PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm."

Transcription

1 PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle and the base of the isosceles triangle. Then the base of the triangle has length x 2 and the height of the triangle is 1 + x. Therefore, area of the triangle is given by We first find the critical points of A(x): A(x) = 1 x 2 (1 + x) x [ 1, 1] A (x) = 1 x 2 x(1 + x) = 1 x2 1x x 2 1 x 2 1 x 2 Thus A (x) = when 1 1x 2x 2 =. The solution to this equation is given by 1 ± 9 = 1 or 5 4 For x = ±1, we have A(x) =. For x = 5, we get A (5) = which is the maximum area of the largest isosceles triangle that can be inscribed in the circle of radius 1 cm. For x = 5 we get that the base of the isosceles triangle has length 1 3. The other sides of the triangle have length equal to = 1 3. Thus the triangle is equilateral of side length 1 3 cm. Problem 2. Find area of the region bounded by the curves x = y 2 2, y = 1, y = ln(x) and y = 1. Solution. We compute the area by integrating relative to y. The its of integral are y = 1 and y 1. The left function is x = y 2 2. The right function is x = e y (so that y = ln(x)). Thus the definite integral we need to compute is ] 1 (e y y 2 + 2) dy = [e y y y = (e e 1 23 ) Problem 3. Evaluate the following its: (a) x 3e 2x 3 tan(2x) Solution. The it is an indeterminate form /. We apply the L Hospital rule 3e 2x 3 6e 2x = x tan(2x) x 2 sec 2 (2x) = 6 2 = 3 (b) (x3 7x 2 )e x

2 2 PRACTICE FINAL Solution. The it is an indeterminate form.. We apply L Hospital rule repeatedly to compute the it as follows: (x3 7x 2 )e x = = (c) x + 7x 2 6x 14 e x = e x = 6 e x = 1 + x 1 + sin(x) Solution. We start by rationalizing the numerator 1 + x 1 + sin(x) = x sin(x) The it x + x sin(x) ( 3x 2 14x e x ) x sin(x) can be computed by L Hospital rule as follows: x sin(x) 1 cos(x) sin(x) x + = x + 3x 2 = x + 6x = cos(x) = 1 x Thus the final answer is Problem 4. x x 1 + sin(x) (a) Evaluate the integral = x + (1 + x 1/4 ) 2 dx. ( x sin(x) = = 1 12 ) ( ) x sin(x) Solution. (1 + x 1/4 ) 2 = 1 + 2x 1/4 + x 1/2. An antiderivative of this function is Thus the definite integral is x + 2 x5/4 5/4 + x3/2 3/2 = x x5/ x3/2 (1 + x 1/4 ) 2 dx = (b) Find the derivative of g(x) = Solution. calculus: [ x x5/4 + 2 ] 1 3 x3/2 = = x 4 cos(t 2 ) dt. The derivative of g(x) can be computed using the fundamental theorem of ( ) d x 4 cos(t 2 ) dt = d ( u ) ( d(x cos(t 2 4 ) ) ) dt = cos(u 2 )4 = cos(x 8 )4 dx du dx In the intermediate step, we used u = x 4.

3 (c) If f(x) is a continuous function and PRACTICE FINAL 3 2 f(x) dx = 6, then compute π/2 f(2 sin(θ)) cos(θ) dθ. Solution. By the substitution rule, setting x = 2 sin(θ) gives dx = 2 cos(θ)dθ and we get π/2 f(2 sin(θ)) cos(θ) dθ = 1 f(x) dx = 3 2 Problem 5. Consider the function f(x) = ln(x 2 3x + 2). (a) Find the domain and range of f(x). Solution. f(x) = ln(x 2 3x + 2) = ln((x 1)(x 2)). Since ln is only defined for positive input values, the domain of f(x) is (, 1) (2, ). (b) Find the intervals of increase and decrease of f(x). Find the local max. and min. points of f(x). Solution. f (x) = 2x 3 x 2. Since the denominator is positive on the domain, we have 3x + 2 f (x) < for x < 3/2 f (x) > for x > 3/2. Thus f (x) = for x = 3/2. But this point is not in the domain of f(x), so f(x) has no critical points. (c) Find the intervals of concavity and inflection points of f(x). Solution. 2 f (x) = (x2 3x + 2)(2) (2x 3) 2 (x 2 3x + 2) 2 = 2x2 + 6x 5 (x 2 3x + 2) 2 f (x) is always negative, so the function is concave down everywhere. (d) Sketch the graph of f(x). We can compute the vertical asymptotes of f(x) as: f(x) = = f(x) x 2 + x 1 Moreover as x ±, the input x 2 3x + 2 for ln goes to and hence ln(x 2 3x + 2) goes to infinity.

4 4 PRACTICE FINAL Problem 6. Two people start walking from the same point. One walks east at 3 miles/hr and the other walks north at 2 miles/hr. How fast is the distance between them increasing after 15 minutes? Solution. Let x be the distance travelled by eastbound person and let y be the distance travelled by northbound person. We are given the information dx dy = 3 and = 2 (in miles per hour). The dt dt distance between them is given by s 2 = x 2 + y 2 Taking derivative of this equation relative to t gives 2s ds dt = 2xdx dy + 2y dt dt After 15 minutes, we have x = 3/4 and y = 2/4. At that time we have s = 13/4. Substituting these values in the equation above, we get ( 13/4) ds dt Thus ds dt = 13 miles per hour. = (3/4)(3) + (2/4)(2) Problem 7. Consider the region bounded between the curves y = x 2 and y = x. Find the volume of the solid obtained by rotating this region around y axis. Solution. The curves y = x 2 and y = x meet at (, ) and (1, 1). We find the volume by integrating relative to y. A typical y cross-section is the region bound between two concentric circles, with the radius of the outer circle y and the radius of the inner circle y 2. Thus the area of a typical y cross-section is Thus the volume of the solid is given by A(y) = π(y y 4 ) [ ] y Volume = π(y y ( ) dy = π 2 y5 1 = π ) = π Problem 8. Show that the sum of the x and y intercepts of any tangent line to the curve x + y = c is equal to c. Solution. Let us compute the equation of the tangent line to the given curve at a point (x, y ). Taking the derivative of x + y = c with respect to x gives 1 2 x dy y dx = dy y dx = x Thus the slope of the tangent line is y / x. The equation is y y y = (x x ) x The x intercept of this line is when y = and the y intercept is when x = : x intercept = x + x y y intercept = y + x y

5 The sum of these intercepts can be computed as: Problem 9. Compute the following: PRACTICE FINAL 5 x + 2 x y + y = ( x + y ) 2 = ( c) 2 = c (a) d dx ((cos(x))x ) Solution. Let y = cos(x) x. Therefore ln(y) = x ln(cos(x)). Taking derivative with respect to x gives: Hence y = cos(x) x (ln(cos(x)) x tan(x)) y y = ln(cos(x)) + x sin(x) cos(x) (b) 2 t 2 t + 3 dt Solution. Using the substitution x = 2 t + 3 we get dx = 2 t (ln(2))dt and hence 2 t 2 t + 3 dt = 1 dx ln(2) x = 1 ln(2) ln( x ) = 1 ln(2) ln(2t + 3) Problem 1. The acceleration of a car is given by a(t) = 3t 5m/s 2. Find the distance traveled by the car from t = to t = 3 s, if the initial velocity is 8 3 m/s. Since a(t) = 3t 5, we get that the velocity is given by v(t) = a(t)dt = 3t 2 /2 5t + constant The value of constant is determined by v() = constant = 8/3. Thus v(t) = 3t2 2 5t = 1 ( 9t 2 3t + 16 ) = 1 ((3t 8)(3t 2)). 6 6 This function changes sign at t = 8/3 and t = 2/3. Namely we have v(t) > for < t < 2/3 and 8/3 < t < 3. v(t) < for 2/3 < t < 8/3. Therefore the distance travelled is given by Distance = 2/3 v(t)dt 8/3 2/3 3 v(t)dt + v(t)dt 8/3 An antiderivative of v(t) = 3/2t 2 5t + 8/3 is given by s(t) = t 3 /2 5t 2 /2 + 8t/3. The distance travelled is given by Distance = s(2/3) s() s(8/3) + s(2/3) + s(3) s(8/3) = s(3) 2s(8/3) + 2s(2/3) s() The value of the function s(t) at these points is s(3) = 27/2 45/2 + 8 = 1 s(8/3) = 256/27 16/9 + 64/9 = 32/27 s(2/3) = 4/27 1/9 + 16/9 = 22/27

6 6 PRACTICE FINAL Thus the distance travelled is = = 3 m Problem 11. Use linear approximation to find the approximate value of sec(.1). Solution. We linearize the function f(x) = sec(x) at x =. f (x) = sec(x) tan(x) f() = 1 f () = Thus the linearization is given by L(x) = f() + f ()(x ) = 1. Thus sec(.1) 1. Problem 12. Find the absolute minimum of f(x) = x2 + 1 over x > and use it to prove that x x for every x >. x Solution. The derivative of f(x) is computed as follows. ( d x 2 ) + 1 = d ( x + 1 ) = 1 1 dx x dx x x 2 Over the domain (, ) there is only one critical point of f(x), namely x = 1. For < x < 1 the derivative is negative and for x > 1 the derivative is positive. Hence the function takes absolute minimum value at x = 1, namely f(1) = 2. Therefore for any x > we have f(x) f(1) = 2

MATH SOLUTIONS TO PRACTICE FINAL EXAM. (x 2)(x + 2) (x 2)(x 3) = x + 2. x 2 x 2 5x + 6 = = 4.

MATH SOLUTIONS TO PRACTICE FINAL EXAM. (x 2)(x + 2) (x 2)(x 3) = x + 2. x 2 x 2 5x + 6 = = 4. MATH 55 SOLUTIONS TO PRACTICE FINAL EXAM x 2 4.Compute x 2 x 2 5x + 6. When x 2, So x 2 4 x 2 5x + 6 = (x 2)(x + 2) (x 2)(x 3) = x + 2 x 3. x 2 4 x 2 x 2 5x + 6 = 2 + 2 2 3 = 4. x 2 9 2. Compute x + sin

More information

Learning Objectives for Math 165

Learning Objectives for Math 165 Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given

More information

Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: f (x) =

Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: f (x) = Vertical Asymptotes Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: lim f (x) = x a lim f (x) = lim x a lim f (x) = x a

More information

Calculus AB 2014 Scoring Guidelines

Calculus AB 2014 Scoring Guidelines P Calculus B 014 Scoring Guidelines 014 The College Board. College Board, dvanced Placement Program, P, P Central, and the acorn logo are registered trademarks of the College Board. P Central is the official

More information

Free Response Questions Compiled by Kaye Autrey for face-to-face student instruction in the AP Calculus classroom

Free Response Questions Compiled by Kaye Autrey for face-to-face student instruction in the AP Calculus classroom Free Response Questions 1969-005 Compiled by Kaye Autrey for face-to-face student instruction in the AP Calculus classroom 1 AP Calculus Free-Response Questions 1969 AB 1 Consider the following functions

More information

PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS

PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS PROBLEM SET Practice Problems for Exam # Math 352, Fall 24 Oct., 24 ANSWERS i Problem. vlet R be the region bounded by the curves x = y 2 and y = x. A. Find the volume of the solid generated by revolving

More information

55x 3 + 23, f(x) = x2 3. x x 2x + 3 = lim (1 x 4 )/x x (2x + 3)/x = lim

55x 3 + 23, f(x) = x2 3. x x 2x + 3 = lim (1 x 4 )/x x (2x + 3)/x = lim Slant Asymptotes If lim x [f(x) (ax + b)] = 0 or lim x [f(x) (ax + b)] = 0, then the line y = ax + b is a slant asymptote to the graph y = f(x). If lim x f(x) (ax + b) = 0, this means that the graph of

More information

Applications of Integration Day 1

Applications of Integration Day 1 Applications of Integration Day 1 Area Under Curves and Between Curves Example 1 Find the area under the curve y = x2 from x = 1 to x = 5. (What does it mean to take a slice?) Example 2 Find the area under

More information

Review Sheet for Third Midterm Mathematics 1300, Calculus 1

Review Sheet for Third Midterm Mathematics 1300, Calculus 1 Review Sheet for Third Midterm Mathematics 1300, Calculus 1 1. For f(x) = x 3 3x 2 on 1 x 3, find the critical points of f, the inflection points, the values of f at all these points and the endpoints,

More information

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were: Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that

More information

Apr 23, 2015. Calculus with Algebra and Trigonometry II Lecture 23Final Review: Apr Curve 23, 2015 sketching 1 / and 19pa

Apr 23, 2015. Calculus with Algebra and Trigonometry II Lecture 23Final Review: Apr Curve 23, 2015 sketching 1 / and 19pa Calculus with Algebra and Trigonometry II Lecture 23 Final Review: Curve sketching and parametric equations Apr 23, 2015 Calculus with Algebra and Trigonometry II Lecture 23Final Review: Apr Curve 23,

More information

Homework # 3 Solutions

Homework # 3 Solutions Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8

More information

Engineering Math II Spring 2015 Solutions for Class Activity #2

Engineering Math II Spring 2015 Solutions for Class Activity #2 Engineering Math II Spring 15 Solutions for Class Activity # Problem 1. Find the area of the region bounded by the parabola y = x, the tangent line to this parabola at 1, 1), and the x-axis. Then find

More information

Calculus 1: Sample Questions, Final Exam, Solutions

Calculus 1: Sample Questions, Final Exam, Solutions Calculus : Sample Questions, Final Exam, Solutions. Short answer. Put your answer in the blank. NO PARTIAL CREDIT! (a) (b) (c) (d) (e) e 3 e Evaluate dx. Your answer should be in the x form of an integer.

More information

APPLICATION OF DERIVATIVES

APPLICATION OF DERIVATIVES 6. Overview 6.. Rate of change of quantities For the function y f (x), d (f (x)) represents the rate of change of y with respect to x. dx Thus if s represents the distance and t the time, then ds represents

More information

Mark Howell Gonzaga High School, Washington, D.C.

Mark Howell Gonzaga High School, Washington, D.C. Be Prepared for the Calculus Exam Mark Howell Gonzaga High School, Washington, D.C. Martha Montgomery Fremont City Schools, Fremont, Ohio Practice exam contributors: Benita Albert Oak Ridge High School,

More information

Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations

Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate

More information

AP Calculus AB 2006 Scoring Guidelines

AP Calculus AB 2006 Scoring Guidelines AP Calculus AB 006 Scoring Guidelines The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to college

More information

Derivatives: rules and applications (Stewart Ch. 3/4) The derivative f (x) of the function f(x):

Derivatives: rules and applications (Stewart Ch. 3/4) The derivative f (x) of the function f(x): Derivatives: rules and applications (Stewart Ch. 3/4) The derivative f (x) of the function f(x): f f(x + h) f(x) (x) = lim h 0 h (for all x for which f is differentiable/ the limit exists) Property:if

More information

1. [2.3] Techniques for Computing Limits Limits of Polynomials/Rational Functions/Continuous Functions. Indeterminate Form-Eliminate the Common Factor

1. [2.3] Techniques for Computing Limits Limits of Polynomials/Rational Functions/Continuous Functions. Indeterminate Form-Eliminate the Common Factor Review for the BST MTHSC 8 Name : [] Techniques for Computing Limits Limits of Polynomials/Rational Functions/Continuous Functions Evaluate cos 6 Indeterminate Form-Eliminate the Common Factor Find the

More information

5.1 Derivatives and Graphs

5.1 Derivatives and Graphs 5.1 Derivatives and Graphs What does f say about f? If f (x) > 0 on an interval, then f is INCREASING on that interval. If f (x) < 0 on an interval, then f is DECREASING on that interval. A function has

More information

Review Solutions MAT V1102. 1. (a) If u = 4 x, then du = dx. Hence, substitution implies 1. dx = du = 2 u + C = 2 4 x + C.

Review Solutions MAT V1102. 1. (a) If u = 4 x, then du = dx. Hence, substitution implies 1. dx = du = 2 u + C = 2 4 x + C. Review Solutions MAT V. (a) If u 4 x, then du dx. Hence, substitution implies dx du u + C 4 x + C. 4 x u (b) If u e t + e t, then du (e t e t )dt. Thus, by substitution, we have e t e t dt e t + e t u

More information

Name Calculus AP Chapter 7 Outline M. C.

Name Calculus AP Chapter 7 Outline M. C. Name Calculus AP Chapter 7 Outline M. C. A. AREA UNDER A CURVE: a. If y = f (x) is continuous and non-negative on [a, b], then the area under the curve of f from a to b is: A = f (x) dx b. If y = f (x)

More information

4 More Applications of Definite Integrals: Volumes, arclength and other matters

4 More Applications of Definite Integrals: Volumes, arclength and other matters 4 More Applications of Definite Integrals: Volumes, arclength and other matters Volumes of surfaces of revolution 4. Find the volume of a cone whose height h is equal to its base radius r, by using the

More information

Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations

Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations Difference Equations to Differential Equations Section 4.4 Using the Fundamental Theorem As we saw in Section 4.3, using the Fundamental Theorem of Integral Calculus reduces the problem of evaluating a

More information

MATH 10550, EXAM 2 SOLUTIONS. x 2 + 2xy y 2 + x = 2

MATH 10550, EXAM 2 SOLUTIONS. x 2 + 2xy y 2 + x = 2 MATH 10550, EXAM SOLUTIONS (1) Find an equation for the tangent line to at the point (1, ). + y y + = Solution: The equation of a line requires a point and a slope. The problem gives us the point so we

More information

1 Chapter Chapter Chapter Chapter 4 1

1 Chapter Chapter Chapter Chapter 4 1 Contents 1 Chapter 1 1 2 Chapter 2 1 3 Chapter 3 1 4 Chapter 4 1 5 Applications of Integrals 2 5.1 Area and Definite Integrals............................ 2 5.1.1 Area of a Region Between Two Curves.................

More information

2008 AP Calculus AB Multiple Choice Exam

2008 AP Calculus AB Multiple Choice Exam 008 AP Multiple Choice Eam Name 008 AP Calculus AB Multiple Choice Eam Section No Calculator Active AP Calculus 008 Multiple Choice 008 AP Calculus AB Multiple Choice Eam Section Calculator Active AP Calculus

More information

MATH 121 FINAL EXAM FALL 2010-2011. December 6, 2010

MATH 121 FINAL EXAM FALL 2010-2011. December 6, 2010 MATH 11 FINAL EXAM FALL 010-011 December 6, 010 NAME: SECTION: Instructions: Show all work and mark your answers clearly to receive full credit. This is a closed notes, closed book exam. No electronic

More information

Chapter 11 - Curve Sketching. Lecture 17. MATH10070 - Introduction to Calculus. maths.ucd.ie/modules/math10070. Kevin Hutchinson.

Chapter 11 - Curve Sketching. Lecture 17. MATH10070 - Introduction to Calculus. maths.ucd.ie/modules/math10070. Kevin Hutchinson. Lecture 17 MATH10070 - Introduction to Calculus maths.ucd.ie/modules/math10070 Kevin Hutchinson 28th October 2010 Z Chain Rule (I): If y = f (u) and u = g(x) dy dx = dy du du dx Z Chain rule (II): d dx

More information

3.4 Limits at Infinity - Asymptotes

3.4 Limits at Infinity - Asymptotes 3.4 Limits at Infinity - Asymptotes Definition 3.3. If f is a function defined on some interval (a, ), then f(x) = L means that values of f(x) are very close to L (keep getting closer to L) as x. The line

More information

Solution for Final Review Problems 1

Solution for Final Review Problems 1 Solution for Final Review Problems 1 (1) Compute the following its. (a) ( 2 + 1 2 1) ( 2 + 1 2 1) ( 2 + 1 2 1)( 2 + 1 + 2 1) 2 + 1 + 2 1 2 2 + 1 + 2 1 = (b) 1 3 3 1 (c) 3 1 3 1 ( 1)( 2 + ) 1 ( 1)( 2 +

More information

Practice Problems for Midterm 2

Practice Problems for Midterm 2 Practice Problems for Midterm () For each of the following, find and sketch the domain, find the range (unless otherwise indicated), and evaluate the function at the given point P : (a) f(x, y) = + 4 y,

More information

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx y 1 u 2 du u 1 3u 3 C

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx y 1 u 2 du u 1 3u 3 C Trigonometric Integrals In this section we use trigonometric identities to integrate certain combinations of trigonometric functions. We start with powers of sine and cosine. EXAMPLE Evaluate cos 3 x dx.

More information

MA107 Precalculus Algebra Exam 2 Review Solutions

MA107 Precalculus Algebra Exam 2 Review Solutions MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION So far, we have been concerned with some particular aspects of curve sketching: Domain, range, and symmetry (Chapter 1) Limits, continuity,

More information

Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum

Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum UNIT I: The Hyperbolic Functions basic calculus concepts, including techniques for curve sketching, exponential and logarithmic

More information

Calculus 1st Semester Final Review

Calculus 1st Semester Final Review Calculus st Semester Final Review Use the graph to find lim f ( ) (if it eists) 0 9 Determine the value of c so that f() is continuous on the entire real line if f ( ) R S T, c /, > 0 Find the limit: lim

More information

x = y + 2, and the line

x = y + 2, and the line WS 8.: Areas between Curves Name Date Period Worksheet 8. Areas between Curves Show all work on a separate sheet of paper. No calculator unless stated. Multiple Choice. Let R be the region in the first

More information

Blue Pelican Calculus First Semester

Blue Pelican Calculus First Semester Blue Pelican Calculus First Semester Teacher Version 1.01 Copyright 2011-2013 by Charles E. Cook; Refugio, Tx Edited by Jacob Cobb (All rights reserved) Calculus AP Syllabus (First Semester) Unit 1: Function

More information

Definition: Let S be a solid with cross-sectional area A(x) perpendicular to the x-axis at each point x [a, b]. The volume of S is V = A(x)dx.

Definition: Let S be a solid with cross-sectional area A(x) perpendicular to the x-axis at each point x [a, b]. The volume of S is V = A(x)dx. Section 7.: Volume Let S be a solid and suppose that the area of the cross-section of S in the plane P x perpendicular to the x-axis passing through x is A(x) for a x b. Consider slicing the solid into

More information

1. [20 Points] Evaluate each of the following limits. Please justify your answers. Be clear if the limit equals a value, + or, or Does Not Exist.

1. [20 Points] Evaluate each of the following limits. Please justify your answers. Be clear if the limit equals a value, + or, or Does Not Exist. Answer Key, Math, Final Eamination, December 9, 9. [ Points] Evaluate each of the following limits. Please justify your answers. Be clear if the limit equals a value, + or, or Does Not Eist. (a lim + 6

More information

Mark Howell Gonzaga High School, Washington, D.C.

Mark Howell Gonzaga High School, Washington, D.C. Be Prepared for the Calculus Eam Mark Howell Gonzaga High School, Washington, D.C. Martha Montgomery Fremont City Schools, Fremont, Ohio Practice eam contributors: Benita Albert Oak Ridge High School,

More information

The Derivative. Philippe B. Laval Kennesaw State University

The Derivative. Philippe B. Laval Kennesaw State University The Derivative Philippe B. Laval Kennesaw State University Abstract This handout is a summary of the material students should know regarding the definition and computation of the derivative 1 Definition

More information

AP Calculus AB 2007 Scoring Guidelines Form B

AP Calculus AB 2007 Scoring Guidelines Form B AP Calculus AB 7 Scoring Guidelines Form B The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to

More information

Review for Calculus Rational Functions, Logarithms & Exponentials

Review for Calculus Rational Functions, Logarithms & Exponentials Definition and Domain of Rational Functions A rational function is defined as the quotient of two polynomial functions. F(x) = P(x) / Q(x) The domain of F is the set of all real numbers except those for

More information

Derivatives and Graphs. Review of basic rules: We have already discussed the Power Rule.

Derivatives and Graphs. Review of basic rules: We have already discussed the Power Rule. Derivatives and Graphs Review of basic rules: We have already discussed the Power Rule. Product Rule: If y = f (x)g(x) dy dx = Proof by first principles: Quotient Rule: If y = f (x) g(x) dy dx = Proof,

More information

Techniques of Integration

Techniques of Integration CHPTER 7 Techniques of Integration 7.. Substitution Integration, unlike differentiation, is more of an art-form than a collection of algorithms. Many problems in applied mathematics involve the integration

More information

Notes on Curve Sketching. B. Intercepts: Find the y-intercept (f(0)) and any x-intercepts. Skip finding x-intercepts if f(x) is very complicated.

Notes on Curve Sketching. B. Intercepts: Find the y-intercept (f(0)) and any x-intercepts. Skip finding x-intercepts if f(x) is very complicated. Notes on Curve Sketching The following checklist is a guide to sketching the curve y = f(). A. Domain: Find the domain of f. B. Intercepts: Find the y-intercept (f(0)) and any -intercepts. Skip finding

More information

Finding Antiderivatives and Evaluating Integrals

Finding Antiderivatives and Evaluating Integrals Chapter 5 Finding Antiderivatives and Evaluating Integrals 5. Constructing Accurate Graphs of Antiderivatives Motivating Questions In this section, we strive to understand the ideas generated by the following

More information

3.1 MAXIMUM, MINIMUM AND INFLECTION POINT & SKETCHING THE GRAPH. In Isaac Newton's day, one of the biggest problems was poor navigation at sea.

3.1 MAXIMUM, MINIMUM AND INFLECTION POINT & SKETCHING THE GRAPH. In Isaac Newton's day, one of the biggest problems was poor navigation at sea. BA01 ENGINEERING MATHEMATICS 01 CHAPTER 3 APPLICATION OF DIFFERENTIATION 3.1 MAXIMUM, MINIMUM AND INFLECTION POINT & SKETCHING THE GRAPH Introduction to Applications of Differentiation In Isaac Newton's

More information

Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = e x. y = exp(x) if and only if x = ln(y)

Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = e x. y = exp(x) if and only if x = ln(y) Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = Last day, we saw that the function f(x) = ln x is one-to-one, with domain (, ) and range (, ). We can conclude that f(x) has an inverse function

More information

AP Calculus AB 2010 Free-Response Questions Form B

AP Calculus AB 2010 Free-Response Questions Form B AP Calculus AB 2010 Free-Response Questions Form B The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity.

More information

The Derivative and the Tangent Line Problem. The Tangent Line Problem

The Derivative and the Tangent Line Problem. The Tangent Line Problem The Derivative and the Tangent Line Problem Calculus grew out of four major problems that European mathematicians were working on during the seventeenth century. 1. The tangent line problem 2. The velocity

More information

AP Calculus AB. Practice Exam. Advanced Placement Program

AP Calculus AB. Practice Exam. Advanced Placement Program Advanced Placement Program AP Calculus AB Practice Exam The questions contained in this AP Calculus AB Practice Exam are written to the content specifications of AP Exams for this subject. Taking this

More information

Solutions for Review Problems

Solutions for Review Problems olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector

More information

Curve Sketching GUIDELINES FOR SKETCHING A CURVE: A. Domain. B. Intercepts: x- and y-intercepts.

Curve Sketching GUIDELINES FOR SKETCHING A CURVE: A. Domain. B. Intercepts: x- and y-intercepts. Curve Sketching GUIDELINES FOR SKETCHING A CURVE: A. Domain. B. Intercepts: x- and y-intercepts. C. Symmetry: even (f( x) = f(x)) or odd (f( x) = f(x)) function or neither, periodic function. ( ) ( ) D.

More information

1.(6pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9.

1.(6pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9. .(6pts Find symmetric equations of the line L passing through the point (, 5, and perpendicular to the plane x + 3y z = 9. (a x = y + 5 3 = z (b x (c (x = ( 5(y 3 = z + (d x (e (x + 3(y 3 (z = 9 = y 3

More information

Calculus Card Matching

Calculus Card Matching Card Matching Card Matching A Game of Matching Functions Description Give each group of students a packet of cards. Students work as a group to match the cards, by thinking about their card and what information

More information

Fundamental Theorems of Vector Calculus

Fundamental Theorems of Vector Calculus Fundamental Theorems of Vector Calculus We have studied the techniques for evaluating integrals over curves and surfaces. In the case of integrating over an interval on the real line, we were able to use

More information

Math 120 Final Exam Practice Problems, Form: A

Math 120 Final Exam Practice Problems, Form: A Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,

More information

So here s the next version of Homework Help!!!

So here s the next version of Homework Help!!! HOMEWORK HELP FOR MATH 52 So here s the next version of Homework Help!!! I am going to assume that no one had any great difficulties with the problems assigned this quarter from 4.3 and 4.4. However, if

More information

Taylor Polynomials and Taylor Series Math 126

Taylor Polynomials and Taylor Series Math 126 Taylor Polynomials and Taylor Series Math 26 In many problems in science and engineering we have a function f(x) which is too complicated to answer the questions we d like to ask. In this chapter, we will

More information

1. AREA BETWEEN the CURVES

1. AREA BETWEEN the CURVES 1 The area between two curves The Volume of the Solid of revolution (by slicing) 1. AREA BETWEEN the CURVES da = {( outer function ) ( inner )} dx function b b A = da = [y 1 (x) y (x)]dx a a d d A = da

More information

Solutions to Exercises, Section 5.1

Solutions to Exercises, Section 5.1 Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle

More information

Some Notes on Taylor Polynomials and Taylor Series

Some Notes on Taylor Polynomials and Taylor Series Some Notes on Taylor Polynomials and Taylor Series Mark MacLean October 3, 27 UBC s courses MATH /8 and MATH introduce students to the ideas of Taylor polynomials and Taylor series in a fairly limited

More information

AP Calculus AB 2011 Scoring Guidelines

AP Calculus AB 2011 Scoring Guidelines AP Calculus AB Scoring Guidelines The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded in 9, the

More information

Math 1B, lecture 5: area and volume

Math 1B, lecture 5: area and volume Math B, lecture 5: area and volume Nathan Pflueger 6 September 2 Introduction This lecture and the next will be concerned with the computation of areas of regions in the plane, and volumes of regions in

More information

AP Calculus AB 2005 Free-Response Questions

AP Calculus AB 2005 Free-Response Questions AP Calculus AB 25 Free-Response Questions The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to

More information

Student Performance Q&A:

Student Performance Q&A: Student Performance Q&A: 2008 AP Calculus AB and Calculus BC Free-Response Questions The following comments on the 2008 free-response questions for AP Calculus AB and Calculus BC were written by the Chief

More information

MATH 2300 review problems for Exam 3 ANSWERS

MATH 2300 review problems for Exam 3 ANSWERS MATH 300 review problems for Exam 3 ANSWERS. Check whether the following series converge or diverge. In each case, justify your answer by either computing the sum or by by showing which convergence test

More information

106 Chapter 5 Curve Sketching. If f(x) has a local extremum at x = a and. THEOREM 5.1.1 Fermat s Theorem f is differentiable at a, then f (a) = 0.

106 Chapter 5 Curve Sketching. If f(x) has a local extremum at x = a and. THEOREM 5.1.1 Fermat s Theorem f is differentiable at a, then f (a) = 0. 5 Curve Sketching Whether we are interested in a function as a purely mathematical object or in connection with some application to the real world, it is often useful to know what the graph of the function

More information

Chapter 11. Techniques of Integration

Chapter 11. Techniques of Integration Chapter Techniques of Integration Chapter 6 introduced the integral. There it was defined numerically, as the limit of approximating Riemann sums. Evaluating integrals by applying this basic definition

More information

PROBLEM SET. Practice Problems for Exam #2. Math 2350, Fall Nov. 7, 2004 Corrected Nov. 10 ANSWERS

PROBLEM SET. Practice Problems for Exam #2. Math 2350, Fall Nov. 7, 2004 Corrected Nov. 10 ANSWERS PROBLEM SET Practice Problems for Exam #2 Math 2350, Fall 2004 Nov. 7, 2004 Corrected Nov. 10 ANSWERS i Problem 1. Consider the function f(x, y) = xy 2 sin(x 2 y). Find the partial derivatives f x, f y,

More information

Solutions to old Exam 1 problems

Solutions to old Exam 1 problems Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections

More information

x 2 y 2 +3xy ] = d dx dx [10y] dy dx = 2xy2 +3y

x 2 y 2 +3xy ] = d dx dx [10y] dy dx = 2xy2 +3y MA7 - Calculus I for thelife Sciences Final Exam Solutions Spring -May-. Consider the function defined implicitly near (,) byx y +xy =y. (a) [7 points] Use implicit differentiation to find the derivative

More information

CALCULUS 2. 0 Repetition. tutorials 2015/ Find limits of the following sequences or prove that they are divergent.

CALCULUS 2. 0 Repetition. tutorials 2015/ Find limits of the following sequences or prove that they are divergent. CALCULUS tutorials 5/6 Repetition. Find limits of the following sequences or prove that they are divergent. a n = n( ) n, a n = n 3 7 n 5 n +, a n = ( n n 4n + 7 ), a n = n3 5n + 3 4n 7 3n, 3 ( ) 3n 6n

More information

TOPIC 3: CONTINUITY OF FUNCTIONS

TOPIC 3: CONTINUITY OF FUNCTIONS TOPIC 3: CONTINUITY OF FUNCTIONS. Absolute value We work in the field of real numbers, R. For the study of the properties of functions we need the concept of absolute value of a number. Definition.. Let

More information

AP Calculus AB 1998 Scoring Guidelines

AP Calculus AB 1998 Scoring Guidelines AP Calculus AB 1998 Scoring Guidelines These materials are intended for non-commercial use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced

More information

AP Calculus AB 2006 Free-Response Questions

AP Calculus AB 2006 Free-Response Questions AP Calculus AB 2006 Free-Response Questions The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to

More information

The graphs of f and g intersect at (0, 0) and one other point. Find that point: f(y) = g(y) y 2 4y 2y 2 6y = = 2y y 2. 2y(y 3) = 0

The graphs of f and g intersect at (0, 0) and one other point. Find that point: f(y) = g(y) y 2 4y 2y 2 6y = = 2y y 2. 2y(y 3) = 0 . Compute the area between the curves x y 4y and x y y. Let f(y) y 4y y(y 4). f(y) when y or y 4. Let g(y) y y y( y). g(y) when y or y. x 3 y? The graphs of f and g intersect at (, ) and one other point.

More information

www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates

www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c

More information

Catholic Schools Trial Examination 2004 Mathematics

Catholic Schools Trial Examination 2004 Mathematics 0 Catholic Trial HSC Examination Mathematics Page Catholic Schools Trial Examination 0 Mathematics a If x 5 = 5000, find x correct to significant figures. b Express 0. + 0.. in the form b a, where a and

More information

7.3 Volumes Calculus

7.3 Volumes Calculus 7. VOLUMES Just like in the last section where we found the area of one arbitrary rectangular strip and used an integral to add up the areas of an infinite number of infinitely thin rectangles, we are

More information

Limit processes are the basis of calculus. For example, the derivative. f f (x + h) f (x)

Limit processes are the basis of calculus. For example, the derivative. f f (x + h) f (x) SEC. 4.1 TAYLOR SERIES AND CALCULATION OF FUNCTIONS 187 Taylor Series 4.1 Taylor Series and Calculation of Functions Limit processes are the basis of calculus. For example, the derivative f f (x + h) f

More information

D f = (2, ) (x + 1)(x 3) (b) g(x) = x 1 solution: We need the thing inside the root to be greater than or equal to 0. So we set up a sign table.

D f = (2, ) (x + 1)(x 3) (b) g(x) = x 1 solution: We need the thing inside the root to be greater than or equal to 0. So we set up a sign table. . Find the domains of the following functions: (a) f(x) = ln(x ) We need x > 0, or x >. Thus D f = (, ) (x + )(x 3) (b) g(x) = x We need the thing inside the root to be greater than or equal to 0. So we

More information

Microeconomic Theory: Basic Math Concepts

Microeconomic Theory: Basic Math Concepts Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts

More information

AP Calculus AB 2004 Scoring Guidelines

AP Calculus AB 2004 Scoring Guidelines AP Calculus AB 4 Scoring Guidelines The materials included in these files are intended for noncommercial use by AP teachers for course and eam preparation; permission for any other use must be sought from

More information

AP Calculus AB First Semester Final Exam Practice Test Content covers chapters 1-3 Name: Date: Period:

AP Calculus AB First Semester Final Exam Practice Test Content covers chapters 1-3 Name: Date: Period: AP Calculus AB First Semester Final Eam Practice Test Content covers chapters 1- Name: Date: Period: This is a big tamale review for the final eam. Of the 69 questions on this review, questions will be

More information

Calculus with Parametric Curves

Calculus with Parametric Curves Calculus with Parametric Curves Suppose f and g are differentiable functions and we want to find the tangent line at a point on the parametric curve x f(t), y g(t) where y is also a differentiable function

More information

Extra Problems for Midterm 2

Extra Problems for Midterm 2 Extra Problems for Midterm Sudesh Kalyanswamy Exercise (Surfaces). Find the equation of, and classify, the surface S consisting of all points equidistant from (0,, 0) and (,, ). Solution. Let P (x, y,

More information

Mark Howell Gonzaga High School, Washington, D.C.

Mark Howell Gonzaga High School, Washington, D.C. Be Prepared for the Calculus Exam Mark Howell Gonzaga High School, Washington, D.C. Martha Montgomery Fremont City Schools, Fremont, Ohio Practice exam contributors: Benita Albert Oak Ridge High School,

More information

Solutions to Study Guide for Test 3. Part 1 No Study Guide, No Calculator

Solutions to Study Guide for Test 3. Part 1 No Study Guide, No Calculator Solutions to Study Guide for Test 3 Part 1 No Study Guide, No Calculator 1. State the definition of the derivative of a function. Solution: The derivative of a function f with respect to x is the function

More information

Items related to expected use of graphing technology appear in bold italics.

Items related to expected use of graphing technology appear in bold italics. - 1 - Items related to expected use of graphing technology appear in bold italics. Investigating the Graphs of Polynomial Functions determine, through investigation, using graphing calculators or graphing

More information

f(x) = lim 2) = 2 2 = 0 (c) Provide a rough sketch of f(x). Be sure to include your scale, intercepts and label your axis.

f(x) = lim 2) = 2 2 = 0 (c) Provide a rough sketch of f(x). Be sure to include your scale, intercepts and label your axis. Math 16 - Final Exam Solutions - Fall 211 - Jaimos F Skriletz 1 Answer each of the following questions to the best of your ability. To receive full credit, answers must be supported by a sufficient amount

More information

AP Calculus AB 2009 Scoring Guidelines

AP Calculus AB 2009 Scoring Guidelines AP Calculus AB 9 Scoring Guidelines The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded in 19,

More information

Analyzing Piecewise Functions

Analyzing Piecewise Functions Connecting Geometry to Advanced Placement* Mathematics A Resource and Strategy Guide Updated: 04/9/09 Analyzing Piecewise Functions Objective: Students will analyze attributes of a piecewise function including

More information

(b)using the left hand end points of the subintervals ( lower sums ) we get the aprroximation

(b)using the left hand end points of the subintervals ( lower sums ) we get the aprroximation (1) Consider the function y = f(x) =e x on the interval [, 1]. (a) Find the area under the graph of this function over this interval using the Fundamental Theorem of Calculus. (b) Subdivide the interval

More information

21-114: Calculus for Architecture Homework #1 Solutions

21-114: Calculus for Architecture Homework #1 Solutions 21-114: Calculus for Architecture Homework #1 Solutions November 9, 2004 Mike Picollelli 1.1 #26. Find the domain of g(u) = u + 4 u. Solution: We solve this by considering the terms in the sum separately:

More information

Solutions to Homework 10

Solutions to Homework 10 Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

More information