Practice Final Math 122 Spring 12 Instructor: Jeff Lang


 Poppy Maude Stevens
 1 years ago
 Views:
Transcription
1 Practice Final Math Spring Instructor: Jeff Lang. Find the limit of the sequence a n = ln (n 5) ln (3n + 8). A) ln ( ) 3 B) ln C) ln ( ) 3 D) does not exist. Find the limit of the sequence a n = (ln n)6 n. A) ln 6 B) C) e 6 D) does not exist 3. Find the limit of the sequence a n = n! 6 n +8 n. A) B) C) e 8 D) does not exist. Find a formula for the nth partial sum of the series it to find the series sum if the series converges. 6 9n +n+ n= and use A) 6n 5(3n+5) ; 5 B) 6n 5n+5 ; 5 C) 6n 5(n+) ; 6 5 D) 6n 5n+ ; Find the sum of the telescoping series e n e n 3, if it exists. n= A) e 5 B) e 3 C) e D) does not exist 6. Find the sum of the telescoping series ( ln n= n+ ) ln ( n+ A) ln B) ln 3 C) D) does not exist ), if it exists. 7. Find the sum of the geometric series n= A) 9 7 B) 7 7 C) 8 D) ( ) n 9 8 n. 8. Use the integral test to determine whether the series n e /n converges or diverges. A) converge B) diverge n= 9) Determine whether the series ln ( e / n) converges or diverges. n=
2 A) converge B) diverge. Use the ratio test to determine if the series n= 5(n!) (n)! converges or diverges. A) converge B) diverge. Use the comparison test to determine if the series ( n n 5n+) converges or diverges. A) converge B) diverge n=. Use the limit comparison test to determine whether the series 9 converges or diverges. n 3 ln n+ n= A) converge B) diverge 3. Determine whether the alternating series ( ( ) n ln diverges. n= A) converge B) diverge 6n+ 6n+3. Determine whether the alternating series ( ) n ( n n + ) converges absolutely, conditionally, or diverges. n= ) converges or A) converge absolutely B) diverges C) converges conditionally 5. Estimate the magnitude of the error involved in using the sum of the first four terms to estimate the sum of the entire series n= ( ) n+ (.) n+ n+. A) B) 3. C).5 8 D) Find the radius of convergence of the power series A) 8 B) C) 9 D) n= 7. Find the radius of convergence of the power series n= (x 5) n 9 n n. (x 5) n 9 n n!.
3 A) 8 B) C) D) 9 8. Find the interval of convergence of the power series n= ( ) n (x 5) n (n+)6 n. A) x B) < x C) x 6 D) x < 6 9. Find the first for tems of the McLaurin series for f (x) = ln ( + x). A) x x! + x3 3! x x! + B) x + + x3 3 + x C) x x + x3 3 x. Find the Taylor series sin x at x = π. + x + D) x +! + x3 3! + x! + A) ( ( ) ( ) x π + x π ( ) ) 6 x π 3 + B) ( + ( ) ( ) x π x π ( ) ) 3 x π 3 + C) ( ( ) ( ) + x π 6 x π ( ) ) x π 3 + D) ( + ( ) ( ) x π x π ( ) ) 6 x π 3 + E) None of the above. Find the angle between the two planes x + 3y 3z = and x + y 5z =. A).9 B).3 C).57 D).8. Which of the following vectors is parallel to the two planes x + 3y z = and x + y + z = 8? A) i + 3 j 5 k B) i 3 j 5 k C) i + 3 j 6 k D) i 3 j 6 k 3. Find parametric equations of the line of intersection of the two planes x + y + z = and x y + z =. A) x = t +, y = t, z = 3t B) x = t +, y = t, z = 3t C) x = t, y = 3 + t, z = 5 3t D) x = + t, y = t, z = 3 + 3t. Find the point of intersection of the line x x + y + z =. = y+ = z and the plane 3
4 A) (,, ) B) (,, ) C) ( 9,, ) D) (,, ) 5. Find symmetric equations of the line perpendicular to the plane 5x + y + z = and passing through the point (, 3, ). A) x+ = y + 3 = z+ 5 B) x+ 5 = y + 3 = z+ C) x 5 = y 3 = z D) x 5 = y 3 = z 6. Which of the vectors below is tangent to the curve r (t) = cos t i + sin t j + e t k at t =? A) j k B) j + k D) All of the above C) j k 7. Calculate the arc length of the curve r (t) = t i + t sin t j + t cos t k ; t. A) 5 B) C) D) 6 8. Find the acceleration at t = for r (t) = ( t t 3) i + 5t j + ( t 3 ln t ) k. A) i + k B) i + k C) 6 i + 6 k D) i + 5 j + k x 9. Find lim +y + (x,y)(,) x 6xy+7. A) B) 7 C) 7 D) No limit 3. Find lim x+y. (x,y)(,) x +y A) B) No limit C) 7 D)  3. At what points is the function f (x, y) = xy x continuous? A) All (x, y) such that xy > and x B) All (x, y) such that x i y and x > C) All (x, y) such that x D) All (x, y) 3. Find all first order partial derivatives of the function f (x, y) = x ln (xy).
5 A) f f x = + ln (xy) ; y = x y C) f f x = x + ln (xy) ; y = x y B) f f x = ln (xy) ; y = x y D) f x = x + x y ; f y = y 33. Find all second order partial derivatives of the function f (x, y) = xye y. A) f x B) f x C) f x D) f x = ye y ; f y = xye y ( y 6 ) ; = ; f y = xye y ( y 3 ) ; = ye y ; f y = xye y ( y ) ; = ; f y = xye y ( y 3 ) ; 3. Find a chain rule formula for w z = k(r, s, t). f x y = f y x = ( ) y e y f x y = f y x = ( ) y e y f x y = f y x = ( ) y e y f x y = f y x = ( ) y e y if w = f(x, y, z), x = g(r, s), y = h(t), A) w C) w = w dx dt + w z = w dy y dt + w z z B) w D) w = w z z = dy dt + z 35. Compute the gradient of f(x, y, z) = ln ( x 5y + 7z ) at ( 5, 5, 5). A) 5 i + 3 j B) 5 i + 3 j 5 C) i + 3 j 5 k D) i + 3 j k k k 36. Find the derivative of f (x, y, z) = 3xy 3 z at the point ( 3, 7, 9) in the direction of v = i + j k. A) 53, B) 885, 735 C) 78, 588 D) 35, Find the direction in which the function f (x, y) = xe y ln x is decreasing most rapidly at the point (, ). A) 7 i + 7 j B) 7 i 7 j C) 7 i 7 j D) 7 i 38. Find the derivative of the function f (x, y) = arctan ( y x) at the point ( 8, 8) in the direction in which the function increases most rapidly. A) 3 B) 6 C) D) 3 6 5
6 39. A simple electrical circuit consists of a resistor connected between the terminals of a battery. The voltage V (in volts) is dropping at the rate of. volts per second as the battery wears out. At the same time the resistance R (in ohms) is increasing at the rate of ohms per second as the resistor heats up. The power P (in watts) disippated by the circuit is given by P = V R. How much is the power changing when R = 5 and V =? A).3 watts B).6 watts C).3 watts D).6 watts. Find an equation for the tangent plane to the surface ln z = 8x + 3y at the point (,, ). A) 6x + 6y z = 9 B) 6x + 6y + z = C) 6x 6y + z = 3 D) 6x 6y z =. Find all extreme values of the function f(x, y) = 5x y + 7xy and identify each as a local maximum, local minimum, or saddle point. A) f ( 7, ) 5 = 7 5, local minimum B) f (35, 35) = 5, 5, local max C) f ( 5, ) 7 = 35, local minimum D) f (, ) =, saddle point. Find all extreme values of the function f(x, y) = x 3 + y 3 3x 8y 8 and identify each as a local maximum, local minimum, or saddle point. A) f (, 6) =, local minimum; f (, 6) = 576, saddle point; f (, 6) = 56, saddle point; f (, 6) =, local maximum B) f (, 6) = 576, saddle point; f (, 6) = 56, saddle point C) f (, 6) =, local maximum D) f (, 6) =, local minimum; f (, 6) =, local maximum 3. Find the absolute maximum and minimum of the function f (x, y) = 7x + y on the trapezoidal region with vertices (, ) (, ), (, ), (, ). A) Absolute maximum: at (, ); absolute minimum: 7 at (, ) B) Absolute maximum: 8 at (, ); absolute minimum: at (, ) C) Absolute maximum: at (, ); absolute minimum: at (, ) D) Absolute maximum: at (, ); absolute minimum: 7 at (, ). Use Lagrange multipliers to find the maximum and minimum values of f (x, y, z) = x + y z subject to the constraint x + y + z = 9. A) Maximum: 8 at (,, ); minimum 8 at (,, ) B) Maximum: 9 at (,, ); minimum 9 at (,, ) C) Maximum: at (,, ); minimum  at (,, ) D) Maximum: at (,, 3); minimum  at (,, 3) 6
7 5. Find the point on the plane x + y z = that is nearest the origin. A) (,, ) B) (, 8, ) C) (,, ) D) (,, ) 6. Evaluate π 5π (sin x + cos y) dxdy A) π B) 9π C) 5π D) 8π 7. Write an integral equivalent to ln 8 ln integration reversed. A) 8 ln x ln 8 ln 7y dy dx B) 8 C) 8 ln x ln 7y dy dx D) 8 ln 8 e y 7y dx dy but with the order of ln x ln 8 7y dy dx ln x 7y dy dx ln 8 8. Write an integral equivalent to 6 integration reversed. 36 8y dx dy but with the order of y A) 36 x 8y dy dx B) 36 x 8y dy dx 6 C) 6 x 8y dy dx D) 6 x 6 8y dy dx 9. Express the area of the region bounded by x = y and the line y = x as a double integral. A) y+8 dx dy B) y C) 5. Evaluate ln y+8 dx dy D) e y dx dy. e y y+8 y dx dy y+8 dx dy A) 8 B) C) 8 D) 5. Integrate f (x, y) = ln x over the region bounded by the x axis, the line x = 3, and the curve y = ln x. A) B) C) 3 D) 5. Find the volume of the region bounded by the coordinate planes, the parabolic cylinder z = x, and the plane y = 5. 7
8 A) 8 3 B) 3 C) 8 D) Evaluate ln 8 ln 8 dx dy by reversing the order of integration. y/ ex A) 36 B) 35 C) D) 5 5. Change 6 dy dx to polar coordinates and evaluate. 36 x + x +y A) π(6+ln 7) π(6 ln 7) B) 55. Find the area of the region enclosed by r = 9 sin θ. π(6 ln 7) π(6+ln 7) C) D) A) 7 π B) 8 π C) 8 8 π D) 8 π 56. Write a triple integral in the order dz dy dx for the volume of the solid enclosed by the parabaloids z = x y and z = x + y. A) x x y dz dy dx B) x x x +y x y dz dy dx x x +y C) x x x y x +y dz dy dx D) 57. Write cylindrical coordinates. A) π C) π x x y x x +y dz dy dx as an equivalent integral in r r dz dr dθ B) π r 5 r r dz dr dθ D) π/ r x x y dz dy dx x x +y r r dz dr dθ r r r r dz dr dθ 58. Set up a triple integral for the volume of the solid in the first octant inside the cone ϕ = π 3 and between the spheres ρ = and ρ = 7. A) π/ π/3 C) π π/ 7 ρ sin ϕ dρ dϕ dθ B) π/ π/ π/3 7 ρ sin ϕ dρ dϕ dθ D) π/ π/3 7 π/ π/3 ρ sin ϕ dρ dϕ dθ 7 ρ sin ϕ dρ dϕ dθ 59. Use cylindrical coordinates to find the volume of the solid bounded below by the xyplane, laterally by the cylinder r = sin θ, and above by the plane z = 7 x. A) 9π B) 9 π C) 7 π D) 7π 8
9 6. Find the mass of the solid in the first octant between the spheres x + y + z = 6 and x + y + z = if the density at any point is inversely proportional to the distance from the origin. A) 68kπ B) 8kπ C) k D) kπ Answer Key. C. B 3. D. A 5. B 6. D 7. C 8. A 9. B. A. A. B 3. A. C 5. D 6. C 7. D 8. B 9. C. D. A. B 3. C. D 5. D 6. D 7. C 8. C 9. B 3. B 3. A 3. A 33. D 3. C 35. B 36. A 37. C 9
10 38. B 39. A. D. D. A 3. C. B 5. B 6. D 7. C 8. A 9. B 5. C 5. D 5. A 53. B 5. A 55. D 56. C 57. A 58. B 59. D 6. C
( 1)2 + 2 2 + 2 2 = 9 = 3 We would like to make the length 6. The only vectors in the same direction as v are those
1.(6pts) Which of the following vectors has the same direction as v 1,, but has length 6? (a), 4, 4 (b),, (c) 4,, 4 (d), 4, 4 (e) 0, 6, 0 The length of v is given by ( 1) + + 9 3 We would like to make
More informationLearning Objectives for AP Physics
Learning Objectives for AP Physics These course objectives are intended to elaborate on the content outline for Physics B and Physics C found in the AP Physics Course Description. In addition to the five
More informationFigure 2.1: Center of mass of four points.
Chapter 2 Bézier curves are named after their inventor, Dr. Pierre Bézier. Bézier was an engineer with the Renault car company and set out in the early 196 s to develop a curve formulation which would
More information+ 4θ 4. We want to minimize this function, and we know that local minima occur when the derivative equals zero. Then consider
Math Xb Applications of Trig Derivatives 1. A woman at point A on the shore of a circular lake with radius 2 miles wants to arrive at the point C diametrically opposite A on the other side of the lake
More informationEXAMPLE 6 Find the gradient vector field of f x, y x 2 y y 3. Plot the gradient vector field together with a contour map of f. How are they related?
9 HAPTER 3 VETOR ALULU 4 _4 4 _4 FIGURE 5 EXAMPLE 6 Find the gradient vector field of f, 3. Plot the gradient vector field together with a contour map of f. How are the related? OLUTION The gradient vector
More informationFoundations of Data Science 1
Foundations of Data Science John Hopcroft Ravindran Kannan Version /4/204 These notes are a first draft of a book being written by Hopcroft and Kannan and in many places are incomplete. However, the notes
More informationFoundations of Data Science 1
Foundations of Data Science John Hopcroft Ravindran Kannan Version 2/8/204 These notes are a first draft of a book being written by Hopcroft and Kannan and in many places are incomplete. However, the notes
More information2 Integrating Both Sides
2 Integrating Both Sides So far, the only general method we have for solving differential equations involves equations of the form y = f(x), where f(x) is any function of x. The solution to such an equation
More information5.7 Maximum and Minimum Values
5.7 Maximum and Minimum Values Objectives Icandefinecriticalpoints. I know the di erence between local and absolute minimums/maximums. I can find local maximum(s), minimum(s), and saddle points for a given
More informationUnderstanding the FiniteDifference TimeDomain Method. John B. Schneider
Understanding the FiniteDifference TimeDomain Method John B. Schneider June, 015 ii Contents 1 Numeric Artifacts 7 1.1 Introduction...................................... 7 1. Finite Precision....................................
More informationI. Vectors and Geometry in Two and Three Dimensions
I. Vectors and Geometry in Two and Three Dimensions I.1 Points and Vectors Each point in two dimensions may be labeled by two coordinates (a,b) which specify the position of the point in some units with
More informationA NoNonsense Introduction to General Relativity
A NoNonsense Introduction to General Relativity Sean M. Carroll Enrico Fermi Institute and Department of Physics, University of Chicago, Chicago, IL, 60637 carroll@theory.uchicago.edu c 2001 1 1 Introduction
More information3. Which of the following couldn t be the solution of a differential equation? (a) z(t) = 6
MathQuest: Differential Equations What is a Differential Equation? 1. Which of the following is not a differential equation? (a) y = 3y (b) 2x 2 y + y 2 = 6 (c) tx dx dt = 2 (d) d2 y + 4 dy dx 2 dx + 7y
More informationIntroduction to Tensor Calculus for General Relativity
Massachusetts Institute of Technology Department of Physics Physics 8.962 Spring 1999 Introduction to Tensor Calculus for General Relativity c 1999 Edmund Bertschinger. All rights reserved. 1 Introduction
More informationWhen action is not least
When action is not least C. G. Gray a GuelphWaterloo Physics Institute and Department of Physics, University of Guelph, Guelph, Ontario N1GW1, Canada Edwin F. Taylor b Department of Physics, Massachusetts
More informationAn Introduction to 3Dimensional Contact Topology. XiaoSong Lin
An Introduction to 3Dimensional Contact Topology XiaoSong Lin 2 Contents Preface 5 1 Basics 7 1.1 Contact structures............................... 7 1.2 Symplectic structures..............................
More informationA Modern Course on Curves and Surfaces. Richard S. Palais
A Modern Course on Curves and Surfaces Richard S. Palais Contents Lecture 1. Introduction 1 Lecture 2. What is Geometry 4 Lecture 3. Geometry of InnerProduct Spaces 7 Lecture 4. Linear Maps and the Euclidean
More information(2) f(x) = o(g(x)) as x ( little o ) if lim. f(x)
1. Introduction To perturbation Theory & Asymptotic Expansions Example 1.0.1. Consider x = ε coshx (1.1) For ε 0 we cannot solve this in closed form. (Note: ε = 0 x = ) The equation defines a function
More informationHALL EFFECT SENSING AND APPLICATION
HALL EFFECT SENSING AND APPLICATION MICRO SWITCH Sensing and Control 7DEOHRI&RQWHQWV Chapter 1 Hall Effect Sensing Introduction... 1 Hall Effect Sensors... 1 Why use the Hall Effect... 2 Using this Manual...
More informationIntroduction to Differential Calculus. Christopher Thomas
Mathematics Learning Centre Introduction to Differential Calculus Christopher Thomas c 1997 University of Sydney Acknowledgements Some parts of this booklet appeared in a similar form in the booklet Review
More informationLecture notes on the Stefan problem
Lecture notes on the Stefan problem Daniele Andreucci Dipartimento di Metodi e Modelli Matematici Università di Roma La Sapienza via Antonio Scarpa 16 161 Roma, Italy andreucci@dmmm.uniroma1.it Introduction
More informationMatthias Beck Gerald Marchesi Dennis Pixton Lucas Sabalka
Matthias Beck Gerald Marchesi Dennis Pixton Lucas Sabalka Version.5 Matthias Beck A First Course in Complex Analysis Version.5 Gerald Marchesi Department of Mathematics Department of Mathematical Sciences
More informationUnderstanding Map Projections
Understanding Map Projections Melita Kennedy ArcInfo 8 Copyright 1994, 1997, 1999, 2000 Environmental Systems Research Institute, Inc. All Rights Reserved. Printed in the United States of America. The
More informationDOE FUNDAMENTALS HANDBOOK MATHEMATICS Volume 2 of 2
DOEHDBK1014/292 JUNE 1992 DOE FUNDAMENTALS HANDBOOK MATHEMATICS Volume 2 of 2 U.S. Department of Energy Washington, D.C. 20585 FSC6910 Distribution Statement A. Approved for public release; distribution
More informationPartial Differential Equations: Graduate Level Problems and Solutions. Igor Yanovsky
Partial Differential Equations: Graduate Level Problems and Solutions Igor Yanovsky Partial Differential Equations Igor Yanovsky, 5 Disclaimer: This handbook is intended to assist graduate students with
More informationApproximating functions by Taylor Polynomials.
Chapter 4 Approximating functions by Taylor Polynomials. 4.1 Linear Approximations We have already seen how to approximate a function using its tangent line. This was the key idea in Euler s method. If
More informationRegents Examination in Geometry (Common Core) Sample and Comparison Items Spring 2014
Regents Examination in Geometry (Common Core) Sample and Comparison Items Spring 2014 i May 2014 777777 THE STATE EDUCATION DEPARTMENT / THE UNIVERSITY OF THE STATE OF NEW YORK / ALBANY, NY 12234 New York
More informationProblems for children from 5 to 15. V. I. Arnold
Problems for children from 5 to 5 V. I. Arnold Abstract This brochure consists of 77 problems for development of thinking culture, either selected or composed by the author. Most of them do not require
More information3. INNER PRODUCT SPACES
. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.
More informationGeneral Relativity. Proff. Valeria Ferrari, Leonardo Gualtieri AA 20112012
1 General Relativity Proff. Valeria Ferrari, Leonardo Gualtieri AA 20112012 Contents 1 Introduction 1 1.1 Non euclidean geometries............................ 1 1.2 How does the metric tensor transform
More information