are interested in a function as a purely mathematical object or in connection with some application to the real world, it is often useful to know what the graph of the function

More information

### MATH 2300 review problems for Exam 3 ANSWERS MATH 300 review problems for Exam 3 ANSWERS. Check whether the following series converge or diverge. In each case, justify your answer by either computing the sum or by by showing which convergence test

More information

### 12-8 Congruent and Similar Solids Determine whether each pair of solids is similar, congruent, or neither. If the solids are similar, state the scale factor. Ratio of radii: Ratio of heights: The ratios of the corresponding measures are

More information

### MAT 4810: Calculus. for Elementary and Middle School Teachers. Computing Derivatives & Integrals. Part III: Optimization. November 4, 2016 can often help us find the best way do something. We must determine how some desired outcome depends on other factors. For example, the volume of a box depends on its dimensions. There

More information