AP Calculus BC. Course content and suggested texts and reference materials align with the College Board framework for AP Calculus BC.


 Pearl Copeland
 2 years ago
 Views:
Transcription
1 AP Calculus BC Course Overview Topic Description AP Calculus BC Course Details In AP Calculus BC, students study functions, limits, derivatives, integrals, and infinite series This document details the topics and subtopics that f under each unit and chapter. Teacher Role Prerequisites Course Length Two semesters Throughout the course students write and work with functions represented by written descriptions, mathematical rules, graphs and tabular data. Throughout the course, students develop and exercise skills using the graphing calculator to solve problems, experiment, interpret results, and support their conclusions. Students learn the meaning of the derivative and apply it to a variety of problems, while developing a deeper understanding of the meaning of the solutions to those problems. Students study integrals and learn the relationship between the derivative and the definite integral, using written work and graphing technology to explore and interpret this relationship. Students learn how calculus is used to model realworld phenomena by using functions, differential equations, integrals, and graphing technology to solve problems, support their solutions, and interpret their findings. Students communicate about mathematics through written work and discussion forums with peers that are monitored by the teacher. Asynchronous and synchronous discussion activities throughout the course provide multiple opportunities for students to interact with each other and share ideas about math problems and problemsolving strategies. Discussions also include opportunities for students to work in sm groups where they collaborate on specific assignments. The detailed syllabus outline below indicates where these discussions occur and what the topics are. In this course, the teacher hosts and facilitates weekly synchronous sessions with students who are enrolled. In these regularly scheduled sessions, students communicate with each other and the teacher about course content and assignments. These synchronous sessions ow for timely verbal dialogue about AP Calculus BC content and course assignments. As needed, the teacher guides students through appropriate explanations of assigned problems and solution sets. Helpful guidelines for these sessions are provided to the teacher. Course content and suggested texts and reference materials align with the College Board framework for AP Calculus BC. All students enrolled in this course are assigned to a "section" with a qualified teacher who is responsible for ensuring student success and addressing student questions, problems, and concerns. In addition, each student must have a mentor available at their school or at home to support the student and make sure assignments are completed in a timely manner. Algebra II, Geometry, PreCalculus with Trigonometry AP Calculus BC, page 1
2 Course Materials This online course offers instructional content that incorporates required topics in a balanced and comprehensive sequence. Online digital instruction includes text, figures, graphic elements, carefully structured problem sets, exploration guides, and graphing calculator instructions to convey and highlight important information and provide students with specific applications of concepts they are studying. The required virtual content for this course is as follows: Thomas, Paul et al. (editors). AP Calculus BC, K12 digital edition. Herndon, VA: In addition, students should have this required (printed) textbook: Larson, Ron, and Bruce H. Edwards. Calculus of a Single Variable, AP Edition (9th ed.), Belmont, CA: Brooks/Cole, Cengage Learning, [ISBN: ] The following additional (optional) textbooks may be used to supplement the material presented in this course: Finney, Ross L., Franklin Demana, Bert Waits, and Daniel Kennedy. Calculus: Graphical, Numerical, Algebraic (3rd ed.), Boston: Pearson Addison Wesley, [ISBN: ] Stewart, James. Single Variable Calculus (7th ed.), Belmont, CA: Brooks/Cole, Cengage Learning, [ISBN: ] The student or the school must purchase a TI84 Plus calculator (or similar calculator approved by the College Board) for the AP Calculus BC exam. Specific references for use of these texts appear at the end of this document, beginning on page 19. AP Calculus BC, page 2
3 The following details describe different types of instructional activities in this course. Activity Type Learn Video Lectures Explore and Using a Graphing Calculator Description Primary instructional content presented online to teach new concepts through multimedia and interactivity. Paper and pencil activities are included in Explore activities. Graphing calculator activities are also included (these appear in bold in the course outline below). In these Explore activities, students are guided through the key steps for using calculators to explore, experiment, analyze and interpret findings, and support their conclusions For example, in the graphing calculator activity titled Taking More Intervals, students learn how to use the SEQ function to find a Riemann sum, and then use this functionality to test conjectures about the effect that using different interval sizes has on resulting area approximations. Discussion Students discuss topics in threaded discussion boards (these discussions appear in bold in the course outline below). Teachers monitor and participate in these discussions, and students receive credit for appropriate participation. Some discussions include group activities that require studenttostudent communication about calculus strategies and concepts. For example, in the Discussion titled Handson Solids, students create and compare solids with crosssections that are circles, squares, or rectangles. Within peer discussion groups, students observe, interact, and compare crosssections and then explain their methods for calculating volume to each other. Practice Try It Problem Set Assessment Quiz Review Lesson Unit Test Students answer online, computerscored (ungraded) questions to help them synthesize what they have learned in a lesson. This helps them think about the content before using it in a problem set. Every lesson with Video Lectures includes six to ten Try It questions. Every lesson with Video Lectures has a Problem Set, so students can work offline to practice what they have learned. One Problem Set is provided for each lesson as a PDF. Each lesson also includes recommended assignments for each of the three recommended textbooks. Most lessons include a quiz, which is a computergraded assessment. Review Lessons cover the material presented in a unit or over a semester. Calculator skills are also reviewed in Review Lessons to help prepare students to use them on tests and exams. A unit test is an assessment of the material covered in a given unit. Each test is modeled after the AP Exam. Students complete certain portions of these tests using graphing calculators but are prohibited from using them on other parts of these tests. Each test includes a computergraded, multiplechoice section and a freeresponse section that is teacher graded using a detailed rubric. AP Calculus BC, page 3
4 Semester Exam A comprehensive Semester Exam is administered at the end of the semester. Students are required to use graphing calculators to solve problems, experiment, interpret results, support their conclusions, and verify handwritten work. The semester exam is modeled after the AP Exam, so students complete certain parts of the exam using graphing calculators but are prohibited from using them on other parts of the exam. AP Calculus BC, page 4
5 Course Syllabus SEMESTER ONE Unit 1: The Basics (17 Days) [C2] Students prepare to study calculus by reviewing some basic precalculus concepts from algebra and trigonometry. They learn what calculus is, why it was invented, and what it is used for. PreCalculus Review Introduction to Calculus o Video Lectures: The Study of Change, History of Calculus, Calculus Today, The Study of Calculus o Discussion: Introduction Using a Graphing Calculator o Graphing Calculator: Finding Zeros of Functions Combining Functions o Video Lectures: Sums, Differences, Products, Quotients Composite and Inverse Functions o Video Lectures: Composite Functions, Composite Domains, Inverse Functions, Domains of Inverse Functions o Graphing Calculator: Exploring Functions Graphicy and Numericy Graphical Symmetry o Video Lectures: Symmetry, Even and Odd Functions, Inverse Is Reflection of Original Patterns in Graphs o Video Lectures: Function Families, Rules, Absolute Value o Graphing Calculator: Shifting and Exploring Function Graphs Unit Review Unit Test By the end of this unit, students will be able to: C2  The course teaches topics associated with Functions, Graph, and Limits; Derivatives; Integrals; and Polynomial Approximations and series as delineated in the Calculus Topic Outline in the AP Calculus Course Description. Write a simple, general definition of calculus. Identify at least three situations where modeling with calculus is appropriate. Explain why calculus was first invented, and name at least one mathematician who was involved in developing calculus. Identify whether a given relationship represents a function and whether that function is onetoone (the relationship may be given verby, graphicy, or algebraicy). Write functions to represent situations where there is a relationship between two variables. Determine domains (graphicy and algebraicy) for given functions. Determine ranges (graphicy and algebraicy) for given functions. Find asymptotes of rational functions. Determine sums, differences, products, and quotients of functions that are given algebraicy. Determine domains for sums, differences, products, and quotients of functions. Given two functions, identify the graph that is formed by combining two functions by adding, subtracting, multiplying, or dividing the functions. Determine composite and inverse functions that are given algebraicy (including domain restrictions). Graph functions using a calculator. Solve equations numericy using a calculator, and analyticy using algebra. Write functions to represent various geometric and real world situations. AP Calculus BC, page 5
6 Recognize symmetry in a variety of graphs and pictures, and identify the type of symmetry. Identify even, odd, and inverse functions, both from their graphs and from their equations. Write a function from a verbal description or a diagram of a situation involving symmetry. Recognize a new function (algebraicy and graphicy) as an altered form of a familiar function. Use the rules for shifting and distorting to quickly sketch the graph of one function from the graph of another. Match a function with a parameter to a given family of functions. Graph a family of functions when given a function that includes a parameter. Write an equation with parameters to represent a given family of functions. Unit 2: Limits and Continuity (16 Days) [C3] This unit addresses Topic I: Functions, Graphs, and Limits of the College Board s Calculus BC topic outline. Students learn two important concepts that underlie of calculus: limits and continuity. Limits help students understand differentiation (the slope of a curve) and integration (the area inside a curved shape). Continuity is an important property of functions. Introduction o Video Lectures: Limits, Unequal Limits, Ways to Find Limits Finding Limits Analyticy o Video Lectures: Identities, Factoring and Rationalizing, Trigonometric Asymptotes as Limits o Video Lectures: Asymptotes Revisited, Horizontal Asymptotes, Vertical Asymptotes, Drawing a Graph with Asymptote Information, Relative Magnitudes for Limits o Video Lectures: Comparing Algebraic Functions, Comparing Exponential Functions, Comparing Exponential Functions to Algebraic Polynomials and Power Functions o Discussion: Analyzing Examples of Infinities When Limits Do and Don t Exist o Video Lectures: Vertical Asymptotes, LeftandRight Hand Limits Don t Match, Oscillating Limits Continuity o Video Lectures: What Is Continuity?, Discontinuity Types: Jump, Discontinuity Types: Infinite, Discontinuity Types: Removable, All Together Intermediate and Extreme Value Theorems o Video Lectures: The Intermediate Value Theorem, The Extreme Value Theorem o Discussion: Limits and the Predator/Prey Model Unit Review Unit Test By the end of this unit, students will be able to: C3  The course provides students with the opportunity to work with functions represented in a variety of ways graphicy, numericy, analyticy, and verby and emphasizes the connections among these representations. Identify when a limit exists. Estimate a limit (approaching from the left and/or right) from a table of data. Estimate a limit (approaching from the left and/or right) from a graph. Estimate a limit (approaching from the left and/or right) numericy, using a calculator (including onesided limits). Determine a limit using algebraic methods. Determine limits for more complicated expressions, where algebraic manipulation is required, for example, rationalizing, factoring, expanding, finding common denominators, or some combination of four. AP Calculus BC, page 6
7 Apply identities for limits. Calculate limits involving trigonometric functions, using algebraic manipulation when required. Estimate limits at infinity, using numerical or graphical techniques. Solve limits involving infinity, using algebraic manipulation. Use limits to find and describe asymptotes. Reconstruct the graph of a function when given limits that describe the function Determine limits by comparing to known functions. Compare relative magnitudes of functions, including algebraic and exponential functions. Solve problems by comparing relative rates of growth. Find when a limit does not exist and identify why the limit does not exist (for example, RHL/LHL differ, vertical asymptote, or oscillations). Analyze situations that can be described in terms of limits of functions State the definition of continuity at a point. Determine if a function is continuous at a certain point, using the limit definition. Determine the type of discontinuity that may exist, graphicy and analyticy. Describe discontinuities in terms of limits. Solve for parameters in equations that represent continuous functions. State (informy) the Intermediate Value Theorem and the Extreme Value Theorem, including their hypotheses. State why each hypothesis is needed in the Intermediate Value Theorem and the Extreme Value Theorem. Use the Intermediate Value Theorem and the Extreme Value Theorem to predict some of the behavior of a continuous function over a closed interval. Unit 3: The Derivative (25 Days) [C5] This unit addresses Topic II: Derivatives of the College Board s Calculus BC topic outline. Students learn how to calculate a derivative, the slope of a curve at a specific point. They learn techniques for finding derivatives of algebraic functions (such as y = x 2 ) and trigonometric functions (such as y = sin x). Students also interpret the derivative as a rate of change and move fluidly between multiple representations including graphs, tables, and equations. Introduction: Slope and Change o Video Lectures: Slope, Instantaneous Rate of Change Derivative at a Point o Video Lectures: Slope of Curve, Differentiable, Calculating the Derivative o Graphing Calculator: Computing the Derivative of a Function Numericy The Derivative o Video Lectures: Finding and Using the Derivative Function, Units, Slope, Notation The Power Rule o Video Lectures: The Derivative as a Function, The Power Rule, Trigonometric Derivatives o Discussion: Discovering Rules for Derivatives Sums, Differences, Products, and Quotients o Video Lectures: Sums, Products, Quotients, Applying the Quotient Rule Graphs of Functions and Derivatives o Video Lectures: Zeros, Extreme Values, Steepness, Graphical Differentiation, Non Differentiable Continuity and Differentiability o Video Lectures: Review, Discontinuous, Continuous, Differentiable AP Calculus BC, page 7
8 Rolle s and Mean Value Theorems o Video Lectures: Rolle s and Mean Value HigherOrder Derivatives o Graphing Calculator: HigherOrder Derivatives Concavity o Video Lectures: The Second Derivative, Inflection Points Chain Rule o Video Lectures: Units, Chain Rule, Applying the Chain Rule, Derivatives of Complicated Functions Implicit Differentiation o Video Lectures: Implicit Equations and Their Derivatives, Derivative of an Ellipse, Derivative of a Circle and a Hyperbola, Tough Analytical Derivatives, Analytical Unit Review Unit Test By the end of this unit, students will be able to: Calculate average rates of change in various situations where one quantity changes in relation to another quantity. Estimate instantaneous rates of change using data and graphs. Define instantaneous rate of change as a limit of an average rate of change. Calculate an instantaneous rate of change using the limit definition of the derivative. C5 The course teaches students how to use graphing calculators to help solve problems, experiment, interpret results, and support conclusions. Use the concept of the limit to explain how the slope of a tangent line is related to the slopes of secant lines. Find derivatives of functions using the definition of the derivative. Estimate the graph of a derivative function from the graph of its original function. Estimate the graph of the original function when given the graph of the derivative. Read three notations for derivatives (differential or fractional notation, prime notation, and dot notation) and state the situations when each form is commonly used. Determine the derivative of basic power functions and polynomials. Determine derivatives of functions defined as a sum of other functions. Determine derivatives of functions defined as a product of other functions. Determine derivatives of functions defined as a quotient of other functions. Determine the derivative of each of the six basic trigonometric functions: sin, cos, tan, csc, sec, cot. Determine derivatives that may require a combination of the sum, product, and quotient rules for functions that are algebraic, trigonometric, or combinations of both. Use the derivative to solve problems where calculating the slope of a function will help you to determine the solution. Predict features about the derivative graph using the graph of a function. Predict features about the graph of the original function using the derivative. Determine when a function is differentiable. Explain the relationship between differentiability and continuity. Determine the derivatives of piecewise functions. State (informy) Rolle's Theorem and the Mean Value Theorem, including their hypotheses. Use Rolle's Theorem and the Mean Value Theorem to relate average rate of change to instantaneous rate of change for a differentiable function over a closed interval. Solve problems that look new on the surface, but that can be analyzed and solved using the Mean Value Theorem and the concept of differentiability. Determine higherorder derivatives of functions. AP Calculus BC, page 8
9 Identify places where a graph is concave up or down. Use the second derivative to find the inflection points in a graph. Use higherorder derivatives to solve applied problems and analyze rates of change. Write the Chain Rule from memory (using dy/dx notation and prime notation). Use the Chain Rule in combination with the other derivative rules to find derivatives of functions. Identify whether an equation is given implicitly or explicitly. Determine the derivative for implicitly defined curves and relationships. Calculate the slope of the tangent line at points on an implicitly defined curve. Solve complicated problems that look new on the surface, but that can be analyzed and solved using implicit differentiation as taught in this lesson. Unit 4: Rates of Change (17 Days) [C4] This unit focuses on Second Derivatives and Applications of Derivatives within Topic II: Derivatives of the College Board s Calculus BC topic outline. Students learn how to use calculus to model and analyze changing aspects of our world. In addition to the AB topics in this unit, BC students analyze polar and vectorvalued functions. Introduction o Exploration: Maximums Extrema o Video Lectures: Extrema, First Derivative Test, Sketching with the Second Derivative, Second Derivative Test Optimization o Video Lectures: Minimizing, Maximizing, Sketching with the Second Derivative, Travel Time, Travel Time 2 o Discussion: Applications of Optimization Tangent and Normal Lines o Video Lectures: The Tangent Line to a Curve, Normal Line, Finding Lines o Discussion: Linear Approximations of sin x Tangents to Polar Curves o Video Lectures: Polar Form of the Derivative, Tangents to Polar Curves, Horizontal and Vertical Tangents to Polar Curves Tangent Line Approximation o Video Lectures: Local Linearity, Approximation, Calculator, Rates and Derivatives o Video Lectures: Rates of Change as Derivatives, Economics, Translating o Discussion: Uses of Rates in RealWorld Applications Related Rates o Video Lectures: Related Rates are Applications of the Chain Rule, Related Rates Story Problems Technique, Commonly Needed Formulas and Rules Rectilinear Motion o Video Lectures: Rectilinear, Speed & Velocity o Graphing Calculator: Velocity and Acceleration Motion with Vector Functions o Video Lectures: Magnitude and Direction, Decomposing into Components, Velocity and Acceleration Vectors Unit Review Unit Test C4 The course teaches students how to communicate mathematics and explain solutions to problems both verby and in written sentences. AP Calculus BC, page 9
10 By the end of this unit, students will be able to: Know the meanings of relative and absolute extrema. Identify when a relative maximum or minimum will occur in a function (find critical points). Use a first derivative number line test to identify relative extrema (analyze critical points). Use the second derivative test to identify relative extrema (analyze critical points). Use a second derivative number line test to find inflection points. Analyze curves using a combination of the first and second derivative number line tests. Identify the variables in optimization situations. Solve various types of optimization problems (including those dealing with volume, area, time, and distance). Apply the optimization technique to situations that you have not seen, using units of measure that you have not seen. Write the equation of the tangent line to a curve at a point (using implicit differentiation when necessary). Write the equation of the normal line to a curve at a point (using implicit differentiation when necessary). Write the equation of the normal or tangent line, given the curve and a point not on the curve. Identify areas of local linearity (and absences of local linearity) on a graph; explain the concept of local linearity. Use the tangent line approximation to find approximate values of functions. Use local linearity and tangent line approximation to solve problems associated with unique situations. Translate verbal descriptions involving rates of change into statements written in mathematical symbols. Translate mathematical equations involving rates of change into verbal descriptions. Recognize a relatedrates problem. Identify the rates of change in a relatedrates problem. Write equations (not necessarily functions) that tie together the variables that are related to each other in a relatedrates problem. Determine the rates of change, both known and unknown using implicit differentiation with respect to time. Solve relatedrates problems. Apply your knowledge to situations that look new on the surface, but that can be analyzed and solved using the techniques taught in this lesson. Explain the distinction between speed and velocity. Calculate speed, velocity, and acceleration functions from position functions (including algebraic functions, trigonometric functions, and combinations of the two). Analyze rectilinear motion situations using position, speed, velocity, and acceleration functions that you have determined. For example, find distances traveled, find maximum and minimum speeds reached, and graph velocities vs. speeds for the whole function. Find the slope of a tangent line to a polar graph Find the points at which a polar graph has horizontal or vertical tangents. Find the velocity and acceleration vectors for a position function given in vector form. Unit 5: The Integral, Part 1 (16 Days) [C3] C3  The course provides students with the opportunity to work with functions represented in a variety of ways graphicy, numericy, analyticy, and verby and emphasizes the connections among these representations. This unit focuses on Topic III: Integrals in the College Board s Calculus BC topic outline. Students learn numerical approximations to definite integrals, interpretations and properties of definite integrals, the Fundamental Theorem of Calculus, and techniques of antidifferentiation. They learn how to find areas of curved shapes. AP Calculus BC, page 10
11 Introduction o Graphing Calculator: Analyzing Velocity and Distance for a Car Trip Riemann Sums o Video Lectures: Area, Approximating Area, Inscribed and Circumscribed Rectangles, Improving the Estimate, Riemann Sums Area Approximations o Video Lectures: Trapezoid Rule, From a Function with a Formula, From a Function Graph, From Numerical Data, Error The Definite Integral o Video Lectures: Many Intervals, Definite Integral, Evaluating Definite Integrals, Approximating Numericy, Limit of Sums o Graphing Calculator: Taking More Intervals Properties of Integrals o Video Lectures: Signed Area, Properties, Using Rules Graphing Calculator Integration o Graphing Calculator: Using fnint() Applications of Accumulated Change o Video Lectures: Accumulation, Average Value, Velocity Curves, Exercises, Accumulated Change Antiderivatives o Video Lectures: Going Backwards, Antiderivatives, Some Rules, Differential Equations o Going Between Position, Velocity, and Acceleration Composite Functions o Video Lectures: Chain Rule, Differential Form, Substitution, Another Substitution Example, Practice, Guess & Check, Guess & Check II Unit Review Unit Test C3  The course provides students with the opportunity to work with functions represented in a variety of ways graphicy, numericy, analyticy, and verby and emphasizes the connections among these representations. SEMESTER TWO Unit 1: The Integral, Part 2 (10 Days) [C3] This unit focuses on Topic III: Integrals in the College Board s Calculus BC topic outline. Students learn the Fundamental Theorem of Calculus, and techniques of antidifferentiation. They learn how to find areas of curved shapes. The Fundamental Theorems of Calculus o Video Lectures: Area Functions, The First Fundamental Theorem, The Second Fundamental Theorem, Units, Names Definite Integrals of Composite Functions o Video Lectures: Fundamental Theorems, Definite Integrals, Area, Upper Limits, Strange Substitutions, When to Substitute Analyzing Functions and Integrals [C3] o Video Lectures: Leibniz s Rule, Leibniz s Rule II, Area Functions, Analyzing Functions, One More Analyzing Functions Example Unit Review Unit Test By the end of this unit, students will be able to: Use summation notation to describe the sum of a series. AP Calculus BC, page 11
12 Calculate exact areas under curves geometricy for circles, trapezoids, triangles, and rectangles. Approximate area under a curve using midpoint, left endpoint, and right endpoint approximations. Write Riemann sums to represent approximations using summation notation. Identify ways in which Riemann sum approximations can be improved. Use the trapezoid rule to approximate the area under a curve. Use numerical methods to approximate the area under a curve, no matter whether the data is given in a formula, graph, or table. Identify the typical error that's present for of the approximation methods. Calculate definite integrals geometricy for circles, trapezoids, triangles, and rectangles. Identify the area under a curve (and the definite integral) as a limit of a Riemann sum. Describe the difference between the area under a curve and a definite integral. Approximate definite integrals using the same methods used for approximating area under a curve. Relate the algebraic properties of the definite integral to the geometric properties of area. Use the properties of the definite integral to solve problems related to area. Identify the definite integral as an accumulator of values. Calculate the average value of a function for a given domain. Calculate the change in position of an object from its velocity curve, using the definite integral. Calculate the net change in a quantity from the area under a rate of change function. Identify the antiderivative of a function as a family of functions. Using the rules for differentiating basic functions, find antiderivatives of basic functions. Identify and solve simple differential equations. Identify when an antiderivative involves a composite function. Take derivatives of functions, using differential notation. Find antiderivatives for composite functions, using substitution. Find antiderivatives for composite functions, without using substitution. Write both Fundamental Theorems of Calculus from memory. Use the First Fundamental Theorem to find derivatives of functions that are defined as integrals. Use the Second Fundamental Theorem to evaluate definite integrals. Use substitution to change the form of a definite integral. Adjust the limits of integration when using substitution to solve definite integrals. Use substitution to identify equivalent definite integrals. Solve definite integrals involving composite functions, with or without using substitution. Analyze functions defined by definite integrals. Use the chain rule and the First Fundamental Theorem of Calculus to analyze functions defined by definite integrals with functions in the limits (for example, Leibniz's rule). Unit 2: Applications of the Integral (13 Days) This unit focuses on Topic III: Integrals in the College Board s Calculus BC topic outline. Students learn to use integrals and antiderivatives to solve problems. In addition to the AB topics, BC students learn to calculate arc length for a smooth curve. Introduction and Area Between Curves o Video Lectures: Accumulation, Two Curves, Multiple Curves, Cutting Area Horizonty More Areas and Averages o Video Lectures: Area Problems, No Formula?, Working Backwards Volumes of Revolution o Video Lectures: Principles, A Calculus View of Volume, Solids of Revolution o Discussion: Handson Solids and Volumes AP Calculus BC, page 12
13 Cross Sections o Video Lectures: Cross Sections, Other Shapes for CrossSections, Finding Dimensions of Solids Arc Length o Video Lectures: Determine the Arc Length Formula, Arc Length Example y = f(x), Arc Length Example x=f(y) More Rectilinear Motion o Video Lectures: Total vs. Net, Velocity vs. Speed, Putting It All Together, Other Accumulated Changes Other Applications of the Definite Integral o Video Lectures: Geometry, Surface Area, Applications from Physics, Nifty Application, Connections Unit Review Unit Test By the end of this unit, students will be able to: Use the definite integral to calculate the area between two curves (without a calculator). Calculate the area of regions bounded by multiple curves and/or axis lines. Calculate areas by accumulation along the yaxis. Use the definite integral to find the average value of a function. Use numerical integration to estimate the average value of a function given as a table of data. Given an area and a function, find the correct domain for a definite integral to yield that given area. Use the definite integral to find volumes by accumulating crosssectional area. Use the definite integral to find the volume of a solid of revolution. Calculate volumes of solids of revolution created by rotating curves about lines that are not the xaxis or the yaxis. Calculate volumes of solids that are created with welldefined bases and crosssectional shapes. Given the shape of a solid (described with a function or a set of functions), determine the limits of integration needed to create a specific volume. Calculate net and total distances traveled by an object. Calculate average speeds and average velocities. Solve problems that incorporate the concepts of motion (speed, velocity, distance, and acceleration) from both semesters. Calculate net and total changes from rates of change presented numericy, analyticy, or graphicy. Use definite integrals to solve problems in new applications where any quantity accumulates. Solve problems where a changing quantity is accumulated over a specified domain. (For example, calculating the total work when there is variable force acting over a specified distance.) Find the arc length of a smooth curve Unit 3: Inverse and Transcendental Functions (23 Days) This unit focuses on Topic II: Derivatives and Topic III: Integrals in the College Board s Calculus BC topic outline. Students learn to calculate and use derivatives, antiderivatives, and integrals of exponential functions (such as y = 3 x where the input variable is an exponent), logarithmic functions (the inverses of exponential functions), and trigonometric functions (such as y = secant x). In addition to the AB topics, BC students learn how to use L Hôpital s Rule and the methods of partial fractions and integration by parts. Also, students learn how to find improper integrals, and derivatives and integrals of parametric functions. AP Calculus BC, page 13
14 Introduction and Derivatives of Inverses o Video Lectures: Inverse Functions, Derivatives of Inverse Functions, The Graphical View, Inverse Trig Functions Inverse Trigonometric Functions o Video Lectures: Domain Restrictions, Derivatives of Arctan and Arccos, Complicated Examples, Using Derivatives Logarithmic and Exponential Review o Video Lectures: Exponential Growth and Decay Functions, Logarithms, Slope, Applications o Discussion: Chenges with Logarithms o Graphing Calculator: Derivatives of Exponential Functions Transcendentals and 1/x o Graphing Calculator: Explore transcendentals and 1/x Derivatives of Logarithms and Exponentials o Video Lectures: Definition, Laws, Logarithmic Differentiation, Exponential Function, Other Bases L Hôpital s Rule o Video Lectures: Indeterminate Quotients and L Hospital s Rule, Indeterminate Products, Indeterminate Differences, Indeterminate Powers Analysis of Transcendental Curves o Video Lectures: Curve Analysis, Tangent and Normal Lines, Optimization, Rates of Change, Related Rates Integrating Transcendental Functions o Video Lectures: Recap Rules, Practice, Strategies, Applications Partial Fractions o Video Lectures: Partial Fractions I, Partial Fractions II Integration by Parts o Video Lectures: Formula and Over Approach, Repeated Use of Integration by Parts, Utilizing Constant Multiples of Original Integral, Definite Integrals with Integration by Parts Improper Integrals o Video Lectures: Improper Integrals with Infinite Limits of Integration, Improper Integrals with Infinite Discontinuities, Volume of an Infinite Solid Applications of Transcendental Integrals o Video Lectures: Area and Averages, Volume, Motion, Accumulations Derivatives of Parametric Functions o Video Lectures: Sketching Parametric Curves, Differentiating a Parametric Curve, Finding the Slope of a Tangent Line to a Parametric Curve, Finding Horizontal and Vertical Tangents to a Parametric Curve Integrating Parametric and Polar Functions o Video Lectures: Length of Parametric and Polar Curves, Area in Polar Coordinates, Surface Area with a Parametric Curve Unit Review Unit Test By the end of this unit, students will be able to: Find an inverse function from a given algebraic or trigonometric function. Find the derivative of an inverse algebraic or trigonometric function, using implicit differentiation. Exploit the graphical symmetry of inverse functions to analyze functions. Identify the domain restrictions of the inverse trigonometric functions. Memorize the derivatives of the inverse trigonometric functions and practice using them. Find derivatives for combination and composite functions involving inverse trigonometric functions. Use inverse trigonometric functions to model situations. AP Calculus BC, page 14
15 Use the derivatives of inverse trigonometric functions to solve problems. Identify whether a function is algebraic, exponential, or logarithmic (these functions may be given as a graph, a formula, or a table of numbers). Use the laws of exponents and logarithms to manipulate expressions involving exponential and logarithmic functions. Solve problems, using the fact that logarithmic functions and exponential functions are inverses of each other. Write equations that model simple exponential growth and decay situations. Find the derivative of a logarithmic function (with any base). Find the derivative of an exponential function (with any base). Combine these rules (for finding derivatives of logarithmic and exponential functions) with the product, quotient, and Chain Rule to find the derivatives of complicated functions involving logs or exponential functions. Use logarithmic differentiation to find the derivative of a complicated product or quotient. Use the derivative to analyze curves for functions covered in this class (algebraic, trigonometric, inverse trigonometric, logarithmic, exponential, and combinations of these). Use the derivative to optimize situations for functions covered in this class (algebraic, trigonometric, inverse trigonometric, logarithmic, exponential, and combinations of these). Solve problems about rates of change (including rectilinear motion) for functions covered in this class (algebraic, trigonometric, inverse trigonometric, logarithmic, exponential, and combinations of these). Solve related rates problems for functions covered in this class (algebraic, trigonometric, inverse trigonometric, logarithmic, exponential, and combinations of these). Find antiderivatives involving transcendental functions. Use substitution (if necessary) to find more complicated antiderivatives and definite integrals involving transcendental functions. Solve problems related to area for functions covered in this class (algebraic, trigonometric, inverse trigonometric, logarithmic, exponential, and combinations of these). Solve problems related to average values for functions covered in this class (algebraic, trigonometric, inverse trigonometric, logarithmic, exponential, and combinations of these). Solve problems related to volume for functions covered in this class (algebraic, trigonometric, inverse trigonometric, logarithmic, exponential, and combinations of these). Solve problems related to motion for functions covered in this class (algebraic, trigonometric, inverse trigonometric, logarithmic, exponential, and combinations of these). Use the definite integral to accumulate various quantities for functions covered in this class (algebraic, trigonometric, inverse trigonometric, logarithmic, exponential, and combinations of these). Describe the indeterminate form for a limit. Use a table or graph to estimate or verify a limit that has an indeterminate form. Use L Hopital s Rule to evaluate a limit. Decompose a rational expression into partial fractions. Use partial fractions to integrate rational functions. Use integration by parts to find an integral. Evaluate improper integrals. Determine whether or not an improper integral converges or diverges. Sketch a parametric curve. Find the slope of a tangent line to a parametric curve. Find the first and second derivatives of a parametric function in terms of the parameter. Find the length of a curve defined in parametric form Find area under a parametric curve Find the area enclosed by a polar curve or the intersection of polar curves AP Calculus BC, page 15
16 Unit 4: Separable Differential Equations and Slope Fields (11 Days) [C4] This unit focuses on Topic II: Derivatives of the College Board s Calculus BC topic outline, specificy, on Equations Involving Derivatives. Students investigate differential equations and solve the equations using a technique ced separating the variables. In addition to the topics covered in AB, BC students also learn to use Euler s method to estimate the solution of differential equations and use logistic equations to model growth. Slope Fields o Video Lectures: What is a Differential Equation?, Slope Fields, Conic Sections, Solving Some Simple Differential Equations, Separating Isn t Always the Answer Differential Equations as Models o Video Lectures: A Field Guide to Differential Equations, English to Math, Separating the Variables, Solving Separable Differential Equations Euler s Method o Video Lectures: Over Approach, Approximating with Euler s Method, Automating the Process Exponential Growth and Decay o Video Lectures: A Family of Exponential Functions, Modeling Exponential Growth, Modeling Exponential Decay, Modified Growth and Decay Logistic Growth o Video Lectures: The Logistic Growth Equation, Modeling Logistic Growth More Applications of Differential Equations [C4] o Video Lectures: Law of Cooling, Fing Bodies, Mixing Problems, Logistic Growth, Connections Unit Review Unit Test By the end of this unit, students will be able to: Identify the order of a differential equation. Identify slope fields associated with given differential equations. Identify differential equations associated with given slope fields. Separate the variables in firstorder differential equations. Solve firstorder separable differential equations. Translate differential equations from words into math. Translate differential equations from math into words. Solve differential equations given verby. Solve the differential equation dy/dt = ky. Model situations using the solution to dy/dt = ky. Solve separable differential equations that are similar in form to dy/dt = ky. Set up differential equations to model situations. Solve separable differential equations that model situations. Use Euler s Method to approximate the solution to a differential equation. Solve logistic differential equations. Solve logistic growth problems involving populations. Unit 5: Sequences and Series (13 Days) C4 The course teaches students how to communicate mathematics and explain solutions to problems both verby and in written sentences. This unit focuses on Topic IV: Polynomial Approximations and Series of the College Board s Calculus BC topic outline, specificy, on Series of Constants and Taylor Series. AP Calculus BC, page 16
17 Sequences o Series o Video Lectures: Sequences as Functions, Limit Laws and Squeeze Theorem, Bounded Monotonic Sequences Video Lectures: Series and Sigma Notation, Partial Sums and Convergence, Telescoping Series, Geometric Series and Formula Convergence Tests o Video Lectures: Integral Test, PSeries, Alternating Series Test More Convergence Tests o Video Lectures: Direct Comparison Test, Limit Comparison Test Radius of Convergence o Video Lectures: Absolute Convergence, Ratio Test, Test for Divergence, Interval of Convergence Functions Defined by Power Series o Video Lectures: Building a Library of Functions, Differentiating to Obtain Series Representations, Integrating to Obtain Series Representations, Taylor and Maclaurin Series o Video Lectures: Taylor Polynomials, Taylor Series, Maclaurin Series Taylor s Theorem and Lagrange Error o Video Lectures: Error with Series, Taylor s Theorem, Lagrange Form Unit Review Unit Test By the end of this unit, students will be able to: List the terms in a sequence that is defined explicitly or recursively Write an explicit or recursive rule for a sequence Determine whether a sequence converges or diverges, and if it converges, find its limit Draw a graph of a sequence Use termbyterm differentiation or integration to determine whether a series converges Solve problems involving geometric series Use properties of series to solve problems. C4 The course teaches students how to communicate mathematics and explain solutions to problems both verby and in written sentences. Use the Integral Test, pseries Test, Comparison Test, or Limit Comparison Test to determine whether a series converges or diverges. Develop and apply strategies for testing a series for convergence or divergence. Use the Alternating Series Test, Ratio Test, or Root Test to determine whether a series converges or diverges. Determine whether a series is conditiony or absolutely convergent. Develop and apply strategies for testing a series for convergence or divergence. Determine the center of a power series. Determine the radius or interval of convergence for a power series. Determine endpoint convergence for a power series. Use power series to represent functions Differentiate or integrate power series to create other power series Derive power series using known power series and series operations Write the Maclaurin series for a function Construct a Taylor polynomial approximation (at x = 0) for a function. Use Taylor s Theorem to estimate the magnitude of the error for a given polynomial approximation. AP Calculus BC, page 17
18 Unit 6: AP Exam Review and Final Exam (6 Days) Students review what they have learned and become more familiar with APtype questions in preparation for the AP Exam. Students are also provided with access to previously released AP Exams for practice. Exam Strategies o Video Lectures: TMinus, One Day, Calculators, Multiple Choice, Free Response, Do s and Don ts Review of Topics Practice Exams o Video Lectures: How an AP Exam Score is Calculated, Rubrics, Strategies, Guesses About What Will Be on the Exam Final Exam Unit 7: Calculus Project (15 Days) If there is sufficient time after the AP Exam, teachers may assign a special project. Project Days: Projects provide an opportunity for students to apply calculus tools and concepts to realworld problems. AP Calculus BC, page 18
19 Semester One Unit 1: The Basics Topic Stewart Finney Larson PreCalculus Review Practice: Diagnostic Tests pp. xxiv xxv, #1 10 ; p. xxvi, #1 5 ; p. xxvii, #1 7 ; p. xxviii, #1 9 Practice: pp , #1 43 odd, odd Practice: Review Exercises pp , #1 49 odd; Problem Solving pp , #1 15 odd Introduction to Calculus Read: pp. 1 8 Practice: p. 8, #1 9 Function Basics Read: pp Practice: pp.19 22, #1 13, 23, odd, 63 Combining Functions Read: pp Practice: p. 43, #29 30 Read: Calculus at Work on pp.181, 319, 376, 430, 529 Read: pp , Examples 1 3 Practice: p. 19, #1 19 odd, odd Practice: p. 21, #71; p. 28, #47 Read: pp Practice: p. 47, #1 11 Read: pp Practice: pp , #1 8, odd Read: pp Practice: pp , #9 12, 97; p. 38, #45 Composite and Inverse Functions Read: pp ; pp Practice: p. 43, #31 51 odd; p. 390, #1 31 odd Read: pp , Examples 7 8; pp , Examples 1 2 Practice: p. 20, #51 53 ; p. 44, # 1 23 odd Read: p. 25; pp Practice: p. 28, #59 65 ; p. 349, #1 35 odd Graphical Symmetry Read: pp Practice: pp , #69 79 odd Patterns in Graphs Read: pp Practice: p. 42, #1 23 odd Read: pp , Example 4 Practice: p. 19, #21 30 Read: p. 17, Example 7 Practice: p. 20, #49 50 Read: pp. 2 6; p. 26 Practice: p. 8, #29 57 odd; p. 29, #69 75 Read: p. 23 Practice: p. 28, #49 57 Unit 2: Limits and Continuity Topic Stewart Finney Larson AP Calculus BC, page 19
20 Introduction Read: pp Practice: pp , #1 12 Read: pp , Examples 1 2 Practice: p. 66, #1 4 Read: pp Practice: pp , #2 22 even Finding Limits Analyticy Read: pp Practice: pp , #1 9, odd, 47; Chenge: 58 Read: pp , Examples 3 5 Practice: pp , #5 28 ; Chenge: Read: pp Practice: pp , #1 37 odd, even, odd Asymptotes as Limits Read: pp ; pp Read: pp , Examples 1 5 Read: pp ; pp Practice: p. 61, #29 37 ; pp , #1 6, 7 29 odd, odd Practice: p. 76, #1 7 odd, odd Practice: pp , #1 12, odd, even; Chenge: 69; p. 205, #1 12 Relative Magnitudes for Limits Practice: pp , #10, 12, 26, 34, 36 Read: pp , Examples 6 8 Practice: p. 76, #35 40, odd Read: p. 201 Practice: p. 205, #13 18 When Limits Do and Don t Exist Read: pp Practice: pp , #13 26 ; Chenge: 43 Read: pp , Examples 6 8 Practice: pp , #29 37 odd, ; Chenge: 58 Read: pp Practice: pp , #23 32 ; Chenge: 33 Continuity Read: pp Practice: pp. 90, #1 9 odd, odd Read: pp Practice: pp , #1 16, odd Read: pp Practice: pp , #1 6, 7 13 odd, odd, odd, 52; Chenge: 98 Intermediate and Extreme Value Theorems Read: pp ; pp Practice: p. 92, #51 58 ; pp , #1 10, odd Read: p. 83; pp Practice: p. 85, #45, 46, 51; pp , #1 10 Read: pp ; p. 164 Practice: pp , #83 94 ; p. 164, #a, b AP Calculus BC, page 20
21 Unit 3: The Derivative Topic Stewart Finney Larson Introduction: Slope and Change Read: pp Practice: pp , #1 15 odd, even, 42, 44 Read: pp Practice: p. 92, #1 6, 8; Chenge: 33 Read: pp Practice: p. 103, #1 4 Derivative at a Point Read: pp Practice: pp , #17 31 odd, 47, 51 The Derivative Read: pp Practice: pp , #1 21 odd, odd, even Power Rule Read: pp , ; pp Practice: pp , #1 5 odd, 9 13 odd, 21, odd, 66; Chenge: 7677; pp. 146, # 1 2, 26 Read: pp Practice: pp , #7 15 odd, 19, 25, 27 Read: pp Practice: pp , #1 11 odd, 21, 24, 29 Read: pp , ; pp ; pp Practice: pp , #1 11 odd, 25, 30, 32; Chenge: 49; p. 146, #1, 3; p. 162, #31 34 Read: pp Practice: p. 104, #5 10 Read: pp Practice: pp , #11 21 odd, 27, 37, 57; Chenge: 64 Read: pp Practice: pp , #1 2, 4 30 even, 31, 38, odd, 55, 59, 63; Chenge: Sum, Differences, Products, Quotients Read: pp ; pp Read: pp ; pp Read: pp ; pp Practice: pp , #2, 8, 12, 18, 22, 26, 36, 50, 68; Chenge: 80; pp , #3 15 odd, 26, 28, 31, 34 Practice: pp , #13 23 odd, 27, 31, 38, 44; Chenge: 50; pp. 146, #5 9 odd, 27 Practice: p. 115, #40 54 even; p. 126, #2 18 even, odd, even Graphs of Functions and Derivatives Read: pp Practice: pp , #2 14 even Read: pp Practice: p. 105, #13 16, 22, 24, Practice: pp , #39 42, Continuity and Differentiability Read: pp Practice: pp , #35 40, Read: pp Practice: p. 114, #1 16, 35; p. 147, #37 Read: pp Practice: p. 106, #89 98, Rolle s and Mean Value Read: pp Read: pp Read: pp AP Calculus BC, page 21
AP Calculus BC. All students enrolling in AP Calculus BC should have successfully completed AP Calculus AB.
AP Calculus BC Course Description: Advanced Placement Calculus BC is primarily concerned with developing the students understanding of the concepts of calculus and providing experiences with its methods
More informationAP Calculus AB Syllabus
Course Overview and Philosophy AP Calculus AB Syllabus The biggest idea in AP Calculus is the connections among the representations of the major concepts graphically, numerically, analytically, and verbally.
More informationMATH 132: CALCULUS II SYLLABUS
MATH 32: CALCULUS II SYLLABUS Prerequisites: Successful completion of Math 3 (or its equivalent elsewhere). Math 27 is normally not a sufficient prerequisite for Math 32. Required Text: Calculus: Early
More informationCurriculum Map. Discipline: Math Course: AP Calculus AB Teacher: Louis Beuschlein
Curriculum Map Discipline: Math Course: AP Calculus AB Teacher: Louis Beuschlein August/September: State: 8.B.5, 8.C.5, 8.D.5 What is a limit? What is a derivative? What role do derivatives and limits
More informationCalculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum
Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum UNIT I: The Hyperbolic Functions basic calculus concepts, including techniques for curve sketching, exponential and logarithmic
More informationLearning Objectives for Math 165
Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given
More informationDiploma Plus in Certificate in Advanced Engineering
Diploma Plus in Certificate in Advanced Engineering Mathematics New Syllabus from April 2011 Ngee Ann Polytechnic / School of Interdisciplinary Studies 1 I. SYNOPSIS APPENDIX A This course of advanced
More informationEstimated Pre Calculus Pacing Timeline
Estimated Pre Calculus Pacing Timeline 20102011 School Year The timeframes listed on this calendar are estimates based on a fiftyminute class period. You may need to adjust some of them from time to
More informationStudent Performance Q&A:
Student Performance Q&A: AP Calculus AB and Calculus BC FreeResponse Questions The following comments on the freeresponse questions for AP Calculus AB and Calculus BC were written by the Chief Reader,
More informationGeorgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1
Accelerated Mathematics 3 This is a course in precalculus and statistics, designed to prepare students to take AB or BC Advanced Placement Calculus. It includes rational, circular trigonometric, and inverse
More informationSouth Carolina College and CareerReady (SCCCR) PreCalculus
South Carolina College and CareerReady (SCCCR) PreCalculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know
More informationThnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks
Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson
More informationItems related to expected use of graphing technology appear in bold italics.
 1  Items related to expected use of graphing technology appear in bold italics. Investigating the Graphs of Polynomial Functions determine, through investigation, using graphing calculators or graphing
More informationfind the instantaneous rate of change of a function and connect it with the slope of the tangent line
page of 9 Unit : Limits and Continuity 20 00 5 9 Totals Always Include 2 blocks for Review & Test chapter 2 District Google Documents site What is a limit? 4 2 What does it mean for a function to be continuous?
More informationGOALS AND OBJECTIVES. Goal: To provide students of Zane State College with instruction focusing on the following topics:
Phone: (740) 8243522 ext. 1249 COURSE SYLLABUS Course Title: MATH 1350 PreCalculus Credit Hours: 5 Instructor: Miss Megan Duke Email: megan.duke@rvbears.org Course Description: Broadens the algebra
More informationAble Enrichment Centre  Prep Level Curriculum
Able Enrichment Centre  Prep Level Curriculum Unit 1: Number Systems Number Line Converting expanded form into standard form or vice versa. Define: Prime Number, Natural Number, Integer, Rational Number,
More informationHIGH SCHOOL: GEOMETRY (Page 1 of 4)
HIGH SCHOOL: GEOMETRY (Page 1 of 4) Geometry is a complete college preparatory course of plane and solid geometry. It is recommended that there be a strand of algebra review woven throughout the course
More informationAppendix 3 IB Diploma Programme Course Outlines
Appendix 3 IB Diploma Programme Course Outlines The following points should be addressed when preparing course outlines for each IB Diploma Programme subject to be taught. Please be sure to use IBO nomenclature
More informationCourse Syllabus. Math Calculus I. Revision Date: 8/15/2016
Course Syllabus Math 2413 Calculus I Revision Date: 8/15/2016 Catalog Description: Limits and continuity; the Fundamental Theorem of Calculus; definition of the derivative of a function and techniques
More informationStudent Performance Q&A:
Student Performance Q&A: 2008 AP Calculus AB and Calculus BC FreeResponse Questions The following comments on the 2008 freeresponse questions for AP Calculus AB and Calculus BC were written by the Chief
More informationConstruction of the Real Line 2 Is Every Real Number Rational? 3 Problems Algebra of the Real Numbers 7
About the Author v Preface to the Instructor xiii WileyPLUS xviii Acknowledgments xix Preface to the Student xxi 1 The Real Numbers 1 1.1 The Real Line 2 Construction of the Real Line 2 Is Every Real Number
More informationMATH 2 Course Syllabus Spring Semester 2007 Instructor: Brian Rodas
MATH 2 Course Syllabus Spring Semester 2007 Instructor: Brian Rodas Class Room and Time: MC83 MTWTh 2:15pm3:20pm Office Room: MC38 Office Phone: (310)4348673 Email: rodas brian@smc.edu Office Hours:
More informationpp. 4 8: Examples 1 6 Quick Check 1 6 Exercises 1, 2, 20, 42, 43, 64
Semester 1 Text: Chapter 1: Tools of Algebra Lesson 11: Properties of Real Numbers Day 1 Part 1: Graphing and Ordering Real Numbers Part 1: Graphing and Ordering Real Numbers Lesson 12: Algebraic Expressions
More informationPCHS ALGEBRA PLACEMENT TEST
MATHEMATICS Students must pass all math courses with a C or better to advance to the next math level. Only classes passed with a C or better will count towards meeting college entrance requirements. If
More informationMATH. ALGEBRA I HONORS 9 th Grade 12003200 ALGEBRA I HONORS
* Students who scored a Level 3 or above on the Florida Assessment Test Math Florida Standards (FSAMAFS) are strongly encouraged to make Advanced Placement and/or dual enrollment courses their first choices
More informationCourse outline, MA 113, Spring 2014 Part A, Functions and limits. 1.1 1.2 Functions, domain and ranges, A1.11.2Review (9 problems)
Course outline, MA 113, Spring 2014 Part A, Functions and limits 1.1 1.2 Functions, domain and ranges, A1.11.2Review (9 problems) Functions, domain and range Domain and range of rational and algebraic
More informationNEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS
NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document
More informationcorrectchoice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:
Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that
More informationPrep for Calculus. Curriculum
Prep for Calculus This course covers the topics shown below. Students navigate learning paths based on their level of readiness. Institutional users may customize the scope and sequence to meet curricular
More informationCOURSE SYLLABUS PreCalculus A/B Last Modified: April 2015
COURSE SYLLABUS PreCalculus A/B Last Modified: April 2015 Course Description: In this yearlong PreCalculus course, students will cover topics over a two semester period (as designated by A and B sections).
More informationTable of Contents. Montessori Algebra for the Adolescent Michael J. Waski"
Table of Contents I. Introduction II. Chapter of Signed Numbers B. Introduction and Zero Sum Game C. Adding Signed Numbers D. Subtracting Signed Numbers 1. Subtracting Signed Numbers 2. Rewriting as Addition
More informationCommon Curriculum Map. Discipline: Math Course: College Algebra
Common Curriculum Map Discipline: Math Course: College Algebra August/September: 6A.5 Perform additions, subtraction and multiplication of complex numbers and graph the results in the complex plane 8a.4a
More informationPreCalculus Semester 1 Course Syllabus
PreCalculus Semester 1 Course Syllabus The Plano ISD eschool Mission is to create a borderless classroom based on a positive studentteacher relationship that fosters independent, innovative critical
More informationALGEBRA & TRIGONOMETRY FOR CALCULUS MATH 1340
ALGEBRA & TRIGONOMETRY FOR CALCULUS Course Description: MATH 1340 A combined algebra and trigonometry course for science and engineering students planning to enroll in Calculus I, MATH 1950. Topics include:
More informationHigher Education Math Placement
Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication
More informationBirmingham City Schools
Activity 1 Classroom Rules & Regulations Policies & Procedures Course Curriculum / Syllabus LTF Activity: Interval Notation (Precal) 2 PreAssessment 3 & 4 1.2 Functions and Their Properties 5 LTF Activity:
More informationMATHEMATICS 31 A. COURSE OVERVIEW RATIONALE
MATHEMATICS 31 A. COURSE OVERVIEW RATIONALE To set goals and make informed choices, students need an array of thinking and problemsolving skills. Fundamental to this is an understanding of mathematical
More informationPRECALCULUS GRADE 12
PRECALCULUS GRADE 12 [C] Communication Trigonometry General Outcome: Develop trigonometric reasoning. A1. Demonstrate an understanding of angles in standard position, expressed in degrees and radians.
More informationJefferson College CTL GUIDELINES TO CONSIDER WHEN CREATING EXPECTED LEARNING OUTCOMES
GUIDELINES TO CONSIDER WHEN CREATING EXPECTED LEARNING OUTCOMES Source: Assessing Student Learning, by Linda Suskie. The book is available for checkout in the Center for Teaching and Learning. Aim for
More informationALGEBRA II Billings Public Schools Correlation and Pacing Guide Math  McDougal Littell High School Math 2007
ALGEBRA II Billings Public Schools Correlation and Guide Math  McDougal Littell High School Math 2007 (Chapter Order: 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14, 10) BILLINGS PUBLIC SCHOOLS II 2009 Eleventh GradeMcDougal
More informationAdvanced Algebra 2. I. Equations and Inequalities
Advanced Algebra 2 I. Equations and Inequalities A. Real Numbers and Number Operations 6.A.5, 6.B.5, 7.C.5 1) Graph numbers on a number line 2) Order real numbers 3) Identify properties of real numbers
More informationCollege Algebra. Barnett, Raymond A., Michael R. Ziegler, and Karl E. Byleen. College Algebra, 8th edition, McGrawHill, 2008, ISBN: 9780072867381
College Algebra Course Text Barnett, Raymond A., Michael R. Ziegler, and Karl E. Byleen. College Algebra, 8th edition, McGrawHill, 2008, ISBN: 9780072867381 Course Description This course provides
More informationMTH304: Honors Algebra II
MTH304: Honors Algebra II This course builds upon algebraic concepts covered in Algebra. Students extend their knowledge and understanding by solving openended problems and thinking critically. Topics
More informationSequence of Mathematics Courses
Sequence of ematics Courses Where do I begin? Associates Degree and Nontransferable Courses (For math course below prealgebra, see the Learning Skills section of the catalog) MATH M09 PREALGEBRA 3 UNITS
More informationText: A Graphical Approach to College Algebra (Hornsby, Lial, Rockswold)
Students will take Self Tests covering the topics found in Chapter R (Reference: Basic Algebraic Concepts) and Chapter 1 (Linear Functions, Equations, and Inequalities). If any deficiencies are revealed,
More informationAlgebra II. Larson, Boswell, Kanold, & Stiff (2001) Algebra II, Houghton Mifflin Company: Evanston, Illinois. TI 83 or 84 Graphing Calculator
Algebra II Text: Supplemental Materials: Larson, Boswell, Kanold, & Stiff (2001) Algebra II, Houghton Mifflin Company: Evanston, Illinois. TI 83 or 84 Graphing Calculator Course Description: The purpose
More informationEQ: How can regression models be used to display and analyze the data in our everyday lives?
School of the Future Math Department Comprehensive Curriculum Plan: ALGEBRA II (Holt Algebra 2 textbook as reference guide) 20162017 Instructor: Diane Thole EU for the year: How do mathematical models
More informationPrecalculus with Limits Larson Hostetler. `knill/mathmovies/ Assessment Unit 1 Test
Unit 1 Real Numbers and Their Properties 14 days: 45 minutes per day (1 st Nine Weeks) functions using graphs, tables, and symbols Representing & Classifying Real Numbers Ordering Real Numbers Absolute
More informationUnderstanding Basic Calculus
Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other
More informationPrecalculus REVERSE CORRELATION. Content Expectations for. Precalculus. Michigan CONTENT EXPECTATIONS FOR PRECALCULUS CHAPTER/LESSON TITLES
Content Expectations for Precalculus Michigan Precalculus 2011 REVERSE CORRELATION CHAPTER/LESSON TITLES Chapter 0 Preparing for Precalculus 01 Sets There are no statemandated Precalculus 02 Operations
More informationFRESHMAN SOPHOMORE JUNIOR SENIOR. Algebra 2** (H) Algebra 2 H. PreCalculus H Honors PreCalculus and/or AP Statistics
MATH DEPARTMENT COURSE DESCRIPTIONS The Mathematics Department provides a challenging curriculum that strives to meet the needs of a diverse student body by: Helping the student realize that the analytical
More informationMath Department Student Learning Objectives Updated April, 2014
Math Department Student Learning Objectives Updated April, 2014 Institutional Level Outcomes: Victor Valley College has adopted the following institutional outcomes to define the learning that all students
More informationChapter 7 Outline Math 236 Spring 2001
Chapter 7 Outline Math 236 Spring 2001 Note 1: Be sure to read the Disclaimer on Chapter Outlines! I cannot be responsible for misfortunes that may happen to you if you do not. Note 2: Section 7.9 will
More informationComal Independent School District PreAP PreCalculus Scope and Sequence
Comal Independent School District Pre PreCalculus Scope and Sequence Third Quarter Assurances. The student will plot points in the Cartesian plane, use the distance formula to find the distance between
More informationMath Course Descriptions & Student Learning Outcomes
Math Course Descriptions & Student Learning Outcomes Table of Contents MAC 100: Business Math... 1 MAC 101: Technical Math... 3 MA 090: Basic Math... 4 MA 095: Introductory Algebra... 5 MA 098: Intermediate
More informationGeorgia Department of Education. Calculus
K12 Mathematics Introduction Calculus The Georgia Mathematics Curriculum focuses on actively engaging the students in the development of mathematical understanding by using manipulatives and a variety
More informationMATH BOOK OF PROBLEMS SERIES. New from Pearson Custom Publishing!
MATH BOOK OF PROBLEMS SERIES New from Pearson Custom Publishing! The Math Book of Problems Series is a database of math problems for the following courses: Prealgebra Algebra Precalculus Calculus Statistics
More informationMasconomet Regional High School Curriculum Guide
Masconomet Regional High School Curriculum Guide COURSE TITLE: Algebra 2 COURSE NUMBER: 1322 DEPARTMENT: Mathematics GRADE LEVEL(S) & PHASE: 10 12, CP LENGTH OF COURSE: Full Year Course Description: This
More informationCOURSE OUTLINE. MATHEMATICS 101 Intermediate Algebra
Degree Applicable I. Catalog Statement COURSE OUTLINE MATHEMATICS 101 Intermediate Algebra Glendale Community College October 2013 Mathematics 101 is an accelerated course of Intermediate Algebra. Topics
More informationMarch 2013 Mathcrnatics MATH 92 College Algebra Kerin Keys. Dcnnis. David Yec' Lscture: 5 we ekly (87.5 total)
City College of San Irrancisco Course Outline of Itecord I. GENERAI DESCRIPI'ION A. Approval Date B. Departrnent C. Course Number D. Course Title E. Course Outline Preparer(s) March 2013 Mathcrnatics
More informationCurriculum Framework. AP Calculus AB and AP Calculus BC
Curriculum Framework AP Calculus AB and AP Calculus BC 2016 2017 AP Calculus AB and AP Calculus BC Curriculum Framework 2016 2017 New York, NY About the College Board The College Board is a missiondriven
More informationAlgebra 1 Course Title
Algebra 1 Course Title Course wide 1. What patterns and methods are being used? Course wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept
More informationREVIEW SHEETS COLLEGE ALGEBRA MATH 111
REVIEW SHEETS COLLEGE ALGEBRA MATH 111 A Summary of Concepts Needed to be Successful in Mathematics The following sheets list the key concepts that are taught in the specified math course. The sheets present
More informationPowerTeaching i3: Algebra I Mathematics
PowerTeaching i3: Algebra I Mathematics Alignment to the Common Core State Standards for Mathematics Standards for Mathematical Practice and Standards for Mathematical Content for Algebra I Key Ideas and
More informationChapter R  Basic Algebra Operations (69 topics, due on 05/01/12)
Course Name: College Algebra 001 Course Code: R3RK6CTKHJ ALEKS Course: College Algebra with Trigonometry Instructor: Prof. Bozyk Course Dates: Begin: 01/17/2012 End: 05/04/2012 Course Content: 288 topics
More information04 Mathematics COSGFLD00403. Program for Licensing Assessments for Colorado Educators
04 Mathematics COSGFLD00403 Program for Licensing Assessments for Colorado Educators Readers should be advised that this study guide, including many of the excerpts used herein, is protected by federal
More informationHigher Education Math Placement
Higher Education Math Placement 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry (arith050) Subtraction with borrowing (arith006) Multiplication with carry
More informationMATHEMATICS DEPARTMENT
MATHEMATICS DEPARTMENT All students are required to take four credits in mathematics, including one credit in Algebra and one credit in Geometry. Students advancing to a Maryland State College or University
More informationDear Accelerated PreCalculus Student:
Dear Accelerated PreCalculus Student: I am very excited that you have decided to take this course in the upcoming school year! This is a fastpaced, collegepreparatory mathematics course that will also
More informationPrentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary)
Core Standards of the Course Standard 1 Students will acquire number sense and perform operations with real and complex numbers. Objective 1.1 Compute fluently and make reasonable estimates. 1. Simplify
More informationDiablo Valley College Catalog 20142015
Mathematics MATH Michael Norris, Interim Dean Math and Computer Science Division Math Building, Room 267 Possible career opportunities Mathematicians work in a variety of fields, among them statistics,
More informationTRIGONOMETRY GRADES THE EWING PUBLIC SCHOOLS 2099 Pennington Road Ewing, NJ 08618
TRIGONOMETRY GRADES 1112 THE EWING PUBLIC SCHOOLS 2099 Pennington Road Ewing, NJ 08618 Board Approval Date: October 29, 2012 Michael Nitti Written by: EHS Mathematics Department Superintendent In accordance
More informationGRADING PERIOD 1 GRADING PERIOD 2 GRADING PERIOD 3 GRADING PERIOD 4
PreCalculus Curriculum Timeline GRADING PERIOD 1 Topic 1: Learning Goal A Learning Goal B Learning Goal C No. of days: 530 Learning Goal D Learning Goal E Learning Goal F Topic : Polynomial, Power, and
More informationBlue Pelican Calculus First Semester
Blue Pelican Calculus First Semester Teacher Version 1.01 Copyright 20112013 by Charles E. Cook; Refugio, Tx Edited by Jacob Cobb (All rights reserved) Calculus AP Syllabus (First Semester) Unit 1: Function
More informationIB Mathematics SL :: Checklist. Topic 1 Algebra The aim of this topic is to introduce students to some basic algebraic concepts and applications.
Topic 1 Algebra The aim of this topic is to introduce students to some basic algebraic concepts and applications. Check Topic 1 Book Arithmetic sequences and series; Sum of finite arithmetic series; Geometric
More informationBackground Knowledge
Background Knowledge Precalculus GEOMETRY Successful completion of the course with a grade of B or higher Solid understanding of: Right Triangles Congruence Theorems Basic Trigonometry Basic understanding
More informationSenior Secondary Australian Curriculum
Senior Secondary Australian Curriculum Mathematical Methods Glossary Unit 1 Functions and graphs Asymptote A line is an asymptote to a curve if the distance between the line and the curve approaches zero
More informationTExES Mathematics 7 12 (235) Test at a Glance
TExES Mathematics 7 12 (235) Test at a Glance See the test preparation manual for complete information about the test along with sample questions, study tips and preparation resources. Test Name Mathematics
More informationMath 19A (Online) Calculus for Science Engineering and Mathematics University of California Santa Cruz
Math 19A (Online) Calculus for Science Engineering and Mathematics University of California Santa Cruz Instructors and Course Creators Tony Tromba, PhD, Distinguished Professor, Mathematics Department,
More informationThinkwell s Homeschool Algebra 2 Course Lesson Plan: 34 weeks
Thinkwell s Homeschool Algebra 2 Course Lesson Plan: 34 weeks Welcome to Thinkwell s Homeschool Algebra 2! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson
More informationPlease start the slide show from the beginning to use links. Click here for active links to various courses
Please start the slide show from the beginning to use links Click here for active links to various courses CLICK ON ANY COURSE BELOW TO SEE DESCRIPTION AND PREREQUISITES To see the course sequence chart
More informationOfficial Math 112 Catalog Description
Official Math 112 Catalog Description Topics include properties of functions and graphs, linear and quadratic equations, polynomial functions, exponential and logarithmic functions with applications. A
More informationPHILOSOPHY OF THE MATHEMATICS DEPARTMENT
PHILOSOPHY OF THE MATHEMATICS DEPARTMENT The Lemont High School Mathematics Department believes that students should develop the following characteristics: Understanding of concepts and procedures Building
More informationAlgebra and Geometry Review (61 topics, no due date)
Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties
More information4. Factor polynomials over complex numbers, describe geometrically, and apply to realworld situations. 5. Determine and apply relationships among syn
I The Real and Complex Number Systems 1. Identify subsets of complex numbers, and compare their structural characteristics. 2. Compare and contrast the properties of real numbers with the properties of
More informationCourse Name: Course Code: ALEKS Course: Instructor: Course Dates: Course Content: Textbook: Dates Objective Prerequisite Topics
Course Name: MATH 1204 Fall 2015 Course Code: N/A ALEKS Course: College Algebra Instructor: Master Templates Course Dates: Begin: 08/22/2015 End: 12/19/2015 Course Content: 271 Topics (261 goal + 10 prerequisite)
More informationUnit Overview. Content Area: Math Unit Title: Functions and Their Graphs Target Course/Grade Level: Advanced Math Duration: 4 Weeks
Content Area: Math Unit Title: Functions and Their Graphs Target Course/Grade Level: Advanced Math Duration: 4 Weeks Unit Overview Description In this unit the students will examine groups of common functions
More informationAP Calculus BC. Course Planning and Pacing Guide. Robert Arrigo. Scarsdale High School Scarsdale, NY
AP Calculus BC Course Planning and Pacing Guide Robert Arrigo Scarsdale High School Scarsdale, NY 2015 The College Board. College Board, Advanced Placement Program, AP, AP Central, SAT and the acorn logo
More information1. [2.3] Techniques for Computing Limits Limits of Polynomials/Rational Functions/Continuous Functions. Indeterminate FormEliminate the Common Factor
Review for the BST MTHSC 8 Name : [] Techniques for Computing Limits Limits of Polynomials/Rational Functions/Continuous Functions Evaluate cos 6 Indeterminate FormEliminate the Common Factor Find the
More informationMathematics INDIVIDUAL PROGRAM INFORMATION 2014 2015. 866.Macomb1 (866.622.6621) www.macomb.edu
Mathematics INDIVIDUAL PROGRAM INFORMATION 2014 2015 866.Macomb1 (866.622.6621) www.macomb.edu Mathematics PROGRAM OPTIONS CREDENTIAL TITLE CREDIT HOURS REQUIRED NOTES Associate of Arts Mathematics 62
More informationAlgebra I. Copyright 2014 Fuel Education LLC. All rights reserved.
Algebra I COURSE DESCRIPTION: The purpose of this course is to allow the student to gain mastery in working with and evaluating mathematical expressions, equations, graphs, and other topics, with an emphasis
More informationCalculus BC: Sample Syllabus 2 Syllabus v1. AP Calculus BC: Sample Syllabus 2 Contents
AP Calculus BC: Sample Syllabus 2 AP Calculus BC: Sample Syllabus 2 Contents Curricular Requirements... ii AP Calculus BC Syllabus...1 Course Overview...1 COURSE PLANNER...1 REVIEW...1 UNIT 1...1 UNIT
More informationAlgebra 2/ Trigonometry Extended Scope and Sequence (revised )
Algebra 2/ Trigonometry Extended Scope and Sequence (revised 2012 2013) Unit 1: Operations with Radicals and Complex Numbers 9 days 1. Operations with radicals (p.88, 94, 98, 101) a. Simplifying radicals
More informationAdvanced Higher Mathematics Course Assessment Specification (C747 77)
Advanced Higher Mathematics Course Assessment Specification (C747 77) Valid from August 2015 This edition: April 2016, version 2.4 This specification may be reproduced in whole or in part for educational
More informationSCHOOL DISTRICT OF THE CHATHAMS CURRICULUM PROFILE
CONTENT AREA(S): Mathematics COURSE/GRADE LEVEL(S): Honors Algebra 2 (10/11) I. Course Overview In Honors Algebra 2, the concept of mathematical function is developed and refined through the study of real
More informationMath 1280/1300, PreCalculus
Math 1280/1300, PreCalculus Instructor: Office: Office Hours: Phone: Email: MyMathLab Course Code: Text and Materials: ISBN: 1269594060 Author: Blitzer Title: Precalculus, Books a la Carte Edition Package
More informationAlgebra 2 YearataGlance Leander ISD 200708. 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks
Algebra 2 YearataGlance Leander ISD 200708 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks Essential Unit of Study 6 weeks 3 weeks 3 weeks 6 weeks 3 weeks 3 weeks
More informationTExMaT I Texas Examinations for Master Teachers. Preparation Manual. 089 Master Mathematics Teacher 8 12
TExMaT I Texas Examinations for Master Teachers Preparation Manual 089 Master Mathematics Teacher 8 12 Copyright 2006 by the Texas Education Agency (TEA). All rights reserved. The Texas Education Agency
More informationMathematics. Mathematics MATHEMATICS. 298 201516 Sacramento City College Catalog. Degree: A.S. Mathematics AST Mathematics for Transfer
MATH Degree: A.S. AST for Transfer Division of /Statistics & Engineering Anne E. Licciardi, Dean South Gym 220 9165582202 Associate in Science Degree Program Information The mathematics program provides
More informationLarson, R. and Boswell, L. (2016). Big Ideas Math, Algebra 2. Erie, PA: Big Ideas Learning, LLC. ISBN
ALG B Algebra II, Second Semester #PR0, BK04 (v.4.0) To the Student: After your registration is complete and your proctor has been approved, you may take the Credit by Examination for ALG B. WHAT TO
More information