GRAPHING IN POLAR COORDINATES SYMMETRY


 Annice Nelson
 1 years ago
 Views:
Transcription
1 GRAPHING IN POLAR COORDINATES SYMMETRY Recall from Algebra and Calculus I that the concept of symmetry was discussed using Cartesian equations. Also remember that there are three types of symmetry  yaxis, x axis, and origin. Do you recall how we could test the functions for symmetry? If not, here are the tests. 1. A graph has symmetry with respect to the yaxis if, whenever (x, y) is on the graph, so is the point (x, y). 2. A graph has symmetry with respect to the origin if, whenever (x, y) is on the graph, so is the point (x, y). 3. A graph has symmetry with respect to the xaxis if, whenever (x, y) is on the graph, so is the point (x, y). The big question is how do we test for symmetry of an equation in polar coordinates? Let us look at the following diagrams to determine the answer to this question. xaxis symmetry yaxis symmetry
2 symmetry about the origin So here are the symmetry tests for polar graphs. 1. Symmetry about the xaxis: If the point (r, ) lies on the graph, then the point (r,  ) or (r,  ) also lies on the graph. 2. Symmetry about the yaxis: If the point (r, ) lies on the graph, then the point (r,  ) or (r,  ) also lies on the graph. 3. Symmetry about the origin: If the point (r, ) lies on the graph, then the point ( r, ) or (r, + ) also lies on the graph. EXAMPLE 1: Identify the symmetries of the curve r = cos and then sketch the graph. (r,  ) r = cos ( ) r = cos (Remember that cosine is an even function.) xaxis symmetry: yes (r,  ) r = cos ( ) r = cos r = 22 cos yaxis symmetry: no (r, ) r = cos r = 22 cos symmetry with respect to the origin: no Now, let us compare our findings with the graph of this function.
3 Notice that the graph's only symmetry is with respect to the x axis, and this is what we determine with our testing. EXAMPLE 2: Identify the symmetries of the curve r = 2 + sin and then sketch the graph. (r,  ) r = 2 + sin ( ) r = 2 sin (Remember that sine is an odd function.) xaxis symmetry: no (r,  ) r = 2 + sin ( ) r = 2  sin r = 2 + sin yaxis symmetry: no Is this a correct answer? No! Let us look at the graph of these two functions on the same coordinate axis.
4 r = 2 + sin is the purple graph r = sin is the teal graph We have the same graph, but they start in different places. Therefore, this function does have yaxis symmetry. Sometimes it is best to look at the graph of the polar function instead of trusting algebraic manipulation. EXAMPLE 3: Identify the symmetries of the curve r 2 = cos and then sketch the graph. (r,  ) r 2 = cos ( ) r 2 = cos (Remember that cosine is an even function.) xaxis symmetry: yes (r,  ) (r) 2 = cos ( ) r 2 = cos yaxis symmetry: yes (r, ) (r) 2 = cos r 2 = cos symmetry with respect to the origin: yes Now, let us compare our findings with the graph of this function.
5 Yes this graph does fit the results that we received from algebraic manipulation. SLOPES Now let us look at how to determine the slope of a polar curve r = f ( ). Remember that the slope of any curve is given by dy/ dx not dr/ d, so we will have to derive out the formula for dy/dx. Let x = r cos = f ( ) cos and y = r sin = f ( ) sin. If f is a differentiable function of, then so is x and y. When dx/ d 0, we can find dy/ dx from the parametric formula. EXAMPLE 4: Find the slope of the curve r = 1 + sin at. Now evaluate dy/dx at.
6 EXAMPLE 5: Find the slope of the curve r = cos 2 at / 2. Now evaluate dy/ dx at / 2. FINDING POINTS WHERE POLAR GRAPHS INTERSECT There are two types of intersection points. They are (1) simultaneous, and (2) nonsimultaneous. Here is how your find both types of points. To find the simultaneous intersection points, set the two equations equal to each other and solve for. To find the nonsimultaneous intersection points, graph both equations and determine where the graphs cross each other. EXAMPLE 6: Find the points of intersection (both types) of the pair of curves r = 1 + sin and r = 1  sin. SIMULTANEOUS INTERSECTION POINTS 1 + sin = 1  sin 2sin = 0 = 0 and = When = 0, then r = 1 + sin 0 = 1 (1, 0).
7 When =, then r = 1 + sin = 1 (1, ). NONSIMULTANEOUS INTERSECTION POINTS Let us graph both equations on the same axis. r = 1 + sin is in purple r = 1  sin is in teal Notice that the graphs cross each other at the point (0, 0), so this is the nonsimultaneous intersection point. This is the only one. EXAMPLE 7: Find the points of intersection (both types) of the pair of curves r = cos and r = 1  cos. SIMULTANEOUS INTERSECTION POINTS
8 NONSIMULTANEOUS INTERSECTION POINTS r = cos is in purple r = 1  cos is in teal The graphs cross each other at the origin, so the only nonsimultaneous intersection point is (0, 0). EXAMPLE 8: Find the points of intersection (both types) of the pair of curves r 2 = cos 2 and r 2 = sin 2. SIMULTANEOUS INTERSECTION POINTS
9 NONSIMULTANEOUS INTERSECTION POINTS r 2 = sin 2 is in purple r 2 = cos 2 is in teal The only nonsimultaneous intersection point for these two graphs is the origin, (0, 0). I have discussed three major topics in this set of supplemental notes. The first was how to determine the symmetry of a polar graph. When looking at some examples, we concluded that we would sometimes have to look at the graph of the equation. The use of symmetry will be important when we start to determine the area inside the curve. The second topic that I discussed is the slope of a polar curve. This is an application of the derivative of a parametric curve. Finally, I talked about how to find the two types of intersection points. This will be useful when we start to determine the area between two curves
Example 1. Example 1 Plot the points whose polar coordinates are given by
Polar Coordinates A polar coordinate system, gives the coordinates of a point with reference to a point O and a half line or ray starting at the point O. We will look at polar coordinates for points
More informationThis function is symmetric with respect to the yaxis, so I will let  /2 /2 and multiply the area by 2.
INTEGRATION IN POLAR COORDINATES One of the main reasons why we study polar coordinates is to help us to find the area of a region that cannot easily be integrated in terms of x. In this set of notes,
More informationApr 23, 2015. Calculus with Algebra and Trigonometry II Lecture 23Final Review: Apr Curve 23, 2015 sketching 1 / and 19pa
Calculus with Algebra and Trigonometry II Lecture 23 Final Review: Curve sketching and parametric equations Apr 23, 2015 Calculus with Algebra and Trigonometry II Lecture 23Final Review: Apr Curve 23,
More informationCalculus II MAT 146 Integration Applications: Area Between Curves
Calculus II MAT 46 Integration Applications: Area Between Curves A fundamental application of integration involves determining the area under a curve for some interval on the x or yaxis. In a previous
More informationAssignment 5 Math 101 Spring 2009
Assignment 5 Math 11 Spring 9 1. Find an equation of the tangent line(s) to the given curve at the given point. (a) x 6 sin t, y t + t, (, ). (b) x cos t + cos t, y sin t + sin t, ( 1, 1). Solution. (a)
More informationPOLAR COORDINATES DEFINITION OF POLAR COORDINATES
POLAR COORDINATES DEFINITION OF POLAR COORDINATES Before we can start working with polar coordinates, we must define what we will be talking about. So let us first set us a diagram that will help us understand
More informationApplications of Integration Day 1
Applications of Integration Day 1 Area Under Curves and Between Curves Example 1 Find the area under the curve y = x2 from x = 1 to x = 5. (What does it mean to take a slice?) Example 2 Find the area under
More informationMath 181 Spring 2007 HW 1 Corrected
Math 181 Spring 2007 HW 1 Corrected February 1, 2007 Sec. 1.1 # 2 The graphs of f and g are given (see the graph in the book). (a) State the values of f( 4) and g(3). Find 4 on the xaxis (horizontal axis)
More informationExam 1 Sample Question SOLUTIONS. y = 2x
Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can
More informationName Calculus AP Chapter 7 Outline M. C.
Name Calculus AP Chapter 7 Outline M. C. A. AREA UNDER A CURVE: a. If y = f (x) is continuous and nonnegative on [a, b], then the area under the curve of f from a to b is: A = f (x) dx b. If y = f (x)
More informationLengths in Polar Coordinates
Lengths in Polar Coordinates Given a polar curve r = f (θ), we can use the relationship between Cartesian coordinates and Polar coordinates to write parametric equations which describe the curve using
More informationChapter 11  Curve Sketching. Lecture 17. MATH10070  Introduction to Calculus. maths.ucd.ie/modules/math10070. Kevin Hutchinson.
Lecture 17 MATH10070  Introduction to Calculus maths.ucd.ie/modules/math10070 Kevin Hutchinson 28th October 2010 Z Chain Rule (I): If y = f (u) and u = g(x) dy dx = dy du du dx Z Chain rule (II): d dx
More informationSolutions to Final Practice Problems
s to Final Practice Problems Math March 5, Change the Cartesian integral into an equivalent polar integral and evaluate: I 5 x 5 5 x ( x + y ) dydx The domain of integration for this integral is D {(x,
More informationSection 1.8 Coordinate Geometry
Section 1.8 Coordinate Geometry The Coordinate Plane Just as points on a line can be identified with real numbers to form the coordinate line, points in a plane can be identified with ordered pairs of
More information10 Polar Coordinates, Parametric Equations
Polar Coordinates, Parametric Equations ½¼º½ ÈÓÐ Ö ÓÓÖ Ò Ø Coordinate systems are tools that let us use algebraic methods to understand geometry While the rectangular (also called Cartesian) coordinates
More informationLecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20
Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding
More information1.2 GRAPHS OF EQUATIONS. Copyright Cengage Learning. All rights reserved.
1.2 GRAPHS OF EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch graphs of equations. Find x and yintercepts of graphs of equations. Use symmetry to sketch graphs
More informationGraphs of Polar Equations
Graphs of Polar Equations In the last section, we learned how to graph a point with polar coordinates (r, θ). We will now look at graphing polar equations. Just as a quick review, the polar coordinate
More informationVisualizing Differential Equations Slope Fields. by Lin McMullin
Visualizing Differential Equations Slope Fields by Lin McMullin The topic of slope fields is new to the AP Calculus AB Course Description for the 2004 exam. Where do slope fields come from? How should
More information1.7 Cylindrical and Spherical Coordinates
56 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE 1.7 Cylindrical and Spherical Coordinates 1.7.1 Review: Polar Coordinates The polar coordinate system is a twodimensional coordinate system in which the
More informationIB Practice Exam: 11 Paper 2 Zone 1 90 min, Calculator Allowed. Name: Date: Class:
IB Math Standard Level Year 2: May 11, Paper 2, TZ 1 IB Practice Exam: 11 Paper 2 Zone 1 90 min, Calculator Allowed Name: Date: Class: 1. The following diagram shows triangle ABC. AB = 7 cm, BC = 9 cm
More informationTangent and normal lines to conics
4.B. Tangent and normal lines to conics Apollonius work on conics includes a study of tangent and normal lines to these curves. The purpose of this document is to relate his approaches to the modern viewpoints
More informationEngineering Math II Spring 2015 Solutions for Class Activity #2
Engineering Math II Spring 15 Solutions for Class Activity # Problem 1. Find the area of the region bounded by the parabola y = x, the tangent line to this parabola at 1, 1), and the xaxis. Then find
More informationArea Between Curves. The idea: the area between curves y = f(x) and y = g(x) (if the graph of f(x) is above that of g(x)) for a x b is given by
MATH 42, Fall 29 Examples from Section, Tue, 27 Oct 29 1 The First Hour Area Between Curves. The idea: the area between curves y = f(x) and y = g(x) (if the graph of f(x) is above that of g(x)) for a x
More informationlim lim x l 1 sx 1 and so the line x 1 is a vertical asymptote. f x 2xsx 1 x 2 1 (2sx 1) x 1
SECTION 3.4 CURE SKETCHING 3.4 CURE SKETCHING EXAMPLE A Sketch the graph of f x. sx A. Domain x x 0 x x, B. The x and yintercepts are both 0. C. Symmetry: None D. Since x l sx there is no horizontal
More informationThe Derivative and the Tangent Line Problem. The Tangent Line Problem
The Derivative and the Tangent Line Problem Calculus grew out of four major problems that European mathematicians were working on during the seventeenth century. 1. The tangent line problem 2. The velocity
More informationConic Sections in Cartesian and Polar Coordinates
Conic Sections in Cartesian and Polar Coordinates The conic sections are a family of curves in the plane which have the property in common that they represent all of the possible intersections of a plane
More informationQuadratic Functions. Teachers Teaching with Technology. Scotland T 3. Symmetry of Graphs. Teachers Teaching with Technology (Scotland)
Teachers Teaching with Technology (Scotland) Teachers Teaching with Technology T 3 Scotland Quadratic Functions Symmetry of Graphs Teachers Teaching with Technology (Scotland) QUADRATIC FUNCTION Aim To
More information1. AREA BETWEEN the CURVES
1 The area between two curves The Volume of the Solid of revolution (by slicing) 1. AREA BETWEEN the CURVES da = {( outer function ) ( inner )} dx function b b A = da = [y 1 (x) y (x)]dx a a d d A = da
More information2 Applications of Integration
Brian E. Veitch 2 Applications of Integration 2.1 Area between curves In this section we are going to find the area between curves. Recall that the integral can represent the area between f(x) and the
More informationc sigma & CEMTL
c sigma & CEMTL Foreword The Regional Centre for Excellence in Mathematics Teaching and Learning (CEMTL) is collaboration between the Shannon Consortium Partners: University of Limerick, Institute of Technology,
More informationCork Institute of Technology. CIT Mathematics Examination, Paper 2 Sample Paper A
Cork Institute of Technology CIT Mathematics Examination, 2015 Paper 2 Sample Paper A Answer ALL FIVE questions. Each question is worth 20 marks. Total marks available: 100 marks. The standard Formulae
More informationdecide, when given the eccentricity of a conic, whether the conic is an ellipse, a parabola or a hyperbola;
Conic sections In this unit we study the conic sections. These are the curves obtained when a cone is cut by a plane. We find the equations of one of these curves, the parabola, by using an alternative
More informationPlotting Polar Curves We continue to study the plotting of polar curves. Recall the family of cardioids shown last time.
Plotting Polar Curves We continue to study the plotting of polar curves. Recall the family of cardioids shown last time. r = 1 cos(θ) r = 1 + cos(θ) r = 1 + sin(θ) r = 1 sin(θ) Now let us look at a similar
More information2 Unit Bridging Course Day 2 Linear functions II: Finding equations
1 / 38 2 Unit Bridging Course Day 2 Linear functions II: Finding equations Clinton Boys 2 / 38 Finding equations of lines If we have the information of (i) the gradient of a line (ii) the coordinates of
More informationIntersections of Polar Curves
Intersections of Polar Curves The purpose of this supplement is to find a method for determining where graphs of polar equations intersect each other. Let s start with a fairly straightforward example.
More informationAP CALCULUS AB 2008 SCORING GUIDELINES
AP CALCULUS AB 2008 SCORING GUIDELINES Question 1 Let R be the region bounded by the graphs of y = sin( π x) and y = x 4 x, as shown in the figure above. (a) Find the area of R. (b) The horizontal line
More informationStudent Activity: To investigate an ESB bill
Student Activity: To investigate an ESB bill Use in connection with the interactive file, ESB Bill, on the Student s CD. 1. What are the 2 main costs that contribute to your ESB bill? 2. a. Complete the
More informationPURE MATHEMATICS AM 27
AM SYLLABUS (013) PURE MATHEMATICS AM 7 SYLLABUS 1 Pure Mathematics AM 7 Syllabus (Available in September) Paper I(3hrs)+Paper II(3hrs) 1. AIMS To prepare students for further studies in Mathematics and
More informationPURE MATHEMATICS AM 27
AM Syllabus (015): Pure Mathematics AM SYLLABUS (015) PURE MATHEMATICS AM 7 SYLLABUS 1 AM Syllabus (015): Pure Mathematics Pure Mathematics AM 7 Syllabus (Available in September) Paper I(3hrs)+Paper II(3hrs)
More informationx = y + 2, and the line
WS 8.: Areas between Curves Name Date Period Worksheet 8. Areas between Curves Show all work on a separate sheet of paper. No calculator unless stated. Multiple Choice. Let R be the region in the first
More informationPractice Problems for Exam 1 Math 140A, Summer 2014, July 2
Practice Problems for Exam 1 Math 140A, Summer 2014, July 2 Name: INSTRUCTIONS: These problems are for PRACTICE. For the practice exam, you may use your book, consult your classmates, and use any other
More information3.3. Parabola and parallel lines
3.3. Parabola and parallel lines This example is similar in spirit to the last, except this time the parabola is held fixed and a line of slope is moved parallel to itself. The objective is to see how
More informationArea and Arc Length in Polar Coordinates. Area of a Polar Region
46_5.qxd //4 :7 PM Page 79 SECTION.5 Area and Arc Length in Polar Coordinates 79 θ Section.5 r The area of a sector of a circle is A r. Figure.49 (a) β r = f( θ) α Area and Arc Length in Polar Coordinates
More informationSolutions to Homework 10
Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x
More informationMATH 105: Finite Mathematics 11: Rectangular Coordinates, Lines
MATH 105: Finite Mathematics 11: Rectangular Coordinates, Lines Prof. Jonathan Duncan Walla Walla College Winter Quarter, 2006 Outline 1 Rectangular Coordinate System 2 Graphing Lines 3 The Equation of
More information4.4 CURVE SKETCHING. there is no horizontal asymptote. Since sx 1 l 0 as x l 1 and f x is always positive, we have
SECTION 4.4 CURE SKETCHING 4.4 CURE SKETCHING EXAMPLE A Sketch the graph of f x. sx A. Domain x x 0 x x, B. The x and yintercepts are both 0. C. Symmetry: None D. Since x l sx there is no horizontal
More informationSection 10.4 Vectors
Section 10.4 Vectors A vector is represented by using a ray, or arrow, that starts at an initial point and ends at a terminal point. Your textbook will always use a bold letter to indicate a vector (such
More informationWe can use more sectors (i.e., decrease the sector s angle θ) to get a better approximation:
Section 1.4 Areas of Polar Curves In this section we will find a formula for determining the area of regions bounded by polar curves. To do this, wee again make use of the idea of approximating a region
More informationFourier Series. 1. Fullrange Fourier Series. ) + b n sin L. [ a n cos L )
Fourier Series These summary notes should be used in conjunction with, and should not be a replacement for, your lecture notes. You should be familiar with the following definitions. A function f is periodic
More informationwww.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates
Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c
More informationSection 12.6: Directional Derivatives and the Gradient Vector
Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate
More informationTest Bank Exercises in. 7. Find the intercepts, the vertical asymptote, and the slant asymptote of the graph of
Test Bank Exercises in CHAPTER 5 Exercise Set 5.1 1. Find the intercepts, the vertical asymptote, and the horizontal asymptote of the graph of 2x 1 x 1. 2. Find the intercepts, the vertical asymptote,
More informationMATHEMATICS (CLASSES XI XII)
MATHEMATICS (CLASSES XI XII) General Guidelines (i) All concepts/identities must be illustrated by situational examples. (ii) The language of word problems must be clear, simple and unambiguous. (iii)
More information1.4 Exponential and logarithm graphs.
1.4 Exponential and logarithm graphs. Example 1. Recall that b = 2 a if and only if a = log 2 (b) That tells us that the functions f(x) = 2 x and g(x) = log 2 (x) are inverse functions. It also tells us
More informationSection summaries. d = (x 2 x 1 ) 2 + (y 2 y 1 ) 2. 1 + y 2. x1 + x 2
Chapter 2 Graphs Section summaries Section 2.1 The Distance and Midpoint Formulas You need to know the distance formula d = (x 2 x 1 ) 2 + (y 2 y 1 ) 2 and the midpoint formula ( x1 + x 2, y ) 1 + y 2
More informationAPPLICATIONS OF DIFFERENTIATION
4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION So far, we have been concerned with some particular aspects of curve sketching: Domain, range, and symmetry (Chapter 1) Limits, continuity,
More informationSection 64 Product Sum and Sum Product Identities
480 6 TRIGONOMETRIC IDENTITIES AND CONDITIONAL EQUATIONS Section 64 Product Sum and Sum Product Identities Product Sum Identities Sum Product Identities Our work with identities is concluded by developing
More informationSection 10.7 Parametric Equations
299 Section 10.7 Parametric Equations Objective 1: Defining and Graphing Parametric Equations. Recall when we defined the x (rcos(θ), rsin(θ)) and ycoordinates on a circle of radius r as a function of
More informationCalculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum
Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum UNIT I: The Hyperbolic Functions basic calculus concepts, including techniques for curve sketching, exponential and logarithmic
More informationChapter 5: Trigonometric Functions of Real Numbers
Chapter 5: Trigonometric Functions of Real Numbers 5.1 The Unit Circle The unit circle is the circle of radius 1 centered at the origin. Its equation is x + y = 1 Example: The point P (x, 1 ) is on the
More informationInverse Trigonometric Functions
Inverse Trigonometric Functions Inverse Sine Function Recall from Section.8 that, for a function to have an inverse function, it must be onetoone that is, it must pass the Horizontal Line Test. From
More informationCalculating Areas Section 6.1
A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics Calculating Areas Section 6.1 Dr. John Ehrke Department of Mathematics Fall 2012 Measuring Area By Slicing We first defined
More information1.5 ANALYZING GRAPHS OF FUNCTIONS. Copyright Cengage Learning. All rights reserved.
1.5 ANALYZING GRAPHS OF FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use the Vertical Line Test for functions. Find the zeros of functions. Determine intervals on which
More informationClass Notes for MATH 2 Precalculus. Fall Prepared by. Stephanie Sorenson
Class Notes for MATH 2 Precalculus Fall 2012 Prepared by Stephanie Sorenson Table of Contents 1.2 Graphs of Equations... 1 1.4 Functions... 9 1.5 Analyzing Graphs of Functions... 14 1.6 A Library of Parent
More informationProcedure In each case, draw and extend the given series to the fifth generation, then complete the following tasks:
Math IV Nonlinear Algebra 1.2 Growth & Decay Investigation 1.2 B: Nonlinear Growth Introduction The previous investigation introduced you to a pattern of nonlinear growth, as found in the areas of a series
More information10.1 NotesGraphing Quadratics
Name: Period: 10.1 NotesGraphing Quadratics Section 1: Identifying the vertex (minimum/maximum), the axis of symmetry, and the roots (zeros): State the maximum or minimum point (vertex), the axis of symmetry,
More informationaxis axis. axis. at point.
Chapter 5 Tangent Lines Sometimes, a concept can make a lot of sense to us visually, but when we try to do some explicit calculations we are quickly humbled We are going to illustrate this sort of thing
More informationTeacher Questionnaire
Identification Label Teacher Name: Class Name: Teacher ID: Teacher Link # Teacher Questionnaire Advanced Mathematics International Association for
More informationAQA Level 2 Certificate FURTHER MATHEMATICS
AQA Qualifications AQA Level 2 Certificate FURTHER MATHEMATICS Level 2 (8360) Our specification is published on our website (www.aqa.org.uk). We will let centres know in writing about any changes to the
More informationAngles and Quadrants. Angle Relationships and Degree Measurement. Chapter 7: Trigonometry
Chapter 7: Trigonometry Trigonometry is the study of angles and how they can be used as a means of indirect measurement, that is, the measurement of a distance where it is not practical or even possible
More informationMATHEMATICS Unit Pure Core 2
General Certificate of Education June 2006 Advanced Subsidiary Examination MATHEMATICS Unit Pure Core 2 MPC2 Monday 22 May 2006 9.00 am to 10.30 am For this paper you must have: * an 8page answer book
More informationMidterm Exam I, Calculus III, Sample A
Midterm Exam I, Calculus III, Sample A 1. (1 points) Show that the 4 points P 1 = (,, ), P = (, 3, ), P 3 = (1, 1, 1), P 4 = (1, 4, 1) are coplanar (they lie on the same plane), and find the equation of
More informationApplications of the Integral
Chapter 6 Applications of the Integral Evaluating integrals can be tedious and difficult. Mathematica makes this work relatively easy. For example, when computing the area of a region the corresponding
More informationFourier Series Chapter 3 of Coleman
Fourier Series Chapter 3 of Coleman Dr. Doreen De eon Math 18, Spring 14 1 Introduction Section 3.1 of Coleman The Fourier series takes its name from Joseph Fourier (1768183), who made important contributions
More informationPatterns, Equations, and Graphs. Section 19
Patterns, Equations, and Graphs Section 19 Goals Goal To use tables, equations, and graphs to describe relationships. Vocabulary Solution of an equation Inductive reasoning Review: Graphing in the Coordinate
More informationAP Calculus Project 4  Curve Sketching
AP Calculus Project 4  Curve Sketching Name You will be in a group of 2 to 4. You will be given a series of s that must be accurately sketched with attention paid to roots, extrema, critical points, inflection
More information1 Lecture 19: Implicit differentiation
Lecture 9: Implicit differentiation. Outline The technique of implicit differentiation Tangent lines to a circle Examples.2 Implicit differentiation Suppose we have two quantities or variables x and y
More informationUnit Overview. Content Area: Math Unit Title: Functions and Their Graphs Target Course/Grade Level: Advanced Math Duration: 4 Weeks
Content Area: Math Unit Title: Functions and Their Graphs Target Course/Grade Level: Advanced Math Duration: 4 Weeks Unit Overview Description In this unit the students will examine groups of common functions
More informationAP Calculus BC 2013 FreeResponse Questions
AP Calculus BC 013 FreeResponse Questions About the College Board The College Board is a missiondriven notforprofit organization that connects students to college success and opportunity. Founded in
More informationUsing The TINspire Calculator in AP Calculus
Using The TINspire Calculator in AP Calculus (Version 3.0) You must be able to perform the following procedures on your calculator: 1. Plot the graph of a function within an arbitrary viewing window,
More informationMATH FINAL EXAMINATION  3/22/2012
MATH 22  FINAL EXAMINATION  /22/22 Name: Section number: About this exam: Partial credit will be given on the free response questions. To get full credit you must show all of your work. This is a closed
More informationLevel 2 Certificate Further MATHEMATICS
Level 2 Certificate Further MATHEMATICS 83601 Paper 1 noncalculator Report on the Examination Specification 8360 June 2013 Version: 1.0 Further copies of this Report are available from aqa.org.uk Copyright
More informationRADIUS OF CURVATURE AND EVOLUTE OF THE FUNCTION y=f(x)
RADIUS OF CURVATURE AND EVOLUTE OF THE FUNCTION y=f( In introductory calculus one learns about the curvature of a function y=f( also about the path (evolute that the center of curvature traces out as x
More informationAlgebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123
Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from
More informationYear 11  GCSE Higher Tier. Revision 2011
Year 11  GCSE Higher Tier Revision 2011 Transformations Reflect the triangle in the line x =  2 Translate this triangle 2 right and 3 up Reflect the triangle in the line y = 5 Rotate this shape 90º anticlockwise
More informationRoots and Coefficients of a Quadratic Equation Summary
Roots and Coefficients of a Quadratic Equation Summary For a quadratic equation with roots α and β: Sum of roots = α + β = and Product of roots = αβ = Symmetrical functions of α and β include: x = and
More informationFree Response Questions Compiled by Kaye Autrey for facetoface student instruction in the AP Calculus classroom
Free Response Questions 1969005 Compiled by Kaye Autrey for facetoface student instruction in the AP Calculus classroom 1 AP Calculus FreeResponse Questions 1969 AB 1 Consider the following functions
More informationMathematics (Project Maths Phase 3)
2014. M329 Coimisiún na Scrúduithe Stáit State Examinations Commission Leaving Certificate Examination 2014 Mathematics (Project Maths Phase 3) Paper 1 Higher Level Friday 6 June Afternoon 2:00 4:30 300
More informationChapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis
Chapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis 2. Polar coordinates A point P in a polar coordinate system is represented by an ordered pair of numbers (r, θ). If r >
More informationGraphing Quadratic Functions
Problem 1 The Parabola Examine the data in L 1 and L to the right. Let L 1 be the x value and L be the yvalues for a graph. 1. How are the x and yvalues related? What pattern do you see? To enter the
More informationYou must have: Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.
Write your name here Surname Other names Pearson Edexcel Certificate Pearson Edexcel International GCSE Mathematics A Paper 3H Centre Number Tuesday 6 January 2015 Afternoon Time: 2 hours Candidate Number
More informationGRAPHING (2 weeks) Main Underlying Questions: 1. How do you graph points?
GRAPHING (2 weeks) The Rectangular Coordinate System 1. Plot ordered pairs of numbers on the rectangular coordinate system 2. Graph paired data to create a scatter diagram 1. How do you graph points? 2.
More informationMultivariable Calculus MA22S1. Dr Stephen Britton
Multivariable Calculus MAS Dr Stephen Britton September 3 Introduction The aim of this course to introduce you to the basics of multivariable calculus. The early part is dedicated to discussing curves
More informationSenior Math Circles February 4, 2009 Conics I
1 University of Waterloo Faculty of Mathematics Conics Senior Math Circles February 4, 2009 Conics I Centre for Education in Mathematics and Computing The most mathematically interesting objects usually
More informationThe graphs of f and g intersect at (0, 0) and one other point. Find that point: f(y) = g(y) y 2 4y 2y 2 6y = = 2y y 2. 2y(y 3) = 0
. Compute the area between the curves x y 4y and x y y. Let f(y) y 4y y(y 4). f(y) when y or y 4. Let g(y) y y y( y). g(y) when y or y. x 3 y? The graphs of f and g intersect at (, ) and one other point.
More informationOrdered Pairs. Graphing Lines and Linear Inequalities, Solving System of Linear Equations. Cartesian Coordinates System.
Ordered Pairs Graphing Lines and Linear Inequalities, Solving System of Linear Equations Peter Lo All equations in two variables, such as y = mx + c, is satisfied only if we find a value of x and a value
More informationYear 11  GCSE Higher Tier. Revision Solutions
Year 11  GCSE Higher Tier Revision 2011  Solutions Transformations Reflect the triangle in the line x =  2 Translate this triangle 2 right and 3 up Reflect the triangle in the line y = 5 Rotate this
More information2.2 Derivative as a Function
2.2 Derivative as a Function Recall that we defined the derivative as f (a) = lim h 0 f(a + h) f(a) h But since a is really just an arbitrary number that represents an xvalue, why don t we just use x
More informationExam 2 Review. 3. How to tell if an equation is linear? An equation is linear if it can be written, through simplification, in the form.
Exam 2 Review Chapter 1 Section1 Do You Know: 1. What does it mean to solve an equation? To solve an equation is to find the solution set, that is, to find the set of all elements in the domain of the
More information