# Derive 5: The Easiest... Just Got Better!

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Liverpool John Moores University, 1-15 July 000 Derive 5: The Easiest... Just Got Better! Michel Beaudin École de Technologie Supérieure, Canada ; 1. Introduction Engineering students at the École de Technologie Supérieure have to buy a TI-89 or TI-9 Plus and are allowed to use it in the classroom and during the tests. But that does not mean the end of DERIVE! And with version 5, we are able to go very deep into multivariable calculus. We will give examples of using Derive 5 and will try to show why, in connection with a TI calculator, DERIVE continues to be a perfect choice in order to teach mathematics at many levels.. This system is a trusted mathematical assistant a) Example : can your system do this? Everyone knows that partial fraction expansion is something that a CAS can do. From the beginning this has been possible and easy with Derive (and so, the following example is not a new feature of Derive 5). Well, let s check with some non obvious rational functions. Suppose we consider the third 3 degree polynomial 3x 18x + 33x 19. A graph shows three real roots : Derive gives the solution in a very sophisticated way. Now suppose you want to evaluate exactly the definite integral 3 dx 3 3x 18x + 33x 19 (choosing the numbers and 3 for the integration limits avoids an improprer integral). Your system must be able to perform partial fraction expansion!!!

2 b) Example : new in Derive 5, all the real and complex solutions to a polynomial equation with numeric coefficients can be found to any desired degree of precision! And the solutions returned by the equation solving commands and functions can be restricted to those solutions not involving imaginary numbers. Let s give a good example of this, using something like the Wilkinson polynomial (from Wolfram Koepf s plenary lecture at the Second International DERIVE/TI-9 Conference in Bonn). We will try to find where the zeros of the following polynomial are located : 0 19 x px ( ) = ( x k) 7 10 k = 1 In Derive 5, the factory default precision has been increased from 6 to 10 digits... but for this example (after some tries!), we need more precision : Beaudin : Derive 5 The Easiest just got Better! Page

3 So, our polynomial has 10 real roots, all of them, except one, located between 0 and 10. c) Example : easily integrating piecewise continuous functions, Derive can show in a few seconds things that are much more complicated to do with other systems. Here again, this is not a new feature of Derive 5 (but, concerning the indicator function CHI, we can now specify the value at the transition points : however, this is not important when dealing with Fourier coefficients). We will take, here, an example from Fourier series. If f is a periodic signal of period P with Fourier coefficients nπ x a0 = f( x) dx P, an = f( x)cos dx P P and nπ x bn = f( x)sin dx P P, P P then the energy theorem (Parseval s identity) states that P P P a0 n= 1 n n f ( x) dx= + a + b Let us find what fraction of the energy of f is contained in the constant term and the first two harmonics. We won t take a usual signal! Let x if 0 < x< 1 f( x) = if 1< x< f( x+ 4) = f( x) 4 x if < x < 4 With the built-in indicator function (that now extends to include or not the limit points of the interval), it is easy to define this function : Beaudin : Derive 5 The Easiest just got Better! Page 3

4 Who wants to calculate Fourier coefficients by hand? constant term and the first two harmonics carry about 99.7% of the total energy : The d) Example : please, respect the second fundamental theorem of calculus (or the importance of being continuous : inspiration from Albert Rich/ David Jeffrey) Some systems and integral tables give discontinuous integral to continuous integrand... Let f be a continuous function over an interval [a, b] et let F be defined by x F( x) = f ( t) dt ( a x b) a Then, the second fundamental theorem of calculus tells us that F is an antiderivative of f : so, F is d differentiable over ]a, b[ and F ( x ) = f ( x ) ( a < x < b ). Trigonometric integrals calculated with the dx x aid of the Weierstrass substitution z = tan are good examples of this situation. Look at the good job done by Derive : Beaudin : Derive 5 The Easiest just got Better! Page 4

5 x It is a good job for the following reason. Let z = tan, then 3 3 dz 6 dx = = dz 5+ 4sinx z z = + 5z + 8z z x 5tan 4 5z arctan C arctan C 3 + = 3 + Of course, if we restrict x to the interval [ π, π], the last function is an antiderivative of the function sinx is continuous over the entire real line, so we need a continuous integral! 3. But 5+ 4sinx With a continuous integral, it is safer to apply, for example, the mean value theorem for integrals : if f is a continuous function on [a, b], there is a number c between a and b such that b a f() t dt = f( c)( b a) In Derive 5, we can not plot Boolean combinations of inequalites and set the aspect ratio of plots. If we choose the function f at the beginning of this example and take a = 3, b = 4, we can «see» the rectangle of height f( c ) and length b - a : Beaudin : Derive 5 The Easiest just got Better! Page 5

6 e) Example : who said that Derive isn t a good choice for ODEs? When we teach mathematics, we prove theorems like the following from Edwards/Penny concerning existence and uniqueness of solutions : suppose that the real-valued function f( x, y) is continuous on some rectangle in the xy-plane containing the point (a, b) in its interior. Then the initial value problem dy f( x, y), y( a) b dx = = has at least one solution defined on some open interval J containing the point a. If, in addition, the f partial derivative is continuous on that rectangle, the solution is unique on some (perhaps smaller) y open interval J 0 containing the point x = a. With a CAS like Derive, we can visualize this theorem : take for example this simple separable ODE dy 3x + 4x + =, y (0) =. dx ( y 1) 3x + 4x+ f Here f( x, y) = and are continuous on any rectangle that does not contain the ( y 1) y horizontal line y = 1. A slope field (direction_field in Derive) and a vector of general solutions show us rapidly the situation : Beaudin : Derive 5 The Easiest just got Better! Page 6

7 Euler s method (now EULER_ODE in Derive 5) gets bad when we start at (0, ) with a negative step : the reason is simple. If we solve the ODE by hand, we get the implicit solution 3 y y = x + x + x+ 8. Solving for y gives the lower and the upper parts of the curve ; the horizontal line y = 1 is where the derivative approaches infinity. If we set y to 1 in the above equation, we will get the value of x for wich a rectangle centered at (0, ) cannot be extended to the left. This value is : Beaudin : Derive 5 The Easiest just got Better! Page 7

8 We will quote Benny Evans for the conclusion of this example : «I have heard from time to time that DERIVE is not powerful enough to handle differential equations and that other software is necessary to teach at this level. I find this something of a puzzle as my own experience is that it is a perfectly wonderful tool for doing exactly that.» (The International DERIVE Journal, Volume, No. 3, page 37, 1995). 3. A better way to do multivariable calculus 3a) Example : finding global minimum and using a CAS : don t stop thinking! When we consider a function of two variables, we can plot the 3D graph, look at the critical points and show the contour plot. With Derive 5, it is very easy to explore all of these directions. A good example is given by the function f( x, y) = ( x+ 1) + ( y 1) + xy + 1. Let us note that the system (for the critical points) f = (0,0) is not easy to solve (even if we can rewrite it in order to get two polynomial equations and try the Groebner package...). This a good example of the importance of «thinking» when using a CAS... Because the function f goes to infinity when we reach far from the origin, we know that the global minimum must be near the origin! Level curves (after a 3D plot indicating the range of z) is a good tool. The D implicit plotting is quite fast in Derive since Derive for DOS (version 3). Because we can rotate 3D plots in real-time and determine the coordinates of points on plot surface using moveable highlighted cross lines, 3D plotting is now in the «major leagues»! Beaudin : Derive 5 The Easiest just got Better! Page 8

9 Newton s method will finish the job : Beaudin : Derive 5 The Easiest just got Better! Page 9

10 So, the coordinates of the global minimum are x = y = b) Example : Lagrange multipliers and the substitution method and use of the new function SOLUTIONS Many times, in multivariable calculus, we can use substitution and then return to single variable calculus. Teachers should give examples in order to make connections between subjects. Here is an easy problem that can easily be solved in many ways with Derive 5 : find the highest and lowest points on the ellipse generated by the intersection of the plane x+ y+ z = 1 and the paraboloid z = x + y. It is a classical Lagrange multiplier problem with two constraints : Derive 5 is at work. The system defined by «eq» below is a polynomial one. It is a simple one and (maybe) Derive 5 does not use the Groebner basis algorithm here. Anyway, the SOLUTIONS function gives the answer in the same form as the «zeros» function of the TI-9 Plus/TI-89! We want to see these points! Let s see the maximum value (in version 5, we can display multiple plots with unique color tiling) : Beaudin : Derive 5 The Easiest just got Better! Page 10

11 We said that the intersection curve of the two surfaces is an ellipse. Let s use parametric 3D plot : first, we need to obtain parametric equation. The projection in the xy-plane of this ellipse is the circle 1 1 x + y = 1 x yor x+ + y+ = 1.5. So we can set 1 x = cost 1 y = sin t and, because z = x + y = 1 x y, the third component of our parametric curve is simply cost+ 1.5 sin t. Again, in version 5, parametric expressions (curves, surfaces) can be plotted easily : Beaudin : Derive 5 The Easiest just got Better! Page 11

12 Of course, the maximum and minimum values of the function cost 1.5 sin t over the interval [0, p] is another way to confirm the answer. 3c) Example : parametric surfaces and the teacher s place in teaching! Derive 5 does not support 3D implicit plots. Well, we can use parametric 3D plot to overcome this lack. Here, we will take an example that uses many things. Sometime ago, I gave my students the following problem : find the equation of a sphere that goes through the four following points : (, 5, 3), (8, 1, 3), (6, 3, 1) and (3, 4, 1). This question came after a study of Gauss-Jordan s algorithm. Not many students noticed that we can solve this problem using a matrix (solving a linear system, not a polynomial second degree system). With Derive 5, we can use the two approaches and even more, plot the points and, using spherical coordinates, plot the sphere! If we start with the equation ( x a) ( y b) ( z c) r + + =, then an expansion gives x + Ax+ y + By+ z + Cz = D where A= a, B= b, C = c and D= r a b c. We show that the center of the sphere is at the point (, -4, -3) and the radius is 9, so the equation of the sphere is simply ( x ) + ( y+ 4) + ( z+ 3) = 81. And, because of the spherical coordinates, we can parametrize this sphere with x = + 9cosθsinφ y = 4 + 9sinθ sin φ π θ π, 0 φ π z = 3 + 9cosφ Here again, a superb job done by Derive 5 : Beaudin : Derive 5 The Easiest just got Better! Page 1

13 finally, we plot the sphere : And, Beaudin : Derive 5 The Easiest just got Better! Page 13

14 3d) Example : shading a region for a double integral Let a thin plate occupy the region R in the first quadrant common to the circle of radius 1 centered at 4 (, 0) and the circle of radius centered at (0, 0). Suppose that the density function is δ ( xy, ) = xy (in grams per square centimeters). Where is the center of mass located? We have to use the following formulas for the mass M and center of mass ( xy, ) : 1 1 M = δ( x, y) da ; x= xδ( x, y) da ; y = yδ( x, y) da M M R R R Of course, plotting the region and setting a double integral is useful! Beaudin : Derive 5 The Easiest just got Better! Page 14

15 We show below the point that represents the center of mass : 3e) Example : finding the maximum volume of a closed rectangular box with faces parallel to the coordinates planes inscribed in the ellipsoid x y z + + = This final example will use some of Derive 5 new features. If we pick the first octant corner of the box we are looking for and call it [x, y, z], then our problem is to maximize the function f = 8xyz subject to Beaudin : Derive 5 The Easiest just got Better! Page 15

16 x y z the constraint g = 0, where g = Let see the constraint in 3D, with the aspect ratio : 9, , 4. In order to plot, we used parametric plot with - p s p and 0 t p : We use Lagrange multiplier again : Here, the Groebner package is very useful (even if we can solve by hand...)! There are 14 solutions! The one we are looking for is the only positive one (for x, y and z ; and l is positive too) : In Derive 5, we can plot matrices of data points. Here is the box we are looking for : Beaudin : Derive 5 The Easiest just got Better! Page 16

17 4. Why I like Derive so much I m thinking of an example from Larry Gilligan (First Derive conference in Plymouth). Earlier versions of Derive were not able to solve a quadratic equality, for example, as simple as x x x As we can see, Derive 5 solves easily this inequation : Larry said that it was not important if earlier versions of Derive were unable to solve this inequation, we just have to plot, in the same window, the graphs of x + 3x 1 and of x + 1 and we will find the solutions!!! With new versions, Computer Algebra Systems add new features. But what remains the most important is that they remain «simple», easy to use. The user must always be confident with such a system. Derive 5 : The Easiest... Just Got Better! Beaudin : Derive 5 The Easiest just got Better! Page 17

### The Fourth International DERIVE-TI92/89 Conference Liverpool, U.K., 12-15 July 2000. Derive 5: The Easiest... Just Got Better!

The Fourth International DERIVE-TI9/89 Conference Liverpool, U.K., -5 July 000 Derive 5: The Easiest... Just Got Better! Michel Beaudin École de technologie supérieure 00, rue Notre-Dame Ouest Montréal

### Using the TI-92 Plus: Some Examples

Liverpool John Moores University, 1-15 July 000 Using the TI-9 Plus: Some Examples Michel Beaudin École de technologie supérieure,canada mbeaudin@seg.etsmtl.ca 1. Introduction We incorporated the use of

### Teaching Mathematics to Engineering Students: To Use or Not To Use TI-Nspire CAS

TIME-2008 Symposium Technology and its Integration in Mathematics Education 10 th ACDCA Summer Academy 8 th Int l Derive & TI-NspireConference Hosted by the Tshwane University of Technology 22-26 September

### Solutions for Review Problems

olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector

### REVIEW EXERCISES DAVID J LOWRY

REVIEW EXERCISES DAVID J LOWRY Contents 1. Introduction 1 2. Elementary Functions 1 2.1. Factoring and Solving Quadratics 1 2.2. Polynomial Inequalities 3 2.3. Rational Functions 4 2.4. Exponentials and

### www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates

Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c

### Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

### Solutions to Homework 10

Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

### Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.

This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra

### Copyrighted Material. Chapter 1 DEGREE OF A CURVE

Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two

### x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1

Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs

### Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum

Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum UNIT I: The Hyperbolic Functions basic calculus concepts, including techniques for curve sketching, exponential and logarithmic

### Solutions to old Exam 1 problems

Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections

### MATH 132: CALCULUS II SYLLABUS

MATH 32: CALCULUS II SYLLABUS Prerequisites: Successful completion of Math 3 (or its equivalent elsewhere). Math 27 is normally not a sufficient prerequisite for Math 32. Required Text: Calculus: Early

### The Method of Partial Fractions Math 121 Calculus II Spring 2015

Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

### SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve

SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives

### 2 Topics in 3D Geometry

2 Topics in 3D Geometry In two dimensional space, we can graph curves and lines. In three dimensional space, there is so much extra space that we can graph planes and surfaces in addition to lines and

### Roots and Coefficients of a Quadratic Equation Summary

Roots and Coefficients of a Quadratic Equation Summary For a quadratic equation with roots α and β: Sum of roots = α + β = and Product of roots = αβ = Symmetrical functions of α and β include: x = and

### Examples of Tasks from CCSS Edition Course 3, Unit 5

Examples of Tasks from CCSS Edition Course 3, Unit 5 Getting Started The tasks below are selected with the intent of presenting key ideas and skills. Not every answer is complete, so that teachers can

### correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:

Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that

### Prep for Calculus. Curriculum

Prep for Calculus This course covers the topics shown below. Students navigate learning paths based on their level of readiness. Institutional users may customize the scope and sequence to meet curricular

### CALCULUS 2. 0 Repetition. tutorials 2015/ Find limits of the following sequences or prove that they are divergent.

CALCULUS tutorials 5/6 Repetition. Find limits of the following sequences or prove that they are divergent. a n = n( ) n, a n = n 3 7 n 5 n +, a n = ( n n 4n + 7 ), a n = n3 5n + 3 4n 7 3n, 3 ( ) 3n 6n

### Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.

### MATH SOLUTIONS TO PRACTICE FINAL EXAM. (x 2)(x + 2) (x 2)(x 3) = x + 2. x 2 x 2 5x + 6 = = 4.

MATH 55 SOLUTIONS TO PRACTICE FINAL EXAM x 2 4.Compute x 2 x 2 5x + 6. When x 2, So x 2 4 x 2 5x + 6 = (x 2)(x + 2) (x 2)(x 3) = x + 2 x 3. x 2 4 x 2 x 2 5x + 6 = 2 + 2 2 3 = 4. x 2 9 2. Compute x + sin

### Prep for College Algebra

Prep for College Algebra This course covers the topics shown below. Students navigate learning paths based on their level of readiness. Institutional users may customize the scope and sequence to meet

### 3. Double Integrals 3A. Double Integrals in Rectangular Coordinates

3. Double Integrals 3A. Double Integrals in ectangular Coordinates 3A-1 Evaluate each of the following iterated integrals: c) 2 1 1 1 x 2 (6x 2 +2y)dydx b) x 2x 2 ydydx d) π/2 π 1 u (usint+tcosu)dtdu u2

### LINE INTEGRALS OF VECTOR FUNCTIONS: GREEN S THEOREM. Contents. 2. Green s Theorem 3

LINE INTEGRALS OF VETOR FUNTIONS: GREEN S THEOREM ontents 1. A differential criterion for conservative vector fields 1 2. Green s Theorem 3 1. A differential criterion for conservative vector fields We

### MATHEMATICS (CLASSES XI XII)

MATHEMATICS (CLASSES XI XII) General Guidelines (i) All concepts/identities must be illustrated by situational examples. (ii) The language of word problems must be clear, simple and unambiguous. (iii)

MA 134 Lecture Notes August 20, 2012 Introduction The purpose of this lecture is to... Introduction The purpose of this lecture is to... Learn about different types of equations Introduction The purpose

### 3. INNER PRODUCT SPACES

. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

### Chapter 1 Quadratic Equations in One Unknown (I)

Tin Ka Ping Secondary School 015-016 F. Mathematics Compulsory Part Teaching Syllabus Chapter 1 Quadratic in One Unknown (I) 1 1.1 Real Number System A Integers B nal Numbers C Irrational Numbers D Real

### Precalculus REVERSE CORRELATION. Content Expectations for. Precalculus. Michigan CONTENT EXPECTATIONS FOR PRECALCULUS CHAPTER/LESSON TITLES

Content Expectations for Precalculus Michigan Precalculus 2011 REVERSE CORRELATION CHAPTER/LESSON TITLES Chapter 0 Preparing for Precalculus 0-1 Sets There are no state-mandated Precalculus 0-2 Operations

### Chapter R - Basic Algebra Operations (69 topics, due on 05/01/12)

Course Name: College Algebra 001 Course Code: R3RK6-CTKHJ ALEKS Course: College Algebra with Trigonometry Instructor: Prof. Bozyk Course Dates: Begin: 01/17/2012 End: 05/04/2012 Course Content: 288 topics

### (a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0,

Name: Solutions to Practice Final. Consider the line r(t) = 3 + t, t, 6. (a) Find symmetric equations for this line. (b) Find the point where the first line r(t) intersects the surface z = x + y. (a) We

### Mathematics Pre-Test Sample Questions A. { 11, 7} B. { 7,0,7} C. { 7, 7} D. { 11, 11}

Mathematics Pre-Test Sample Questions 1. Which of the following sets is closed under division? I. {½, 1,, 4} II. {-1, 1} III. {-1, 0, 1} A. I only B. II only C. III only D. I and II. Which of the following

### Exam 1 Sample Question SOLUTIONS. y = 2x

Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can

### Higher Education Math Placement

Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

### Ordered Pairs. Graphing Lines and Linear Inequalities, Solving System of Linear Equations. Cartesian Coordinates System.

Ordered Pairs Graphing Lines and Linear Inequalities, Solving System of Linear Equations Peter Lo All equations in two variables, such as y = mx + c, is satisfied only if we find a value of x and a value

### Solutions to Vector Calculus Practice Problems

olutions to Vector alculus Practice Problems 1. Let be the region in determined by the inequalities x + y 4 and y x. Evaluate the following integral. sinx + y ) da Answer: The region looks like y y x x

### Techniques of Integration

CHPTER 7 Techniques of Integration 7.. Substitution Integration, unlike differentiation, is more of an art-form than a collection of algorithms. Many problems in applied mathematics involve the integration

### 2008 AP Calculus AB Multiple Choice Exam

008 AP Multiple Choice Eam Name 008 AP Calculus AB Multiple Choice Eam Section No Calculator Active AP Calculus 008 Multiple Choice 008 AP Calculus AB Multiple Choice Eam Section Calculator Active AP Calculus

### Free Response Questions Compiled by Kaye Autrey for face-to-face student instruction in the AP Calculus classroom

Free Response Questions 1969-005 Compiled by Kaye Autrey for face-to-face student instruction in the AP Calculus classroom 1 AP Calculus Free-Response Questions 1969 AB 1 Consider the following functions

### Taylor Polynomials and Taylor Series Math 126

Taylor Polynomials and Taylor Series Math 26 In many problems in science and engineering we have a function f(x) which is too complicated to answer the questions we d like to ask. In this chapter, we will

Table of Contents I. Introduction II. Chapter of Signed Numbers B. Introduction and Zero Sum Game C. Adding Signed Numbers D. Subtracting Signed Numbers 1. Subtracting Signed Numbers 2. Rewriting as Addition

### What are the place values to the left of the decimal point and their associated powers of ten?

The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything

### 3.2 Sources, Sinks, Saddles, and Spirals

3.2. Sources, Sinks, Saddles, and Spirals 6 3.2 Sources, Sinks, Saddles, and Spirals The pictures in this section show solutions to Ay 00 C By 0 C Cy D 0. These are linear equations with constant coefficients

### Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

### Algebra 1 Course Title

Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

### Advanced Higher Mathematics Course Assessment Specification (C747 77)

Advanced Higher Mathematics Course Assessment Specification (C747 77) Valid from August 2015 This edition: April 2016, version 2.4 This specification may be reproduced in whole or in part for educational

### 2 Integrating Both Sides

2 Integrating Both Sides So far, the only general method we have for solving differential equations involves equations of the form y = f(x), where f(x) is any function of x. The solution to such an equation

### MVE041 Flervariabelanalys

MVE041 Flervariabelanalys 2015-16 This document contains the learning goals for this course. The goals are organized by subject, with reference to the course textbook Calculus: A Complete Course 8th ed.

### 1. Students will demonstrate an understanding of the real number system as evidenced by classroom activities and objective tests

MATH 102/102L Inter-Algebra/Lab Properties of the real number system, factoring, linear and quadratic equations polynomial and rational expressions, inequalities, systems of equations, exponents, radicals,

### Estimated Pre Calculus Pacing Timeline

Estimated Pre Calculus Pacing Timeline 2010-2011 School Year The timeframes listed on this calendar are estimates based on a fifty-minute class period. You may need to adjust some of them from time to

### Portable Assisted Study Sequence ALGEBRA IIA

SCOPE This course is divided into two semesters of study (A & B) comprised of five units each. Each unit teaches concepts and strategies recommended for intermediate algebra students. The first half of

### Student Performance Q&A:

Student Performance Q&A: 2008 AP Calculus AB and Calculus BC Free-Response Questions The following comments on the 2008 free-response questions for AP Calculus AB and Calculus BC were written by the Chief

### Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: f (x) =

Vertical Asymptotes Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: lim f (x) = x a lim f (x) = lim x a lim f (x) = x a

### x 2 + y 2 = 25 and try to solve for y in terms of x, we get 2 new equations y = 25 x 2 and y = 25 x 2.

Lecture : Implicit differentiation For more on the graphs of functions vs. the graphs of general equations see Graphs of Functions under Algebra/Precalculus Review on the class webpage. For more on graphing

### MATH BOOK OF PROBLEMS SERIES. New from Pearson Custom Publishing!

MATH BOOK OF PROBLEMS SERIES New from Pearson Custom Publishing! The Math Book of Problems Series is a database of math problems for the following courses: Pre-algebra Algebra Pre-calculus Calculus Statistics

### PROBLEM SET. Practice Problems for Exam #2. Math 2350, Fall Nov. 7, 2004 Corrected Nov. 10 ANSWERS

PROBLEM SET Practice Problems for Exam #2 Math 2350, Fall 2004 Nov. 7, 2004 Corrected Nov. 10 ANSWERS i Problem 1. Consider the function f(x, y) = xy 2 sin(x 2 y). Find the partial derivatives f x, f y,

### First Order Non-Linear Equations

First Order Non-Linear Equations We will briefly consider non-linear equations. In general, these may be much more difficult to solve than linear equations, but in some cases we will still be able to solve

### Text: A Graphical Approach to College Algebra (Hornsby, Lial, Rockswold)

Students will take Self Tests covering the topics found in Chapter R (Reference: Basic Algebraic Concepts) and Chapter 1 (Linear Functions, Equations, and Inequalities). If any deficiencies are revealed,

### FACTORING QUADRATICS 8.1.1 and 8.1.2

FACTORING QUADRATICS 8.1.1 and 8.1.2 Chapter 8 introduces students to quadratic equations. These equations can be written in the form of y = ax 2 + bx + c and, when graphed, produce a curve called a parabola.

### CHAPTER 2 FOURIER SERIES

CHAPTER 2 FOURIER SERIES PERIODIC FUNCTIONS A function is said to have a period T if for all x,, where T is a positive constant. The least value of T>0 is called the period of. EXAMPLES We know that =

### Birmingham City Schools

Activity 1 Classroom Rules & Regulations Policies & Procedures Course Curriculum / Syllabus LTF Activity: Interval Notation (Precal) 2 Pre-Assessment 3 & 4 1.2 Functions and Their Properties 5 LTF Activity:

### MATH 21. College Algebra 1 Lecture Notes

MATH 21 College Algebra 1 Lecture Notes MATH 21 3.6 Factoring Review College Algebra 1 Factoring and Foiling 1. (a + b) 2 = a 2 + 2ab + b 2. 2. (a b) 2 = a 2 2ab + b 2. 3. (a + b)(a b) = a 2 b 2. 4. (a

### This makes sense. t 2 1 + 1/t 2 dt = 1. t t 2 + 1dt = 2 du = 1 3 u3/2 u=5

1. (Line integrals Using parametrization. Two types and the flux integral) Formulas: ds = x (t) dt, d x = x (t)dt and d x = T ds since T = x (t)/ x (t). Another one is Nds = T ds ẑ = (dx, dy) ẑ = (dy,

### Higher Education Math Placement

Higher Education Math Placement 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry (arith050) Subtraction with borrowing (arith006) Multiplication with carry

### Lectures 5-6: Taylor Series

Math 1d Instructor: Padraic Bartlett Lectures 5-: Taylor Series Weeks 5- Caltech 213 1 Taylor Polynomials and Series As we saw in week 4, power series are remarkably nice objects to work with. In particular,

### Practice Final Math 122 Spring 12 Instructor: Jeff Lang

Practice Final Math Spring Instructor: Jeff Lang. Find the limit of the sequence a n = ln (n 5) ln (3n + 8). A) ln ( ) 3 B) ln C) ln ( ) 3 D) does not exist. Find the limit of the sequence a n = (ln n)6

### 1 Lecture: Integration of rational functions by decomposition

Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.

### Senior Secondary Australian Curriculum

Senior Secondary Australian Curriculum Mathematical Methods Glossary Unit 1 Functions and graphs Asymptote A line is an asymptote to a curve if the distance between the line and the curve approaches zero

### Understanding Basic Calculus

Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other

### South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know

### 21-114: Calculus for Architecture Homework #1 Solutions

21-114: Calculus for Architecture Homework #1 Solutions November 9, 2004 Mike Picollelli 1.1 #26. Find the domain of g(u) = u + 4 u. Solution: We solve this by considering the terms in the sum separately:

### General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1

A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1 Dr. John Ehrke Department of Mathematics Fall 2012 Questions

### Able Enrichment Centre - Prep Level Curriculum

Able Enrichment Centre - Prep Level Curriculum Unit 1: Number Systems Number Line Converting expanded form into standard form or vice versa. Define: Prime Number, Natural Number, Integer, Rational Number,

### JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

### AP Calculus BC. All students enrolling in AP Calculus BC should have successfully completed AP Calculus AB.

AP Calculus BC Course Description: Advanced Placement Calculus BC is primarily concerned with developing the students understanding of the concepts of calculus and providing experiences with its methods

### Method To Solve Linear, Polynomial, or Absolute Value Inequalities:

Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with

### Review Sheet for Third Midterm Mathematics 1300, Calculus 1

Review Sheet for Third Midterm Mathematics 1300, Calculus 1 1. For f(x) = x 3 3x 2 on 1 x 3, find the critical points of f, the inflection points, the values of f at all these points and the endpoints,

### Double integrals. Notice: this material must not be used as a substitute for attending the lectures

ouble integrals Notice: this material must not be used as a substitute for attending the lectures . What is a double integral? Recall that a single integral is something of the form b a f(x) A double integral

### 2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

### NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document

### pp. 4 8: Examples 1 6 Quick Check 1 6 Exercises 1, 2, 20, 42, 43, 64

Semester 1 Text: Chapter 1: Tools of Algebra Lesson 1-1: Properties of Real Numbers Day 1 Part 1: Graphing and Ordering Real Numbers Part 1: Graphing and Ordering Real Numbers Lesson 1-2: Algebraic Expressions

### Section 13.5 Equations of Lines and Planes

Section 13.5 Equations of Lines and Planes Generalizing Linear Equations One of the main aspects of single variable calculus was approximating graphs of functions by lines - specifically, tangent lines.

### Student Performance Q&A:

Student Performance Q&A: AP Calculus AB and Calculus BC Free-Response Questions The following comments on the free-response questions for AP Calculus AB and Calculus BC were written by the Chief Reader,

### AP CALCULUS AB 2008 SCORING GUIDELINES

AP CALCULUS AB 2008 SCORING GUIDELINES Question 1 Let R be the region bounded by the graphs of y = sin( π x) and y = x 4 x, as shown in the figure above. (a) Find the area of R. (b) The horizontal line

### x(x + 5) x 2 25 (x + 5)(x 5) = x 6(x 4) x ( x 4) + 3

CORE 4 Summary Notes Rational Expressions Factorise all expressions where possible Cancel any factors common to the numerator and denominator x + 5x x(x + 5) x 5 (x + 5)(x 5) x x 5 To add or subtract -

### Integrals of Rational Functions

Integrals of Rational Functions Scott R. Fulton Overview A rational function has the form where p and q are polynomials. For example, r(x) = p(x) q(x) f(x) = x2 3 x 4 + 3, g(t) = t6 + 4t 2 3, 7t 5 + 3t

### Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices

MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two

### Sequences and Series

Sequences and Series Consider the following sum: 2 + 4 + 8 + 6 + + 2 i + The dots at the end indicate that the sum goes on forever. Does this make sense? Can we assign a numerical value to an infinite

### Section 11.1: Vectors in the Plane. Suggested Problems: 1, 5, 9, 17, 23, 25-37, 40, 42, 44, 45, 47, 50

Section 11.1: Vectors in the Plane Page 779 Suggested Problems: 1, 5, 9, 17, 3, 5-37, 40, 4, 44, 45, 47, 50 Determine whether the following vectors a and b are perpendicular. 5) a = 6, 0, b = 0, 7 Recall

### Common Core Unit Summary Grades 6 to 8

Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity- 8G1-8G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations

### Unit 7 Quadratic Relations of the Form y = ax 2 + bx + c

Unit 7 Quadratic Relations of the Form y = ax 2 + bx + c Lesson Outline BIG PICTURE Students will: manipulate algebraic expressions, as needed to understand quadratic relations; identify characteristics

### MTH304: Honors Algebra II

MTH304: Honors Algebra II This course builds upon algebraic concepts covered in Algebra. Students extend their knowledge and understanding by solving open-ended problems and thinking critically. Topics