Dear Accelerated Pre-Calculus Student:

Save this PDF as:

Size: px
Start display at page:

Transcription

2 Accelerated CCGPS Pre-Calculus Summer Work Packet Unit 1: Conics MCC9 12.F.IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. A. Parent Graphs Sketch the graphs of the following functions without using a graphing calculator. You should be familiar enough with these parent graphs to be able sketch them from memory. If you are unsure about how to graph the functions, make a t -chart of x- and y- values. Label important features of each graph, such as intercepts, minimums, and maximums. Label the scales and axes of the graphs. 1. f x 4. f x 2 x 2. f x x x 5. f x 3 3. f x x 1 x 6. f x x MCC9 12.F.BF.3 Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. B. Transformations of Basic Functions Describe the transformations from the parent function, f x to the function gx such as vertical shifts, stretches, and shrinks, as well as reflections across the x- and y- axes) for each of the following functions. 1 f x x; g x x f x x 3 ; g x 2x MCC9 12.G.C.2 Identify and describe relationships among inscribed angles, radii, and chords. C. Circle Relationships Given the diagram on the right, indicate the point, segment, or line (by name) for each of the following: 9. Center 10. Diameter 11. Two chords that are not diameters 12. Secant line 13. Tangent line 14. Point of tangency 15. All radii 16. What is the measure of JGO? How do you know?

3 MCC9 12.G.GPE.1 Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation. D. Equations of Circles Given the information below, write the equation of the circle. 17. Center at (0, 0); Radius of Center at (2, -5); Radius of Center at (-3, -6) and passes through (-4, 8) Write the equation in standard form by completing the square. Identify the center and radius of the circle x y x y x y x y MCC9 12.G.GPE.2 Derive the equation of a parabola given a focus and directrix. E. Equations of Parabolas Label the following features, based on the sketch to the right. 22. Label these features on your answer sheet: Vertex Focus Axis of Symmetry Directrix The directed distance, p (label 2 different places) Write the equation in standard form, given the following information. 23. focus (-6, 2), vertex (-6, -1) 24. focus (5, -2), vertex (9, -2) 25. vertex (-2, 4), directrix y y x 3x 6 (Complete the square. Identify the vertex, focus, axis of symmetry, and directrix. 4

4 Unit 2: Trigonometric Functions MCC9 12.F.BF.3 Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. F. Identify Even and Odd Functions Determine algebraically whether each function is even, odd, or neither. If even or odd, describe the symmetry of the graph of the function fx ( ) 28. g( x) 4 x x 5 3 h( x) x 2x x MCC9 12.F.BF.4b (+) Verify by composition that one function is the inverse of another. MCC9 12.F.BF.4c (+) Read values of an inverse function from a graph or a table, given that the function has an inverse. MCC9 12.F.BF.4d (+) Produce an invertible function from a non invertible function by restricting the domain. G. Inverses of Functions See directions below. x 30. Show that f and g are inverse functions: f( x) 18 3 x; g( x) 6. 3 (Show work on the answer sheet.) 31. Given the table of values for a relation below, provide a table for the inverse relation: x y Find the inverse function of f( x) x 4. State any restrictions on its domain.

5 MCC9 12.F.TF.3 (+) Use special triangles to determine geometrically the values of sine, cosine, tangent for π/3, π/4 and π/6, and use the unit circle to express the values of sine, cosine, and tangent for π x, π + x, and 2π x in terms of their values for x, where x is any real number. MCC9 12.F.TF.2 Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle. H. Unit Circle Visit Print and complete the blank unit circle and attach it to your answer sheet. You should include measurements in degrees and radians, as well as the ordered pair for each location. Use it to provide exact values (no decimals) for the following: sin sec ta n cos cot csc Explain how to change an angle that is measured in radians to degrees. MCC9 12.F.IF.7e Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude. I. Graphing Trigonometric Functions Graph the following trigonometric functions for tat least one period. Identify the important features of each graph: amplitude, phase shift, vertical shift, period, and midline (center line) for each graph. Also report any asymptotes. 40. y2cos( x ) y 2sin x y csc2x 43. y 3tan x Unit 3: Trigonometry of General Triangles MCC9 12.F.TF.7 (+) Use inverse functions to solve trigonometric equations that arise in modeling contexts; evaluate the solutions using technology, and interpret them in terms of the context. J. Solving Trigonometric Equations Solve the following equations for and cos sin tan 5 0

6 Unit 4: Trigonometric Identities MCC9 12.G.SRT.8 Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems. K. Solving Right Triangles - Solve the triangle shown below, giving the missing side lengths to the nearest tenth and all angles to the nearest degree If tan, find the exact values of the five remaining trigonometric functions for θ, which is acute. 2 MCC9 12.F.TF.8 Prove the Pythagorean identity (sin A) 2 + (cos A) 2 = 1 and use it to find sin A, cos A, or tan A, given sin A, cos A, or tan A, and the quadrant of the angle. L. Proving Trigonometric Identities Given the diagram on the right, prove that sin cos 1. Hint: Use the Pythagorean Theorem. (Show work on the answer sheet.) Given cos and θ has its terminal side in Quadrant III, find sin. 3

7 Unit 5: Matrices MCC1.OA.3 Apply properties of operations as strategies to add and subtract. MCC3.OA.5 Apply properties of operations as strategies to multiply and divide. M. Properties of Numbers For each property listed below, provide an example which demonstrates the meaning of the property: 51. Commutative property of addition 52. Commutative property of multiplication 53. Associative property of addition 54. Associative property of multiplication 55. Distributive property of multiplication 56. Identity property of addition 57. Identity property of multiplication 58. Inverse property of addition 59. Inverse property of multiplication MCC9 12.A.REI.5 Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions. MCC9 12.A.REI.6 Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables. N. Solving Systems of Equations Solve the following system of equations (a) graphically, (b) by substitution, and (c) by elimination. Clearly indicate the solution in each case. 60. (a-c) 3 x 2 y 6 x y 2 Unit 6: Vectors MCC9 12.F.TF.2 Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle. MCC9 12.F.TF.3 (+) Use special triangles to determine geometrically the values of sine, cosine, tangent for π/3, π/4 and π/6, and use the unit circle to express the values of sine, cosine, and tangent for π x, π + x, and 2π x in terms of their values for x, where x is any real number. O. Reference Angles Sketch each angle. Then find its reference angle

8 MCC9 12.G.CO.5 Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another. P. Geometric Transformations - Draw the image of each figure, using the given transformation 63. Translation (x, y) (x + 9, y 8) 64. Translation (x, y) (x + 4, y 2) Rotation 90 CCW about the origin Rotation 180 about the origin. Reflection about the line y = x MCC7.G.2 Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle. Q. Triangle Inequality Theorem - Two sides of a triangle have the following measures. Find the range of possible measures for the third side , , 11 MCC9 12.N.CN.2 Use the relation i 2 = 1 and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers. MCC9 12.N.CN.3 (+) Find the conjugate of a complex number; use conjugates to find moduli and quotients of complex numbers. R. Operations with Complex Numbers Simplify each expression i i 69. (8 5 i) (4 2 i) i i 1 2i

10 CCGPS Accelerated Pre-Calculus Summer Work Answer Sheet Name A. Parent Graphs

11 B. Transformations of Basic Functions C. Circle Relationships D. Equations of Circles E. Equations of Parabolas

12 26. Equation: Vertex: Focus: Axis of symmetry: Directrix: F. Identify Even and Odd Functions G. Inverses of Functions 30. Show work here f 1 ( x) Domain Restrictions: H. Unit Circle

13 I. Graphing Trigonometric Functions 40. Amplitude: Phase Shift: Vertical Shift: Period: Midline: Aysymptotes: 41. Amplitude: Phase Shift: Vertical Shift: Period: Midline: Aysymptotes:

14 42. Amplitude: Phase Shift: Vertical Shift: Period: Midline: Aysymptotes: 43. Amplitude: Phase Shift: Vertical Shift: Period: Midline: Aysymptotes: J. Solving Trigonometric Equations

15 K. Solving Right Triangles 47. AB = A = B = 48. L. Proving Trigonometric Identities 49. Show work here. 50. sin cos csc sec cot M. Properties of Numbers N. Solving Systems of Equations 60.a) 60. b) 60. c)

16 O. Reference Angles 61. Drawing: 62. Drawing: Reference Angle: Reference Angle: P. Geometric Transformations Q. Triangle Inequality Theorem R. Operations with Complex Numbers S. Rational Exponents T. Distance Formula

17 U. Probability of Events

The standards in this course continue the work of modeling situations and solving equations.

Algebra II Overview View unit yearlong overview here Building on the understanding of linear, quadratic and exponential functions from Algebra I, this course will extend function concepts to include polynomial,

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know

Albuquerque School of Excellence Math Curriculum Overview Grade 11- Algebra II Module Polynomial, Rational, and Radical Relationships( Module Trigonometric Functions Module Functions Module Inferences

Montana Common Core Standard

Algebra 2 Grade Level: 10(with Recommendation), 11, 12 Length: 1 Year Period(s) Per Day: 1 Credit: 1 Credit Requirement Fulfilled: Mathematics Course Description This course covers the main theories in

TOMS RIVER REGIONAL SCHOOLS MATHEMATICS CURRICULUM

Content Area: Mathematics Course Title: Precalculus Grade Level: High School Right Triangle Trig and Laws 3-4 weeks Trigonometry 3 weeks Graphs of Trig Functions 3-4 weeks Analytic Trigonometry 5-6 weeks

Alabama Course of Study Mathematics Algebra 2 with Trigonometry

A Correlation of Prentice Hall Algebra 2 to the Alabama Course of Study Mathematics THE COMPLEX NUMBER SYSTEM NUMBER AND QUANTITY Perform arithmetic operations with complex numbers. 1. Know there is a

Algebra and Geometry Review (61 topics, no due date)

Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties

pp. 4 8: Examples 1 6 Quick Check 1 6 Exercises 1, 2, 20, 42, 43, 64

Semester 1 Text: Chapter 1: Tools of Algebra Lesson 1-1: Properties of Real Numbers Day 1 Part 1: Graphing and Ordering Real Numbers Part 1: Graphing and Ordering Real Numbers Lesson 1-2: Algebraic Expressions

Higher Education Math Placement

Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary)

Core Standards of the Course Standard 1 Students will acquire number sense and perform operations with real and complex numbers. Objective 1.1 Compute fluently and make reasonable estimates. 1. Simplify

Able Enrichment Centre - Prep Level Curriculum

Able Enrichment Centre - Prep Level Curriculum Unit 1: Number Systems Number Line Converting expanded form into standard form or vice versa. Define: Prime Number, Natural Number, Integer, Rational Number,

Math. MCC9 12.N.RN.1 Explain how the definition of the meaning of rational exponents follows from extending the

MCC9 12.N.RN.1 Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms

PRE-CALCULUS GRADE 12 [C] Communication Trigonometry General Outcome: Develop trigonometric reasoning. A1. Demonstrate an understanding of angles in standard position, expressed in degrees and radians.

Mathematics. GSE Pre-Calculus Unit 2: Trigonometric Functions

Georgia Standards of Excellence Curriculum Frameworks Mathematics GSE Pre-Calculus Unit : Trigonometric Functions These materials are for nonprofit educational purposes only. Any other use may constitute

Montana Common Core Standard

Algebra I Grade Level: 9, 10, 11, 12 Length: 1 Year Period(s) Per Day: 1 Credit: 1 Credit Requirement Fulfilled: A must pass course Course Description This course covers the real number system, solving

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

A Correlation of Pearson Algebra 1, Geometry, Algebra 2 Common Core 2015

A Correlation of Pearson,, Common Core 2015 To the North Carolina High School Mathematics Alignment to Traditional Text - MATH II A Correlation of Pearson,, Common Core, 2015 Introduction This document

Final Exam Practice--Problems

Name: Class: Date: ID: A Final Exam Practice--Problems Problem 1. Consider the function f(x) = 2( x 1) 2 3. a) Determine the equation of each function. i) f(x) ii) f( x) iii) f( x) b) Graph all four functions

Operations and Algebraic Thinking. K.NBT Number and Operations in Base Ten

KINDERGARTEN K.CC K.OA Counting and Cardinality Know number names and the count sequence. Count to tell the number of objects. Compare numbers. Operations and Algebraic Thinking Understand addition as

Polynomial Operations and Factoring

Algebra 1, Quarter 4, Unit 4.1 Polynomial Operations and Factoring Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned Identify terms, coefficients, and degree of polynomials.

Prep for Calculus. Curriculum

Prep for Calculus This course covers the topics shown below. Students navigate learning paths based on their level of readiness. Institutional users may customize the scope and sequence to meet curricular

Higher Education Math Placement

Higher Education Math Placement 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry (arith050) Subtraction with borrowing (arith006) Multiplication with carry

Content Emphases by Cluster--Kindergarten *

Content Emphases by Cluster--Kindergarten * Counting and Cardinality Know number names and the count sequence. Count to tell the number of objects. Compare numbers. Operations and Algebraic Thinking Understand

ALGEBRA & TRIGONOMETRY FOR CALCULUS MATH 1340

ALGEBRA & TRIGONOMETRY FOR CALCULUS Course Description: MATH 1340 A combined algebra and trigonometry course for science and engineering students planning to enroll in Calculus I, MATH 1950. Topics include:

EQ: How can regression models be used to display and analyze the data in our everyday lives?

School of the Future Math Department Comprehensive Curriculum Plan: ALGEBRA II (Holt Algebra 2 textbook as reference guide) 2016-2017 Instructor: Diane Thole EU for the year: How do mathematical models

High School Algebra 1 Common Core Standards & Learning Targets

High School Algebra 1 Common Core Standards & Learning Targets Unit 1: Relationships between Quantities and Reasoning with Equations CCS Standards: Quantities N-Q.1. Use units as a way to understand problems

PowerTeaching i3: Algebra I Mathematics

PowerTeaching i3: Algebra I Mathematics Alignment to the Common Core State Standards for Mathematics Standards for Mathematical Practice and Standards for Mathematical Content for Algebra I Key Ideas and

Geometry. Higher Mathematics Courses 69. Geometry

The fundamental purpose of the course is to formalize and extend students geometric experiences from the middle grades. This course includes standards from the conceptual categories of and Statistics and

TRIGONOMETRY GRADES THE EWING PUBLIC SCHOOLS 2099 Pennington Road Ewing, NJ 08618

TRIGONOMETRY GRADES 11-12 THE EWING PUBLIC SCHOOLS 2099 Pennington Road Ewing, NJ 08618 Board Approval Date: October 29, 2012 Michael Nitti Written by: EHS Mathematics Department Superintendent In accordance

Friday, January 29, 2016 9:15 a.m. to 12:15 p.m., only

ALGEBRA /TRIGONOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA /TRIGONOMETRY Friday, January 9, 016 9:15 a.m. to 1:15 p.m., only Student Name: School Name: The possession

Correlation of the ALEKS courses Algebra 1, High School Geometry, Algebra 2, and PreCalculus to the Common Core State Standards for High School

Correlation of the ALEKS courses Algebra 1, High School Geometry, Algebra 2, and PreCalculus to the Common Core State Standards for High School Number and Quantity N-RN.1: N-RN.2: N-RN.3: N-Q.1: = ALEKS

Accelerated Mathematics 3 This is a course in precalculus and statistics, designed to prepare students to take AB or BC Advanced Placement Calculus. It includes rational, circular trigonometric, and inverse

Curriculum Map Precalculus Saugus High School Saugus Public Schools

Curriculum Map Precalculus Saugus High School Saugus Public Schools The Standards for Mathematical Practice The Standards for Mathematical Practice describe varieties of expertise that mathematics educators

Trigonometry. Week 1 Right Triangle Trigonometry

Trigonometry Introduction Trigonometry is the study of triangle measurement, but it has expanded far beyond that. It is not an independent subject of mathematics. In fact, it depends on your knowledge

ALGEBRA 2/TRIGONOMETRY

ALGEBRA /TRIGONOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA /TRIGONOMETRY Thursday, January 9, 015 9:15 a.m to 1:15 p.m., only Student Name: School Name: The possession

Trigonometric Identities and Conditional Equations C

Trigonometric Identities and Conditional Equations C TRIGONOMETRIC functions are widely used in solving real-world problems and in the development of mathematics. Whatever their use, it is often of value

Algebra 2/ Trigonometry Extended Scope and Sequence (revised )

Algebra 2/ Trigonometry Extended Scope and Sequence (revised 2012 2013) Unit 1: Operations with Radicals and Complex Numbers 9 days 1. Operations with radicals (p.88, 94, 98, 101) a. Simplifying radicals

Overview Mathematical Practices Congruence

Overview Mathematical Practices Congruence 1. Make sense of problems and persevere in Experiment with transformations in the plane. solving them. Understand congruence in terms of rigid motions. 2. Reason

Chapter R - Basic Algebra Operations (69 topics, due on 05/01/12)

Course Name: College Algebra 001 Course Code: R3RK6-CTKHJ ALEKS Course: College Algebra with Trigonometry Instructor: Prof. Bozyk Course Dates: Begin: 01/17/2012 End: 05/04/2012 Course Content: 288 topics

Inverse Trigonometric Functions

SECTION 4.7 Inverse Trigonometric Functions Copyright Cengage Learning. All rights reserved. Learning Objectives 1 2 3 4 Find the exact value of an inverse trigonometric function. Use a calculator to approximate

Moore Catholic High School Math Department COLLEGE PREP AND MATH CONCEPTS

Moore Catholic High School Math Department COLLEGE PREP AND MATH CONCEPTS The following is a list of terms and properties which are necessary for success in Math Concepts and College Prep math. You will

Alabama Course of Study Mathematics Geometry

A Correlation of Prentice Hall to the Alabama Course of Study Mathematics Prentice Hall, Correlated to the Alabama Course of Study Mathematics - GEOMETRY CONGRUENCE Experiment with transformations in the

Class Notes for MATH 2 Precalculus. Fall Prepared by. Stephanie Sorenson

Class Notes for MATH 2 Precalculus Fall 2012 Prepared by Stephanie Sorenson Table of Contents 1.2 Graphs of Equations... 1 1.4 Functions... 9 1.5 Analyzing Graphs of Functions... 14 1.6 A Library of Parent

ALGEBRA II Billings Public Schools Correlation and Pacing Guide Math - McDougal Littell High School Math 2007

ALGEBRA II Billings Public Schools Correlation and Guide Math - McDougal Littell High School Math 2007 (Chapter Order: 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14, 10) BILLINGS PUBLIC SCHOOLS II 2009 Eleventh Grade-McDougal

Unit Overview. Content Area: Math Unit Title: Functions and Their Graphs Target Course/Grade Level: Advanced Math Duration: 4 Weeks

Content Area: Math Unit Title: Functions and Their Graphs Target Course/Grade Level: Advanced Math Duration: 4 Weeks Unit Overview Description In this unit the students will examine groups of common functions

Section 9.4 Trigonometric Functions of any Angle

Section 9. Trigonometric Functions of any Angle So far we have only really looked at trigonometric functions of acute (less than 90º) angles. We would like to be able to find the trigonometric functions

Math Foundations IIB Grade Levels 9-12

Math Foundations IIB Grade Levels 9-12 Math Foundations IIB introduces students to the following concepts: integers coordinate graphing ratio and proportion multi-step equations and inequalities points,

GENERAL COMMENTS Grade 12 Pre-Calculus Mathematics Achievement Test (January 2015) Student Performance Observations The following observations are based on local marking results and on comments made by

Mathematical Procedures

CHAPTER 6 Mathematical Procedures 168 CHAPTER 6 Mathematical Procedures The multidisciplinary approach to medicine has incorporated a wide variety of mathematical procedures from the fields of physics,

Precalculus with Limits Larson Hostetler. `knill/mathmovies/ Assessment Unit 1 Test

Unit 1 Real Numbers and Their Properties 14 days: 45 minutes per day (1 st Nine Weeks) functions using graphs, tables, and symbols Representing & Classifying Real Numbers Ordering Real Numbers Absolute

GOALS AND OBJECTIVES. Goal: To provide students of Zane State College with instruction focusing on the following topics:

Phone: (740) 824-3522 ext. 1249 COURSE SYLLABUS Course Title: MATH 1350 Pre-Calculus Credit Hours: 5 Instructor: Miss Megan Duke E-mail: megan.duke@rvbears.org Course Description: Broadens the algebra

Date: 4.1 Radian and Degree Measure Syllabus Objective: 3.1 The student will solve problems using the unit circle. Trigonometry means the measure of triangles. Terminal side Initial side Standard Position

Common Core State Standards - Mathematics Content Emphases by Cluster Grade K

Grade K Not all of the content in a given grade is emphasized equally in the standards. Some clusters require greater emphasis than the others based on the depth of the ideas, the time that they take to

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation

Overview. Essential Questions. Precalculus, Quarter 2, Unit 2.5 Proving Trigonometric Identities. Number of instruction days: 5 7 (1 day = 53 minutes)

Precalculus, Quarter, Unit.5 Proving Trigonometric Identities Overview Number of instruction days: 5 7 (1 day = 53 minutes) Content to Be Learned Verify proofs of Pythagorean identities. Apply Pythagorean,

GEOMETRY COMMON CORE STANDARDS

1st Nine Weeks Experiment with transformations in the plane G-CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point,

Precalculus REVERSE CORRELATION. Content Expectations for. Precalculus. Michigan CONTENT EXPECTATIONS FOR PRECALCULUS CHAPTER/LESSON TITLES

Content Expectations for Precalculus Michigan Precalculus 2011 REVERSE CORRELATION CHAPTER/LESSON TITLES Chapter 0 Preparing for Precalculus 0-1 Sets There are no state-mandated Precalculus 0-2 Operations

Estimated Pre Calculus Pacing Timeline

Estimated Pre Calculus Pacing Timeline 2010-2011 School Year The timeframes listed on this calendar are estimates based on a fifty-minute class period. You may need to adjust some of them from time to

Angles and Quadrants. Angle Relationships and Degree Measurement. Chapter 7: Trigonometry

Chapter 7: Trigonometry Trigonometry is the study of angles and how they can be used as a means of indirect measurement, that is, the measurement of a distance where it is not practical or even possible

Table of Contents I. Introduction II. Chapter of Signed Numbers B. Introduction and Zero Sum Game C. Adding Signed Numbers D. Subtracting Signed Numbers 1. Subtracting Signed Numbers 2. Rewriting as Addition

Week 13 Trigonometric Form of Complex Numbers

Week Trigonometric Form of Complex Numbers Overview In this week of the course, which is the last week if you are not going to take calculus, we will look at how Trigonometry can sometimes help in working

Trigonometry Lesson Objectives

Trigonometry Lesson Unit 1: RIGHT TRIANGLE TRIGONOMETRY Lengths of Sides Evaluate trigonometric expressions. Express trigonometric functions as ratios in terms of the sides of a right triangle. Use the

Level: High School: Geometry. Domain: Expressing Geometric Properties with Equations G-GPE

1. Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation. Translate between the geometric

Math 4 Review Problems

Topics for Review #1 Functions function concept [section 1. of textbook] function representations: graph, table, f(x) formula domain and range Vertical Line Test (for whether a graph is a function) evaluating

Trigonometric Functions: The Unit Circle

Trigonometric Functions: The Unit Circle This chapter deals with the subject of trigonometry, which likely had its origins in the study of distances and angles by the ancient Greeks. The word trigonometry

Inverse Circular Function and Trigonometric Equation

Inverse Circular Function and Trigonometric Equation 1 2 Caution The 1 in f 1 is not an exponent. 3 Inverse Sine Function 4 Inverse Cosine Function 5 Inverse Tangent Function 6 Domain and Range of Inverse

Topic: Solving Linear Equations

Unit 1 Topic: Solving Linear Equations N-Q.1. Reason quantitatively and use units to solve problems. Use units as a way to understand problems and to guide the solution of multi-step problems; choose and

M3 PRECALCULUS PACKET 1 FOR UNIT 5 SECTIONS 5.1 TO = to see another form of this identity.

M3 PRECALCULUS PACKET FOR UNIT 5 SECTIONS 5. TO 5.3 5. USING FUNDAMENTAL IDENTITIES 5. Part : Pythagorean Identities. Recall the Pythagorean Identity sin θ cos θ + =. a. Subtract cos θ from both sides

ALGEBRA I A PLUS COURSE OUTLINE

ALGEBRA I A PLUS COURSE OUTLINE OVERVIEW: 1. Operations with Real Numbers 2. Equation Solving 3. Word Problems 4. Inequalities 5. Graphs of Functions 6. Linear Functions 7. Scatterplots and Lines of Best

GENERAL COMMENTS Grade 12 Pre-Calculus Mathematics Achievement Test (January 2016) Student Performance Observations The following observations are based on local marking results and on comments made by

Chapter 5: Trigonometric Functions of Real Numbers

Chapter 5: Trigonometric Functions of Real Numbers 5.1 The Unit Circle The unit circle is the circle of radius 1 centered at the origin. Its equation is x + y = 1 Example: The point P (x, 1 ) is on the

ALGEBRA 2/TRIGONOMETRY

ALGEBRA 2/TRIGONOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA 2/TRIGONOMETRY Friday, January 29, 2016 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The

Course Name: Course Code: ALEKS Course: Instructor: Course Dates: Course Content: Textbook: Dates Objective Prerequisite Topics

Course Name: MATH 1204 Fall 2015 Course Code: N/A ALEKS Course: College Algebra Instructor: Master Templates Course Dates: Begin: 08/22/2015 End: 12/19/2015 Course Content: 271 Topics (261 goal + 10 prerequisite)

Middle Grades Mathematics 5 9 Section 25 1 Knowledge of mathematics through problem solving 1. Identify appropriate mathematical problems from real-world situations. 2. Apply problem-solving strategies

Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities

Algebra 1, Quarter 2, Unit 2.1 Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document

Text: A Graphical Approach to College Algebra (Hornsby, Lial, Rockswold)

Students will take Self Tests covering the topics found in Chapter R (Reference: Basic Algebraic Concepts) and Chapter 1 (Linear Functions, Equations, and Inequalities). If any deficiencies are revealed,

MPE Review Section II: Trigonometry

MPE Review Section II: Trigonometry Review similar triangles, right triangles, and the definition of the sine, cosine and tangent functions of angles of a right triangle In particular, recall that the

X On record with the USOE.

Textbook Alignment to the Utah Core Algebra 2 Name of Company and Individual Conducting Alignment: Chris McHugh, McHugh Inc. A Credential Sheet has been completed on the above company/evaluator and is

MA Lesson 19 Summer 2016 Angles and Trigonometric Functions

DEFINITIONS: An angle is defined as the set of points determined by two rays, or half-lines, l 1 and l having the same end point O. An angle can also be considered as two finite line segments with a common

Algebra I Common Core Standards

Algebra I Common Core Standards Algebra 1 Overview Number and Quantity The Real Number System Extend the properties of exponents to rational exponents. Use properties of rational and irrational numbers.

ALGEBRA 2/TRIGONOMETRY

ALGEBRA /TRIGONOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA /TRIGONOMETRY Friday, June 19, 015 9:15 a.m. to 1:15 p.m., only Student Name: School Name: The possession

9.1 Trigonometric Identities

9.1 Trigonometric Identities r y x θ x -y -θ r sin (θ) = y and sin (-θ) = -y r r so, sin (-θ) = - sin (θ) and cos (θ) = x and cos (-θ) = x r r so, cos (-θ) = cos (θ) And, Tan (-θ) = sin (-θ) = - sin (θ)

Mathematics. Pre-Calculus ( -1 Course Sequence)

Mathematics Courses in Mathematics are offered with instruction in English, French (F) and Spanish (S) where enrolment warrants. Note: Five credits at the 20 level are required to obtain an Alberta High

Algebra II End of Course Exam Answer Key Segment I. Scientific Calculator Only

Algebra II End of Course Exam Answer Key Segment I Scientific Calculator Only Question 1 Reporting Category: Algebraic Concepts & Procedures Common Core Standard: A-APR.3: Identify zeros of polynomials

Unit 8 Inverse Trig & Polar Form of Complex Nums.

HARTFIELD PRECALCULUS UNIT 8 NOTES PAGE 1 Unit 8 Inverse Trig & Polar Form of Complex Nums. This is a SCIENTIFIC OR GRAPHING CALCULATORS ALLOWED unit. () Inverse Functions (3) Invertibility of Trigonometric

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education)

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,

Verifying Trigonometric Identities. Introduction. is true for all real numbers x. So, it is an identity. Verifying Trigonometric Identities

333202_0502.qxd 382 2/5/05 Chapter 5 5.2 9:0 AM Page 382 Analytic Trigonometry Verifying Trigonometric Identities What you should learn Verify trigonometric identities. Why you should learn it You can

Unit 6 Trigonometric Identities, Equations, and Applications

Accelerated Mathematics III Frameworks Student Edition Unit 6 Trigonometric Identities, Equations, and Applications nd Edition Unit 6: Page of 3 Table of Contents Introduction:... 3 Discovering the Pythagorean

PRECALCULUS Semester I Exam Review Sheet

PRECALCULUS Semester I Exam Review Sheet Chapter Topic P.1 Real Numbers {1, 2, 3, 4, } Natural (aka Counting) Numbers {0, 1, 2, 3, 4, } Whole Numbers {, -3, -2, -2, 0, 1, 2, 3, } Integers Can be expressed

IB Mathematics SL :: Checklist. Topic 1 Algebra The aim of this topic is to introduce students to some basic algebraic concepts and applications.

Topic 1 Algebra The aim of this topic is to introduce students to some basic algebraic concepts and applications. Check Topic 1 Book Arithmetic sequences and series; Sum of finite arithmetic series; Geometric

Finding diagonal distances on the coordinate plane. Linear Inequalities. Permutation & Combinations. Standard Deviation

Introduction of Surface Area Measurement Unit Conversion Volume of Right Rectangular Prisms Statistical Variability (MAD and IQR) Multiplication of Fractions Scientific Notation Introduction of Transformations

29 Wyner PreCalculus Fall 2016

9 Wyner PreCalculus Fall 016 CHAPTER THREE: TRIGONOMETRIC EQUATIONS Review November 8 Test November 17 Trigonometric equations can be solved graphically or algebraically. Solving algebraically involves

Infinite Algebra 1 supports the teaching of the Common Core State Standards listed below.

Infinite Algebra 1 Kuta Software LLC Common Core Alignment Software version 2.05 Last revised July 2015 Infinite Algebra 1 supports the teaching of the Common Core State Standards listed below. High School

4. Factor polynomials over complex numbers, describe geometrically, and apply to real-world situations. 5. Determine and apply relationships among syn

I The Real and Complex Number Systems 1. Identify subsets of complex numbers, and compare their structural characteristics. 2. Compare and contrast the properties of real numbers with the properties of

Pre-Calculus II. where 1 is the radius of the circle and t is the radian measure of the central angle.

Pre-Calculus II 4.2 Trigonometric Functions: The Unit Circle The unit circle is a circle of radius 1, with its center at the origin of a rectangular coordinate system. The equation of this unit circle

Lecture 1 (Review of High School Math: Functions and Models) Introduction: Numbers and their properties

Lecture 1 (Review of High School Math: Functions and Models) Introduction: Numbers and their properties Addition: (1) (Associative law) If a, b, and c are any numbers, then ( ) ( ) (2) (Existence of an