Graphing Linear Equations in Two Variables


 Lesley Doyle
 2 years ago
 Views:
Transcription
1 Math 123 Section Graphing Linear Equations Using Intercepts  Page 1 Graphing Linear Equations in Two Variables I. Graphing Lines A. The graph of a line is just the set of solution points of the linear equation. B. Graphing a line 1. Pick three values for x. 2. Substitute each value into the equation (separately of course) and solve the equation for y. 3. Plot the points. 4. Draw the line. C. Examples Graph each of the following. 1. x = 6 First, we will make a table. But note that for this line, we have no choice for the values we choose for x, namely, x = 6. However, the yvalues can be anything Now we can plot the points and draw the line. What type of line do we have? Note that the equation for any vertical line is x = Some Number. 2. Now you try one: y = 3 Note that the equation for any horizontal line is y = Some Number.
2 Math 123 Section Graphing Linear Equations Using Intercepts  Page 2 D. Graphing using the x and yintercepts 1. The xintercept of a graph is the point where the graph crosses the xaxis. 2. The yintercept of a graph is the point where the graph crosses the yaxis. 3. To find the intercepts: a. xintercept Set y = 0 and solve for x. b. yintercept Set x = 0 and solve for y. E. Graph by finding the x and yintercepts. 1. 2x + 4y = 8 We first make a table and set x = 0 and find y. 2(0) + 4y = 8 Solve this for y. y = 2 Now we set y = 0 and solve for x. 2x + 4(0) = 8  Solve this for x. x = 4 So the table is: We can now plot the points and draw the graph Now you try one: 2x 3y = 6
3 Math 123 Section Graphing Linear Equations Using Intercepts  Page x + 25y = 50 Set x = 0 and solve for y. 30(0) + 25y = 50 y = 2 Set y = 0 and solve for x. 30x + 25(0) = 50 30x = 50 The answer is going to be a fraction! We don t like that, so choose some other value for x and solve for y, one that won t give us a fraction! Try setting x = 5. 30(5) + 25y = 50 OR y = 50 Subtract 150 from each side to get: 25y = 100 Divide by 25 to get: y = 4 So our table will be: We can now plot the points and draw the line. II. Determining the Equation from the Graph. A. If it is a vertical line, remember that the equation for any vertical line is x = Some Number. B. If it is a horizontal line, remember that the equation for any horizontal line is y = Some Number. C. Examples Write an equation for each graph. 1. Page 232, #42 We see that the line is a horizontal line, so the equation is y = Some Number. What does y =? Answer: y = 5
4 Math 123 Section Graphing Linear Equations Using Intercepts  Page 4 2. Page 232, #46 We see that the line is a vertical line, so the equation is x = Some Number. What does x =? Answer: x = 0 3. Now you try one: Page 232, #43 Answer: x = 3 III. Tricky graphs. A. The book tries to get cute, but you guys will be able to see through that and easily come up with the graphs. B. Examples Graph each equation. 1. y 2.5 = 0 We first have to add 2.5 to both sides to isolate the variable. y = 2.5 This is a horizontal line. 2. Now you try one: 12 3x = 0
5 Math 123 Section Graphing Linear Equations Using Intercepts  Page 5 IV. Applications A. Definitions 1. The yintercept is the initial value of an application. 2. A graph is increasing when it rises as it goes from left to right. 3. A graph is decreasing when if drops as it goes from left to right. 4. A graph is constant if it is horizontal as it goes from left to right. 5. Note that a graph can accomplish all three of these (increase, decrease, constant), but not all at the same time. B. Example A new car worth $24,000 is depreciating in value by $3000 per year. The mathematical model: y = 3000x + 24,000 describes the cars value, y, in dollars, after ears. (Page 233, #76) 1. Find the xintercept. Describe what this means in terms of the car's value. To find the xintercept, we set y = 0 and solve the equation for x. 0 = 3000x + 24,000 Subtract 24,000 from both sides. 24,000 = 3000x Divide both sides by = x Answer the question. Answer: The xintercept is 8. This means that after 8 years, the car is worthless. 2. Find the yintercept. Describe what this means in terms of the car's value. To find the yintercept, we set x = 0 and solve the equation for y. y = 3000(0) + 24,000 Multiply 3000 & 0. y = ,000 Add. y = 24,000 Answer the question. Answer: The yintercept is 24,000. This car is worth brand new. 3. Use the intercepts to graph the linear equation. Because x and y must be nonnegative (why?), limit your graph to quadrant 1 and its boundaries. y 24,000 Value 8 x 4. Use your graph to estimate the car's value after five years. Number of Years Clearly, with my graph that is impossible! So let's use the formula. Remember that x represents the number of years. So we substitute 5 in for x in the formula.
6 Math 123 Section Graphing Linear Equations Using Intercepts  Page 6 y = 3000(5) + 24,000 Multiply 3000 and 5. y = 15, ,000 Add. y = 9,000 Answer the question. Answer: After 5 years, the car is worth $9,000.
Section 3.2. Graphing linear equations
Section 3.2 Graphing linear equations Learning objectives Graph a linear equation by finding and plotting ordered pair solutions Graph a linear equation and use the equation to make predictions Vocabulary:
More informationGRAPHING LINEAR EQUATIONS IN TWO VARIABLES
GRAPHING LINEAR EQUATIONS IN TWO VARIABLES The graphs of linear equations in two variables are straight lines. Linear equations may be written in several forms: SlopeIntercept Form: y = mx+ b In an equation
More informationSection 1.1 Linear Equations: Slope and Equations of Lines
Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of
More informationMATH 105: Finite Mathematics 11: Rectangular Coordinates, Lines
MATH 105: Finite Mathematics 11: Rectangular Coordinates, Lines Prof. Jonathan Duncan Walla Walla College Winter Quarter, 2006 Outline 1 Rectangular Coordinate System 2 Graphing Lines 3 The Equation of
More informationEquations of Lines Derivations
Equations of Lines Derivations If you know how slope is defined mathematically, then deriving equations of lines is relatively simple. We will start off with the equation for slope, normally designated
More information31 Exponential Functions
Sketch and analyze the graph of each function. Describe its domain, range, intercepts, asymptotes, end behavior, and where the function is increasing or decreasing. 1. f (x) = 2 x 4 16 2 4 1 2 0 1 1 0.5
More informationSection 1.4 Graphs of Linear Inequalities
Section 1.4 Graphs of Linear Inequalities A Linear Inequality and its Graph A linear inequality has the same form as a linear equation, except that the equal symbol is replaced with any one of,,
More informationLinear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (1,3), (3,3), (2,3)}
Linear Equations Domain and Range Domain refers to the set of possible values of the xcomponent of a point in the form (x,y). Range refers to the set of possible values of the ycomponent of a point in
More informationOrdered Pairs. Graphing Lines and Linear Inequalities, Solving System of Linear Equations. Cartesian Coordinates System.
Ordered Pairs Graphing Lines and Linear Inequalities, Solving System of Linear Equations Peter Lo All equations in two variables, such as y = mx + c, is satisfied only if we find a value of x and a value
More informationPrinciples of Math 12  Transformations Practice Exam 1
Principles of Math 2  Transformations Practice Exam www.math2.com Transformations Practice Exam Use this sheet to record your answers. NR. 2. 3. NR 2. 4. 5. 6. 7. 8. 9. 0.. 2. NR 3. 3. 4. 5. 6. 7. NR
More informationBrunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 20142015 school year.
Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 20142015 school year. Goal The goal of the summer math program is to help students
More informationWhat does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.
PRIMARY CONTENT MODULE Algebra  Linear Equations & Inequalities T37/H37 What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of
More informationMSLC Workshop Series Math 1148 1150 Workshop: Polynomial & Rational Functions
MSLC Workshop Series Math 1148 1150 Workshop: Polynomial & Rational Functions The goal of this workshop is to familiarize you with similarities and differences in both the graphing and expression of polynomial
More information2x  y 4 y 3x  6 y < 2x 5x  3y > 7
DETAILED SOLUTIONS AND CONCEPTS GRAPHICAL REPRESENTATION OF LINEAR INEQUALITIES IN TWO VARIABLES Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu.
More informationGraphing Linear Equations
Graphing Linear Equations I. Graphing Linear Equations a. The graphs of first degree (linear) equations will always be straight lines. b. Graphs of lines can have Positive Slope Negative Slope Zero slope
More informationPositive numbers move to the right or up relative to the origin. Negative numbers move to the left or down relative to the origin.
1. Introduction To describe position we need a fixed reference (start) point and a way to measure direction and distance. In Mathematics we use Cartesian coordinates, named after the Mathematician and
More informationLecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20
Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding
More information2 Unit Bridging Course Day 2 Linear functions II: Finding equations
1 / 38 2 Unit Bridging Course Day 2 Linear functions II: Finding equations Clinton Boys 2 / 38 Finding equations of lines If we have the information of (i) the gradient of a line (ii) the coordinates of
More informationA synonym is a word that has the same or almost the same definition of
SlopeIntercept Form Determining the Rate of Change and yintercept Learning Goals In this lesson, you will: Graph lines using the slope and yintercept. Calculate the yintercept of a line when given
More informationPlot the following two points on a graph and draw the line that passes through those two points. Find the rise, run and slope of that line.
Objective # 6 Finding the slope of a line Material: page 117 to 121 Homework: worksheet NOTE: When we say line... we mean straight line! Slope of a line: It is a number that represents the slant of a line
More informationBasic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704.
Basic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704. The purpose of this Basic Math Refresher is to review basic math concepts so that students enrolled in PUBP704:
More informationFUNCTIONS. Introduction to Functions. Overview of Objectives, students should be able to:
FUNCTIONS Introduction to Functions Overview of Objectives, students should be able to: 1. Find the domain and range of a relation 2. Determine whether a relation is a function 3. Evaluate a function 4.
More informationIn this section, we ll review plotting points, slope of a line and different forms of an equation of a line.
Math 1313 Section 1.2: Straight Lines In this section, we ll review plotting points, slope of a line and different forms of an equation of a line. Graphing Points and Regions Here s the coordinate plane:
More information2. Simplify. College Algebra Student SelfAssessment of Mathematics (SSAM) Answer Key. Use the distributive property to remove the parentheses
College Algebra Student SelfAssessment of Mathematics (SSAM) Answer Key 1. Multiply 2 3 5 1 Use the distributive property to remove the parentheses 2 3 5 1 2 25 21 3 35 31 2 10 2 3 15 3 2 13 2 15 3 2
More informationGraphing Quadratic Functions
Graphing Quadratic Functions In our consideration of polynomial functions, we first studied linear functions. Now we will consider polynomial functions of order or degree (i.e., the highest power of x
More informationTitle: Graphing Quadratic Equations in Standard Form Class: Math 100 or 107 Author: Sharareh Masooman Instructions to tutor: Read instructions under
Title: Graphing Quadratic Equations in Standard Form Class: Math 100 or 107 Author: Sharareh Masooman Instructions to tutor: Read instructions under Activity and follow all steps for each problem exactly
More information5 $75 6 $90 7 $105. Name Hour. Review Slope & Equations of Lines. STANDARD FORM: Ax + By = C. 1. What is the slope of a vertical line?
Review Slope & Equations of Lines Name Hour STANDARD FORM: Ax + By = C 1. What is the slope of a vertical line? 2. What is the slope of a horizontal line? 3. Is y = 4 the equation of a horizontal or vertical
More informationGRAPHING (2 weeks) Main Underlying Questions: 1. How do you graph points?
GRAPHING (2 weeks) The Rectangular Coordinate System 1. Plot ordered pairs of numbers on the rectangular coordinate system 2. Graph paired data to create a scatter diagram 1. How do you graph points? 2.
More informationSection 1.8 Coordinate Geometry
Section 1.8 Coordinate Geometry The Coordinate Plane Just as points on a line can be identified with real numbers to form the coordinate line, points in a plane can be identified with ordered pairs of
More informationSection summaries. d = (x 2 x 1 ) 2 + (y 2 y 1 ) 2. 1 + y 2. x1 + x 2
Chapter 2 Graphs Section summaries Section 2.1 The Distance and Midpoint Formulas You need to know the distance formula d = (x 2 x 1 ) 2 + (y 2 y 1 ) 2 and the midpoint formula ( x1 + x 2, y ) 1 + y 2
More informationM 1310 4.1 Polynomial Functions 1
M 1310 4.1 Polynomial Functions 1 Polynomial Functions and Their Graphs Definition of a Polynomial Function Let n be a nonnegative integer and let a, a,..., a, a, a n n1 2 1 0, be real numbers, with a
More information2.5 Transformations of Functions
2.5 Transformations of Functions Section 2.5 Notes Page 1 We will first look at the major graphs you should know how to sketch: Square Root Function Absolute Value Function Identity Function Domain: [
More informationWARM UP EXERCSE. 13 Linear Functions & Straight lines
WARM UP EXERCSE A company makes and sells inline skates. The pricedemand function is p (x) = 190 0.013(x 10) 2. Describe how the graph of function p can be obtained from one of the library functions.
More informationAlgebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.
Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear
More informationwith "a", "b" and "c" representing real numbers, and "a" is not equal to zero.
3.1 SOLVING QUADRATIC EQUATIONS: * A QUADRATIC is a polynomial whose highest exponent is. * The "standard form" of a quadratic equation is: ax + bx + c = 0 with "a", "b" and "c" representing real numbers,
More informationMath 113 Review for Exam I
Math 113 Review for Exam I Section 1.1 Cartesian Coordinate System, Slope, & Equation of a Line (1.) Rectangular or Cartesian Coordinate System You should be able to label the quadrants in the rectangular
More informationActivity 6 Graphing Linear Equations
Activity 6 Graphing Linear Equations TEACHER NOTES Topic Area: Algebra NCTM Standard: Represent and analyze mathematical situations and structures using algebraic symbols Objective: The student will be
More informationKey Terms: Quadratic function. Parabola. Vertex (of a parabola) Minimum value. Maximum value. Axis of symmetry. Vertex form (of a quadratic function)
Outcome R3 Quadratic Functions McGrawHill 3.1, 3.2 Key Terms: Quadratic function Parabola Vertex (of a parabola) Minimum value Maximum value Axis of symmetry Vertex form (of a quadratic function) Standard
More informationSection 2.1 Intercepts; Symmetry; Graphing Key Equations
Intercepts: An intercept is the point at which a graph crosses or touches the coordinate axes. x intercept is 1. The point where the line crosses (or intercepts) the xaxis. 2. The xcoordinate of a point
More informationPractice Problems for Exam 1 Math 140A, Summer 2014, July 2
Practice Problems for Exam 1 Math 140A, Summer 2014, July 2 Name: INSTRUCTIONS: These problems are for PRACTICE. For the practice exam, you may use your book, consult your classmates, and use any other
More informationChapter 2 Section 4: Equations of Lines. 4.* Find the equation of the line with slope 4 3, and passing through the point (0,2).
Chapter Section : Equations of Lines Answers to Problems For problems , put our answers into slope intercept form..* Find the equation of the line with slope, and passing through the point (,0).. Find
More informationMath 152 Rodriguez Blitzer 2.4 Linear Functions and Slope
Math 152 Rodriguez Blitzer 2.4 Linear Functions and Slope I. Linear Functions 1. A linear equation is an equation whose graph is a straight line. 2. A linear equation in standard form: Ax +By=C ex: 4x
More informationSection P.9 Notes Page 1 P.9 Linear Inequalities and Absolute Value Inequalities
Section P.9 Notes Page P.9 Linear Inequalities and Absolute Value Inequalities Sometimes the answer to certain math problems is not just a single answer. Sometimes a range of answers might be the answer.
More informationMATH 110 College Algebra Online Families of Functions Transformations
MATH 110 College Algebra Online Families of Functions Transformations Functions are important in mathematics. Being able to tell what family a function comes from, its domain and range and finding a function
More informationAdditional Examples of using the Elimination Method to Solve Systems of Equations
Additional Examples of using the Elimination Method to Solve Systems of Equations. Adjusting Coecients and Avoiding Fractions To use one equation to eliminate a variable, you multiply both sides of that
More informationHelpsheet. Giblin Eunson Library LINEAR EQUATIONS. library.unimelb.edu.au/libraries/bee. Use this sheet to help you:
Helpsheet Giblin Eunson Library LINEAR EQUATIONS Use this sheet to help you: Solve linear equations containing one unknown Recognize a linear function, and identify its slope and intercept parameters Recognize
More informationSlopeIntercept Quiz. Name: Class: Date: 1. Graph the line with the slope 1 and yintercept 3. a. c. b. d.
Name: Class: Date: ID: A SlopeIntercept Quiz 1. Graph the line with the slope 1 and yintercept 3. a. c. b. d.. Write the equation that describes the line with slope = and yintercept = 3 a. x + y = 3
More informationLinear Equations Review
Linear Equations Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The yintercept of the line y = 4x 7 is a. 7 c. 4 b. 4 d. 7 2. What is the yintercept
More informationQuadratic Functions and Models
Quadratic Functions and Models MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this lesson we will learn to: analyze the graphs of quadratic functions, write
More informationThis unit has primarily been about quadratics, and parabolas. Answer the following questions to aid yourselves in creating your own study guide.
COLLEGE ALGEBRA UNIT 2 WRITING ASSIGNMENT This unit has primarily been about quadratics, and parabolas. Answer the following questions to aid yourselves in creating your own study guide. 1) What is the
More informationTopic 15 Solving System of Linear Equations
Topic 15 Solving System of Linear Equations Introduction: A Linear Equation is an equation that contains two variables, typically x and y that when they are graphed on a cartesian grid make a straight
More information4.4 Concavity and Curve Sketching
Concavity and Curve Sketching Section Notes Page We can use the second derivative to tell us if a graph is concave up or concave down To see if something is concave down or concave up we need to look at
More informationA correlation exists between two variables when one of them is related to the other in some way.
Lecture #10 Chapter 10 Correlation and Regression The main focus of this chapter is to form inferences based on sample data that come in pairs. Given such paired sample data, we want to determine whether
More informationTechniques of Differentiation Selected Problems. Matthew Staley
Techniques of Differentiation Selected Problems Matthew Staley September 10, 011 Techniques of Differentiation: Selected Problems 1. Find /dx: (a) y =4x 7 dx = d dx (4x7 ) = (7)4x 6 = 8x 6 (b) y = 1 (x4
More informationWriting the Equation of a Line in SlopeIntercept Form
Writing the Equation of a Line in SlopeIntercept Form SlopeIntercept Form y = mx + b Example 1: Give the equation of the line in slopeintercept form a. With yintercept (0, 2) and slope 9 b. Passing
More informationEQUATIONS and INEQUALITIES
EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line
More information1.3 LINEAR EQUATIONS IN TWO VARIABLES. Copyright Cengage Learning. All rights reserved.
1.3 LINEAR EQUATIONS IN TWO VARIABLES Copyright Cengage Learning. All rights reserved. What You Should Learn Use slope to graph linear equations in two variables. Find the slope of a line given two points
More informationEconomics 101 Homework #1 Fall 2014 Due 09/18/2014 in lecture
Economics 101 Homework #1 Fall 2014 Due 09/18/2014 in lecture Directions: The homework will be collected in a box before the lecture. Please place your name, TA name and section number on top of the homework
More informationSlopeIntercept Equation. Example
1.4 Equations of Lines and Modeling Find the slope and the y intercept of a line given the equation y = mx + b, or f(x) = mx + b. Graph a linear equation using the slope and the yintercept. Determine
More informationElements of a graph. Click on the links below to jump directly to the relevant section
Click on the links below to jump directly to the relevant section Elements of a graph Linear equations and their graphs What is slope? Slope and yintercept in the equation of a line Comparing lines on
More informationThe graphs of quadratic functions are so popular that they were given their own name. They are called parabolas.
DETAILED SOLUTIONS AND CONCEPTS  QUADRATIC FUNCTIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE
More informationForm of a linear function: Form of a quadratic function:
Algebra IIA Unit II: Quadratic Functions Foundational Material o Graphing and transforming linear functions o Solving linear equations and inequalities o Fit data using linear models Goal o Graph and transform
More informationSection 2.2 Equations of Lines
Section 2.2 Equations of Lines The Slope of a Line EXAMPLE: Find the slope of the line that passes through the points P(2,1) and Q(8,5). = 5 1 8 2 = 4 6 = 2 1 EXAMPLE: Find the slope of the line that passes
More information1.7 Graphs of Functions
64 Relations and Functions 1.7 Graphs of Functions In Section 1.4 we defined a function as a special type of relation; one in which each xcoordinate was matched with only one ycoordinate. We spent most
More informationLines, Lines, Lines!!! SlopeIntercept Form ~ Lesson Plan
Lines, Lines, Lines!!! SlopeIntercept Form ~ Lesson Plan I. Topic: SlopeIntercept Form II. III. Goals and Objectives: A. The student will write an equation of a line given information about its graph.
More information3.2 LOGARITHMIC FUNCTIONS AND THEIR GRAPHS. Copyright Cengage Learning. All rights reserved.
3.2 LOGARITHMIC FUNCTIONS AND THEIR GRAPHS Copyright Cengage Learning. All rights reserved. What You Should Learn Recognize and evaluate logarithmic functions with base a. Graph logarithmic functions.
More informationMath 018 Review Sheet v.3
Math 018 Review Sheet v.3 Tyrone Crisp Spring 007 1.1  Slopes and Equations of Lines Slopes: Find slopes of lines using the slope formula m y y 1 x x 1. Positive slope the line slopes up to the right.
More informationMany different kinds of animals can change their form to help them avoid or
Slopes, Forms, Graphs, and Intercepts Connecting the Standard Form with the SlopeIntercept Form of Linear Functions Learning Goals In this lesson, you will: Graph linear functions in standard form. Transform
More informationTemperature Scales. The metric system that we are now using includes a unit that is specific for the representation of measured temperatures.
Temperature Scales INTRODUCTION The metric system that we are now using includes a unit that is specific for the representation of measured temperatures. The unit of temperature in the metric system is
More informationHow can you write an equation of a line when you are given the slope and the yintercept of the line? ACTIVITY: Writing Equations of Lines
. Writing Equations in SlopeIntercept Form How can ou write an equation of a line when ou are given the slope and the intercept of the line? ACTIVITY: Writing Equations of Lines Work with a partner.
More informationBasic Graphing Functions for the TI83 and TI84
Basic Graphing Functions for the TI83 and TI84 The primary benefits of the TI83 and TI84 are the abilities to graph functions and to identify properties those functions possess. The purpose of this
More informationObjective 1: Identify the characteristics of a quadratic function from its graph
Section 8.2 Quadratic Functions and Their Graphs Definition Quadratic Function A quadratic function is a seconddegree polynomial function of the form, where a, b, and c are real numbers and. Every quadratic
More informationDetermine If An Equation Represents a Function
Question : What is a linear function? The term linear function consists of two parts: linear and function. To understand what these terms mean together, we must first understand what a function is. The
More informationIn the Herb Business, Part III Factoring and Quadratic Equations
74 In the Herb Business, Part III Factoring and Quadratic Equations In the herbal medicine business, you and your partner sold 120 bottles of your best herbal medicine each week when you sold at your original
More informationRational Functions 5.2 & 5.3
Math Precalculus Algebra Name Date Rational Function Rational Functions 5. & 5.3 g( ) A function is a rational function if f ( ), where g( ) and h( ) are polynomials. h( ) Vertical asymptotes occur at
More informationThe PointSlope Form
7. The PointSlope Form 7. OBJECTIVES 1. Given a point and a slope, find the graph of a line. Given a point and the slope, find the equation of a line. Given two points, find the equation of a line y Slope
More information1.2 GRAPHS OF EQUATIONS. Copyright Cengage Learning. All rights reserved.
1.2 GRAPHS OF EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch graphs of equations. Find x and yintercepts of graphs of equations. Use symmetry to sketch graphs
More informationCHAPTER 3: REPRESENTATIONS OF A LINE (4 WEEKS)...
Table of Contents CHAPTER : REPRESENTATIONS OF A LINE (4 WEEKS)... SECTION.0 ANCHOR PROBLEM: SOLUTIONS TO A LINEAR EQUATION... 6 SECTION.1: GRAPH AND WRITE EQUATIONS OF LINES... 8.1a Class Activity: Write
More informationAnswer on Question #48173 Math Algebra
Answer on Question #48173 Math Algebra On graph paper, draw the axes, and the lines y = 12 and x = 6. The rectangle bounded by the axes and these two lines is a pool table with pockets in the four corners.
More informationObjectives. By the time the student is finished with this section of the workbook, he/she should be able
QUADRATIC FUNCTIONS Completing the Square..95 The Quadratic Formula....99 The Discriminant... 0 Equations in Quadratic Form.. 04 The Standard Form of a Parabola...06 Working with the Standard Form of a
More information55x 3 + 23, f(x) = x2 3. x x 2x + 3 = lim (1 x 4 )/x x (2x + 3)/x = lim
Slant Asymptotes If lim x [f(x) (ax + b)] = 0 or lim x [f(x) (ax + b)] = 0, then the line y = ax + b is a slant asymptote to the graph y = f(x). If lim x f(x) (ax + b) = 0, this means that the graph of
More informationLinear Equations and Graphs
2.12.4 Linear Equations and Graphs Coordinate Plane Quadrants  The xaxis and yaxis form 4 "areas" known as quadrants. 1. I  The first quadrant has positive x and positive y points. 2. II  The second
More informationgraphs, Equations, and inequalities
graphs, Equations, and inequalities You might think that New York or Los Angeles or Chicago has the busiest airport in the U.S., but actually it s HartsfieldJackson Airport in Atlanta, Georgia. In 010,
More informationPPS TI83 Activities Algebra 12 Teacher Notes
PPS TI83 Activities Algebra 12 Teacher Notes It is an expectation in Portland Public Schools that all teachers are using the TI83 graphing calculator in meaningful ways in Algebra 12. This does not
More informationExam 2 Review. 3. How to tell if an equation is linear? An equation is linear if it can be written, through simplification, in the form.
Exam 2 Review Chapter 1 Section1 Do You Know: 1. What does it mean to solve an equation? To solve an equation is to find the solution set, that is, to find the set of all elements in the domain of the
More information1.6 A LIBRARY OF PARENT FUNCTIONS. Copyright Cengage Learning. All rights reserved.
1.6 A LIBRARY OF PARENT FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Identify and graph linear and squaring functions. Identify and graph cubic, square root, and reciprocal
More information2.5 Lining Up Quadratics A Solidify Understanding Task
28 2.5 Lining Up Quadratics A Solidify Understanding Task Graph each function and find the vertex, the yintercept and the xintercepts. Be sure to properly write the intercepts as points. 1. y = (x 1)(x
More informationSection 2.3. Learning Objectives. Graphing Quadratic Functions
Section 2.3 Quadratic Functions Learning Objectives Quadratic function, equations, and inequities Properties of quadratic function and their graphs Applications More general functions Graphing Quadratic
More informationEXPONENTIAL FUNCTIONS 8.1.1 8.1.6
EXPONENTIAL FUNCTIONS 8.1.1 8.1.6 In these sections, students generalize what they have learned about geometric sequences to investigate exponential functions. Students study exponential functions of the
More informationUnit III Practice Questions
Unit III Practice Questions 1. Write the ordered pair corresponding to each point plotted below. A F B E D C 2. Determine if the ordered pair ( 1, 2) is a solution of 2x + y = 4. Explain how you know.
More informationVocabulary Words and Definitions for Algebra
Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms
More information1 Functions, Graphs and Limits
1 Functions, Graphs and Limits 1.1 The Cartesian Plane In this course we will be dealing a lot with the Cartesian plane (also called the xyplane), so this section should serve as a review of it and its
More informationPractice Math Placement Exam
Practice Math Placement Exam The following are problems like those on the Mansfield University Math Placement Exam. You must pass this test or take MA 0090 before taking any mathematics courses. 1. What
More informationFor additional information, see the Math Notes boxes in Lesson B.1.3 and B.2.3.
EXPONENTIAL FUNCTIONS B.1.1 B.1.6 In these sections, students generalize what they have learned about geometric sequences to investigate exponential functions. Students study exponential functions of the
More informationCHAPTER 3. Exponential and Logarithmic Functions
CHAPTER 3 Exponential and Logarithmic Functions Section 3.1 (ebook 5.1part 1) Exponential Functions and Their Graphs Definition 1: Let. An exponential function with base a is a function defined as Example
More information43 Writing Equations in PointSlope Form
Write an equation in pointslope form for the line that passes through the given point with the slope provided. Then graph the equation. 1. ( 2, 5), slope 6 Write the equation in pointslope form. To graph
More information5.4 The Quadratic Formula
Section 5.4 The Quadratic Formula 481 5.4 The Quadratic Formula Consider the general quadratic function f(x) = ax + bx + c. In the previous section, we learned that we can find the zeros of this function
More informationAlgebra Cheat Sheets
Sheets Algebra Cheat Sheets provide you with a tool for teaching your students notetaking, problemsolving, and organizational skills in the context of algebra lessons. These sheets teach the concepts
More informationName: Class: Date: Does the equation represent a direct variation? If so, find the constant of variation. c. yes; k = 5 3. c.
Name: Class: Date: Chapter 5 Test Multiple Choice Identify the choice that best completes the statement or answers the question. What is the slope of the line that passes through the pair of points? 1.
More informationPractice Test  Chapter 3. TEMPERATURE The equation to convert Celsius temperature C to Kelvin temperature K is shown.
TEMPERATURE The equation to convert Celsius temperature C to Kelvin temperature K is shown. a. State the independent and dependent variables.explain. b. Determine the C and Kintercepts and describe what
More information