Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus


 Myron Mitchell
 2 years ago
 Views:
Transcription
1 Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus Objectives: This is your review of trigonometry: angles, six trig. functions, identities and formulas, graphs: domain, range and transformations. Angle Measure Angles can be measured in ways, in degrees or in radians. The following picture shows the relationship between the two measurements for the most frequently used angles. Notice, degrees will always have the degree symbol above their measure, as in 5, whereas radians are real number without any dimensions, so the number 5 without any symbol represents an angle of 5 radians. An angle is made up of an initial side (positioned on the positive xaxis) and a terminal side (where the angle lands). It is useful to note the quadrant where the terminal side falls. Rotation direction Positive angles start on the positive xaxis and rotate counterclockwise. Negative angles start on the positive xaxis, also, and rotate clockwise. Conversion between radians and degrees when radians are given in terms of DEGREES RADIANS: The official formula is θ θ radians 80 Ex. Convert 0 into radians SOLUTION: 0 radians RADIANS DEGREES: The conversion formula is θ radians θ Ex. Convert 5 into degrees. SOLUTION:
2 For your own reference, radian 57.0 A radian is defined by the radius of a circle. If you measure off the radius of the circle, then take the straight radius and curved it along the edge of the circle, the angle this arc marks off measures radian. Arc length: when using radians you can determine the arc length of the intercepted arc using this formula: Arc length (radius) (degree measure in radians) OR s rθ There may be times you ll use variations of this formula. Ex. Find the length of the arc pictured here: SOLUTION: s rθ you know the values of r and θ 5 5 s 5 units for the arc length.
3 The Trigonometric Ratios The six trigonometric ratios are defined in the following way based on this right triangle and the angle θ adj. adjacent side to angle θ opp. opposite side to angle θ hyp. hypotenuse of the right triangle SOH CAH TOA sinθ opp. hyp. cosθ adj. hyp. tanθ opp. adj. Reciprocal functions cscθ hyp. opp. secθ hyp. adj. cotθ adj. opp. Ex. Find the exact values of all trigonometric functions of the angle θ shown in the figure. SOLUTION: first you ll need to determine the rd side using a + b c a + 5 So for the angle labeled θ, ADJACENT, OPPOSITE 5 and HYPOTENUSE a opp 5 sinθ hyp hyp cscθ opp 5 adj cosθ hyp hyp secθ adj opp 5 tanθ adj adj cotθ opp 5 Special Angles The following triangles will help you to memorize the trig functions of these special angles 0 0 5
4 If the triangles are not your preferred way of memorizing exact trig. ratios, then use this table. θ θ RAD sinθ cosθ tanθ cscθ secθ cotθ but even better than this is the unit circle. The trig. ratios are defined as sin t y cost x tan t csct y, x 0 x, y 0 y sect, x 0 x x cot t, y 0 y
5 Domain and Period of Sine and Cosine Considering the trigonometric ratios as functions where the INPUT values of t come from values (angles) on the unit circle, then you can say the domain of these functions would be all real numbers. Domain of Sine and Cosine: All real numbers Based on the way the domain values can start to cycle back over the same points to produce the same OUTPUT over and over again, the range is said be periodic. But still, the largest value that sine and cosine OUTPUT on the unit circle is the value of, the lowest value of OUTPUT is. Range of Sine and Cosine: [, ] Since the real line can wrap around the unit circle an infinite number of times, we can extend the domain values of t outside the interval [ 0, ]. As the line wraps around further, certain points will overlap on the same ( x, y ) coordinates on the unit circle. Specifically for the functions sine and cosine, for any value sint and cost if we add to t we end up at the same ( x, y ) point on the unit circle. Thus sin( t+ n ) sint and cos( t+ n ) cost for any integer n multiple of. These cyclic natures of the sine and cosine functions make them periodic functions. Graphs of Sine and Cosine Below is a table of values, similar to the tables we ve used before. We re going to start thinking of how to get the graphs of the functions y sin x and y cos x. x 0 y sin x y cos x Now, if you plot these yvalues over the xvalues we have from the unwrapped unit circle, we get these graphs. One very misleading fact about these pictures is the domain of the function remember that the functions of sine and cosine are periodic and they exist for input outside the interval [0, ]. The domain of these functions is all real numbers and these graphs continue to the left and right in the same sinusoidal pattern. The range is [,].
6 Amplitude When the sine or cosine function has a coefficient in front, such as the value of a in the equation y asin x or y acos x, this causes the graph to stretch or shrink its yvalues. This is referred to as the amplitude. Ex. Compare the graphs of y cos x y cos x y cos x y cos x amplitude amplitude amplitude ½ amplitude with reflection in xaxis Amplitude is an absolute value quantity. When the coefficient is negative, this causes an xaxis reflection. Period If there is a coefficient within the argument in front of the x, this will change the length of the function s period. The usual cycle for sine and cosine is on the interval 0 x, but here s how this can change Let b be a positive real number. The period of y asin bx and y acos bx is found this way: 0 bx divide by b 0 x b NOTE: If b >, this will cause the graph to shrink horizontally because the period will be less than. If 0 < b <, the graph will stretch horizontally making the period greater than. You ll need to adjust the key points of the graph when the period changes! Key points are found by dividing the period length into increments. Ex. Sketch a graph of y sin( x ) by hand. SOLUTION: The coefficient a will effect the range of the graph. The amplitude is. Now the period is determined by taking the argument expression inside the function and solving this inequality 0 x multiply by on all sides 0 x 8 You should divide the interval 0 x 8 into equal increments.
7 Ex. Sketch the graph of y 8cos(0 x). SOLUTION: The amplitude here is 8. The negative sign means the graph of cosine will be reflected in the xaxis. The period for the graph will be 0 0x 0 x 5 The period here is so much smaller than usual, when you graph it on the calculator, it looks too narrow. You ll need to scale the graph down so you can get an accurate picture of the wave. One full period of this graph is shown in red above. Don t forget, just because you re only graphing one full cycle of the function doesn t mean it stops there these graphs continue on in a periodic motion. Translations or Phase Shift For the equation y asin( bx+ c) and y acos( bx+ c) you can determine the phase shift in a way similar to determining the period of the function. c c Set up an inequality 0 bx + c solve for x x b b This new interval represents where the usual cycle for the sine or cosine graph gets shifted to on the xaxis. Ex. Sketch the function y 0.5cos( x ) +. SOLUTION: Amplitude 0.5, Period, now determine the phase shift interval. 7 0 x + subtract x x 7 So, one full cycle of this function s graph will be on the interval x. After you determine the interval for the phase shift, I recommend labeling the xaxis first with all the critical points. Don t position the yaxis until you ve labeled all the points first, then you can decide where the yaxis should fall. The critical points are at x,,, 5 and 7
8 Ex. Graph the function f( x) sin( x ) SOLUTION: This one s got it all! Amplitude with a reflection, period b, phase shift 0 x x + x AND a vertical shift by units. The vertical shift is easy to manage, just prepare the function as you would normally, but shift the xaxis portion of the graph up units in the ydirection. On these vertically shifted problems, it may help to draw in a dotted xaxis to help determine your critical points and sketch the graph. Then when you determine where the y axis falls, you can draw a solid xaxis where it should go. Identities and Formulas Here s a listing of some of the various formulas and identities from trig. which we ll use through calculus. Reciprocal Identities sin u cscu cos u secu tan u cot u cscu sin u sec u cosu cot u tanu Pythagorean Identities sin u+ cos u also cos u sin u and sin u cos u + tan u sec u also tan sec u u and sec u tan u + cot u csc u also cot csc u u and csc u cot u Quotient Identities sin u tanu cosu cosu cot u sinu Even / Odd Identities ODDS sin( u) sinu csc( u) cscu tan( u) tanu cot( u) cot u EVENS cos( u) cosu sec( u) secu
9 These formulas will be used a little less often, but when you need them they are located inside your book cover. You will not have to memorize these. Angle Sum and Difference Formulas sin( α + β) sinα cosβ + cosα sinβ sin( α β) sinαcosβ cosαsinβ cos( α + β) cosα cosβ sinα sinβ cos( α β) cosαcosβ+ sinαsinβ tanα + tanβ tanα tanβ tan( α+ β) tan( α β) tanαtanβ + tanαtanβ The Double Angle Formulas For Sine For Cosine For Tangent cosu cos u sin u tanu sin u sinucosu cosu cos u tan u tan u cosu sin u Power Reduction (a.k.a. HalfAngle) Formulas cosx sin x + cosx cos x The Product to Sum formulas Sum to Product Formulas ( ) ( ) ( ) ( ) ( ) ( ) sinα cos β sin α + β + sin α β cosα cos β cos α + β + cos α β sinα sin β cos α β cos α +β x + y x y sin x+ sin y sin cos x + y x y sin x sin y cos sin x + y x y cos x+ cos y cos cos x + y x y cos x cos y sin sin
10 Trigonometric Equations We ll have to solve some trigonometric equations incidentally throughout calculus. Here s a quick review on how the unit circle can help solve these equations. Ex) Solve the equation cscx + 0 on the interval [0, ). SOLUTION: First: Solve for the trig function involved cscx + 0 cscx csc x csc x If csc x then this also means sin x this will help you identify the angles on the unit circle. Second: Identify the angles which satisfy the equation: Sine is defined by as the ycoordinates on the unit circle. You re looking for the unit circle angles where the ycoordinate is /. This happens in two places 5 x and x. The solutions are 5 x and x.
Angles and Their Measure
Trigonometry Lecture Notes Section 5.1 Angles and Their Measure Definitions: A Ray is part of a line that has only one end point and extends forever in the opposite direction. An Angle is formed by two
More information5.2 Unit Circle: Sine and Cosine Functions
Chapter 5 Trigonometric Functions 75 5. Unit Circle: Sine and Cosine Functions In this section, you will: Learning Objectives 5..1 Find function values for the sine and cosine of 0 or π 6, 45 or π 4 and
More informationChapter 5: Trigonometric Functions of Real Numbers
Chapter 5: Trigonometric Functions of Real Numbers 5.1 The Unit Circle The unit circle is the circle of radius 1 centered at the origin. Its equation is x + y = 1 Example: The point P (x, 1 ) is on the
More information4.1 Radian and Degree Measure
Date: 4.1 Radian and Degree Measure Syllabus Objective: 3.1 The student will solve problems using the unit circle. Trigonometry means the measure of triangles. Terminal side Initial side Standard Position
More informationPreCalculus II. where 1 is the radius of the circle and t is the radian measure of the central angle.
PreCalculus II 4.2 Trigonometric Functions: The Unit Circle The unit circle is a circle of radius 1, with its center at the origin of a rectangular coordinate system. The equation of this unit circle
More information3. Right Triangle Trigonometry
. Right Triangle Trigonometry. Reference Angle. Radians and Degrees. Definition III: Circular Functions.4 Arc Length and Area of a Sector.5 Velocities . Reference Angle Reference Angle Reference angle
More information4.5 Graphing Sine and Cosine
.5 Graphing Sine and Cosine Imagine taking the circumference of the unit circle and peeling it off the circle and straightening it out so that the radian measures from 0 to π lie on the x axis. This is
More informationMAC 1114: Trigonometry Notes
MAC 1114: Trigonometry Notes Instructor: Brooke Quinlan Hillsborough Community College Section 7.1 Angles and Their Measure Greek Letters Commonly Used in Trigonometry Quadrant II Quadrant III Quadrant
More information29 Wyner PreCalculus Fall 2016
9 Wyner PreCalculus Fall 016 CHAPTER THREE: TRIGONOMETRIC EQUATIONS Review November 8 Test November 17 Trigonometric equations can be solved graphically or algebraically. Solving algebraically involves
More informationTrigonometry LESSON TWO  The Unit Circle Lesson Notes
(cosθ, sinθ) Trigonometry Example 1 Introduction to Circle Equations. a) A circle centered at the origin can be represented by the relation x 2 + y 2 = r 2, where r is the radius of the circle. Draw each
More informationTriangle Definition of sin and cos
Triangle Definition of sin and cos Then Consider the triangle ABC below. Let A be called. A HYP (hpotenuse) ADJ (side adjacent to the angle ) B C OPP (side opposite to the angle ) sin OPP HYP BC AB ADJ
More informationWORKBOOK. MATH 30. PRECALCULUS MATHEMATICS.
WORKBOOK. MATH 30. PRECALCULUS MATHEMATICS. DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE Contributor: U.N.Iyer Department of Mathematics and Computer Science, CP 315, Bronx Community College, University
More informationMath 115 Spring 2014 Written Homework 10SOLUTIONS Due Friday, April 25
Math 115 Spring 014 Written Homework 10SOLUTIONS Due Friday, April 5 1. Use the following graph of y = g(x to answer the questions below (this is NOT the graph of a rational function: (a State the domain
More informationTrigonometric Functions and Triangles
Trigonometric Functions and Triangles Dr. Philippe B. Laval Kennesaw STate University August 27, 2010 Abstract This handout defines the trigonometric function of angles and discusses the relationship between
More informationSolutions to Exercises, Section 5.1
Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle
More informationChapter 6 Trigonometric Functions of Angles
6.1 Angle Measure Chapter 6 Trigonometric Functions of Angles In Chapter 5, we looked at trig functions in terms of real numbers t, as determined by the coordinates of the terminal point on the unit circle.
More informationMATHEMATICS PAPER 2. Samir Daniels Mathematics Paper 2 Page 1
MATHEMATICS PAPER 2 Geometry... 2 Transformations... 3 Rotation Anticlockwise around the origin... 3 Trigonometry... 4 Graph shifts... 4 Reduction Formula... 4 Proving Identities... 6 Express in terms
More informationMA Lesson 19 Summer 2016 Angles and Trigonometric Functions
DEFINITIONS: An angle is defined as the set of points determined by two rays, or halflines, l 1 and l having the same end point O. An angle can also be considered as two finite line segments with a common
More informationSection 9.4 Trigonometric Functions of any Angle
Section 9. Trigonometric Functions of any Angle So far we have only really looked at trigonometric functions of acute (less than 90º) angles. We would like to be able to find the trigonometric functions
More informationAngles and Quadrants. Angle Relationships and Degree Measurement. Chapter 7: Trigonometry
Chapter 7: Trigonometry Trigonometry is the study of angles and how they can be used as a means of indirect measurement, that is, the measurement of a distance where it is not practical or even possible
More informationEvaluating trigonometric functions
MATH 1110 0090906 Evaluating trigonometric functions Remark. Throughout this document, remember the angle measurement convention, which states that if the measurement of an angle appears without units,
More informationChapter 6: Periodic Functions
Chapter 6: Periodic Functions In the previous chapter, the trigonometric functions were introduced as ratios of sides of a triangle, and related to points on a circle. We noticed how the x and y values
More information9.1 Trigonometric Identities
9.1 Trigonometric Identities r y x θ x y θ r sin (θ) = y and sin (θ) = y r r so, sin (θ) =  sin (θ) and cos (θ) = x and cos (θ) = x r r so, cos (θ) = cos (θ) And, Tan (θ) = sin (θ) =  sin (θ)
More informationTrigonometry Notes Sarah Brewer Alabama School of Math and Science. Last Updated: 25 November 2011
Trigonometry Notes Sarah Brewer Alabama School of Math and Science Last Updated: 25 November 2011 6 Basic Trig Functions Defined as ratios of sides of a right triangle in relation to one of the acute angles
More information6.1  Introduction to Periodic Functions
6.1  Introduction to Periodic Functions Periodic Functions: Period, Midline, and Amplitude In general: A function f is periodic if its values repeat at regular intervals. Graphically, this means that
More information4.3 & 4.8 Right Triangle Trigonometry. Anatomy of Right Triangles
4.3 & 4.8 Right Triangle Trigonometry Anatomy of Right Triangles The right triangle shown at the right uses lower case a, b and c for its sides with c being the hypotenuse. The sides a and b are referred
More informationTrigonometry Review Workshop 1
Trigonometr Review Workshop Definitions: Let P(,) be an point (not the origin) on the terminal side of an angle with measure θ and let r be the distance from the origin to P. Then the si trig functions
More informationy = rsin! (opp) x = z cos! (adj) sin! = y z = The Other Trig Functions
MATH 7 Right Triangle Trig Dr. Neal, WKU Previously, we have seen the right triangle formulas x = r cos and y = rsin where the hypotenuse r comes from the radius of a circle, and x is adjacent to and y
More informationChapter 5 The Trigonometric Functions
P a g e 40 Chapter 5 The Trigonometric Functions Section 5.1 Angles Initial side Terminal side Standard position of an angle Positive angle Negative angle Coterminal Angles Acute angle Obtuse angle Complementary
More informationAnalytic Trigonometry
Name Chapter 5 Analytic Trigonometry Section 5.1 Using Fundamental Identities Objective: In this lesson you learned how to use fundamental trigonometric identities to evaluate trigonometric functions and
More informationy = a sin ωt or y = a cos ωt then the object is said to be in simple harmonic motion. In this case, Amplitude = a (maximum displacement)
5.5 Modelling Harmonic Motion Periodic behaviour happens a lot in nature. Examples of things that oscillate periodically are daytime temperature, the position of a weight on a spring, and tide level. If
More informationSAT Subject Math Level 2 Facts & Formulas
Numbers, Sequences, Factors Integers:..., 3, 2, 1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Arithmetic Sequences: PEMDAS (Parentheses
More informationTrigonometry LESSON ONE  Degrees and Radians Lesson Notes
210 180 = 7 6 Trigonometry Example 1 Define each term or phrase and draw a sample angle. Angle Definitions a) angle in standard position: Draw a standard position angle,. b) positive and negative angles:
More information6.3 Inverse Trigonometric Functions
Chapter 6 Periodic Functions 863 6.3 Inverse Trigonometric Functions In this section, you will: Learning Objectives 6.3.1 Understand and use the inverse sine, cosine, and tangent functions. 6.3. Find the
More informationIntroduction Assignment
PRECALCULUS 11 Introduction Assignment Welcome to PREC 11! This assignment will help you review some topics from a previous math course and introduce you to some of the topics that you ll be studying
More informationAlgebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123
Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from
More informationMath Placement Test Practice Problems
Math Placement Test Practice Problems The following problems cover material that is used on the math placement test to place students into Math 1111 College Algebra, Math 1113 Precalculus, and Math 2211
More informationArea and Arc Length in Polar Coordinates
Area and Arc Length in Polar Coordinates The Cartesian Coordinate System (rectangular coordinates) is not always the most convenient way to describe points, or relations in the plane. There are certainly
More information4. Graphing and Inverse Functions
4. Graphing and Inverse Functions 4. Basic Graphs 4. Amplitude, Reflection, and Period 4.3 Vertical Translation and Phase Shifts 4.4 The Other Trigonometric Functions 4.5 Finding an Equation From Its Graph
More informationTrigonometry Lesson Objectives
Trigonometry Lesson Unit 1: RIGHT TRIANGLE TRIGONOMETRY Lengths of Sides Evaluate trigonometric expressions. Express trigonometric functions as ratios in terms of the sides of a right triangle. Use the
More informationPOLAR COORDINATES DEFINITION OF POLAR COORDINATES
POLAR COORDINATES DEFINITION OF POLAR COORDINATES Before we can start working with polar coordinates, we must define what we will be talking about. So let us first set us a diagram that will help us understand
More informationAbout Trigonometry. Triangles
About Trigonometry TABLE OF CONTENTS About Trigonometry... 1 What is TRIGONOMETRY?... 1 Triangles... 1 Background... 1 Trigonometry with Triangles... 1 Circles... 2 Trigonometry with Circles... 2 Rules/Conversion...
More informationMPE Review Section II: Trigonometry
MPE Review Section II: Trigonometry Review similar triangles, right triangles, and the definition of the sine, cosine and tangent functions of angles of a right triangle In particular, recall that the
More informationTrigonometric Functions: The Unit Circle
Trigonometric Functions: The Unit Circle This chapter deals with the subject of trigonometry, which likely had its origins in the study of distances and angles by the ancient Greeks. The word trigonometry
More informationSemester 2, Unit 4: Activity 21
Resources: SpringBoard PreCalculus Online Resources: PreCalculus Springboard Text Unit 4 Vocabulary: Identity Pythagorean Identity Trigonometric Identity Cofunction Identity Sum and Difference Identities
More informationTrigonometry Chapter 3 Lecture Notes
Ch Notes Morrison Trigonometry Chapter Lecture Notes Section. Radian Measure I. Radian Measure A. Terminology When a central angle (θ) intercepts the circumference of a circle, the length of the piece
More informationRight Triangle Trigonometry
Right Triangle Trigonometry MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this lesson we will learn to: evaluate trigonometric functions of acute angles, use
More informationHow to Graph Trigonometric Functions
How to Graph Trigonometric Functions This handout includes instructions for graphing processes of basic, amplitude shifts, horizontal shifts, and vertical shifts of trigonometric functions. The Unit Circle
More informationANALYTICAL METHODS FOR ENGINEERS
UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME  TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations
More informationStudent Academic Learning Services Page 1 of 6 Trigonometry
Student Academic Learning Services Page 1 of 6 Trigonometry Purpose Trigonometry is used to understand the dimensions of triangles. Using the functions and ratios of trigonometry, the lengths and angles
More information6.1 Graphs of the Sine and Cosine Functions
810 Chapter 6 Periodic Functions 6.1 Graphs of the Sine and Cosine Functions In this section, you will: Learning Objectives 6.1.1 Graph variations of y=sin( x ) and y=cos( x ). 6.1. Use phase shifts of
More informationFinding trig functions given another or a point (i.e. sin θ = 3 5. Finding trig functions given quadrant and line equation (Problems in 6.
1 Math 3 Final Review Guide This is a summary list of many concepts covered in the different sections and some examples of types of problems that may appear on the Final Exam. The list is not exhaustive,
More information4.6 GRAPHS OF OTHER TRIGONOMETRIC FUNCTIONS. Copyright Cengage Learning. All rights reserved.
4.6 GRAPHS OF OTHER TRIGONOMETRIC FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch the graphs of tangent functions. Sketch the graphs of cotangent functions. Sketch
More informationFURTHER TRIGONOMETRIC IDENTITIES AND EQUATIONS
Mathematics Revision Guides Further Trigonometric Identities and Equations Page of 7 M.K. HOME TUITION Mathematics Revision Guides Level: AS / A Level AQA : C4 Edexcel: C3 OCR: C3 OCR MEI: C4 FURTHER TRIGONOMETRIC
More informationTrigonometry (Chapters 4 5) Sample Test #1 First, a couple of things to help out:
First, a couple of things to help out: Page 1 of 24 Use periodic properties of the trigonometric functions to find the exact value of the expression. 1. cos 2. sin cos sin 2cos 4sin 3. cot cot 2 cot Sin
More informationwww.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates
Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c
More informationExample 1. Example 1 Plot the points whose polar coordinates are given by
Polar Coordinates A polar coordinate system, gives the coordinates of a point with reference to a point O and a half line or ray starting at the point O. We will look at polar coordinates for points
More informationPHYSICS 151 Notes for Online Lecture #6
PHYSICS 151 Notes for Online Lecture #6 Vectors  A vector is basically an arrow. The length of the arrow represents the magnitude (value) and the arrow points in the direction. Many different quantities
More informationpp. 4 8: Examples 1 6 Quick Check 1 6 Exercises 1, 2, 20, 42, 43, 64
Semester 1 Text: Chapter 1: Tools of Algebra Lesson 11: Properties of Real Numbers Day 1 Part 1: Graphing and Ordering Real Numbers Part 1: Graphing and Ordering Real Numbers Lesson 12: Algebraic Expressions
More information5.2. Trigonometric Functions Of Real Numbers. Copyright Cengage Learning. All rights reserved.
5.2 Trigonometric Functions Of Real Numbers Copyright Cengage Learning. All rights reserved. Objectives The Trigonometric Functions Values of the Trigonometric Functions Fundamental Identities 2 Trigonometric
More informationSection 0.4 Inverse Trigonometric Functions
Section 0.4 Inverse Trigonometric Functions Short Recall from Trigonometry Definition: A function f is periodic of period T if f(x + T ) = f(x) for all x such that x and x+t are in the domain of f. The
More informationFLC Ch 1 & 3.1. A ray AB, denoted, is the union of and all points on such that is between and. The endpoint of the ray AB is A.
Math 335 Trigonometry Sec 1.1: Angles Definitions A line is an infinite set of points where between any two points, there is another point on the line that lies between them. Line AB, A line segment is
More informationSection 10.7 Parametric Equations
299 Section 10.7 Parametric Equations Objective 1: Defining and Graphing Parametric Equations. Recall when we defined the x (rcos(θ), rsin(θ)) and ycoordinates on a circle of radius r as a function of
More informationRECIPROCAL AND INVERSE TRIGONOMETRIC FUNCTIONS
Mathematics Revision Guides Inverse Trigonometric Functions Page 1 of 11 M.K. HOME TUITION Mathematics Revision Guides Level: AS / A Level AQA : C3 Edexcel: C3 OCR: C3 OCR MEI: C3 RECIPROCAL AND INVERSE
More informationM3 PRECALCULUS PACKET 1 FOR UNIT 5 SECTIONS 5.1 TO = to see another form of this identity.
M3 PRECALCULUS PACKET FOR UNIT 5 SECTIONS 5. TO 5.3 5. USING FUNDAMENTAL IDENTITIES 5. Part : Pythagorean Identities. Recall the Pythagorean Identity sin θ cos θ + =. a. Subtract cos θ from both sides
More informationGeorgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1
Accelerated Mathematics 3 This is a course in precalculus and statistics, designed to prepare students to take AB or BC Advanced Placement Calculus. It includes rational, circular trigonometric, and inverse
More informationInverse Circular Function and Trigonometric Equation
Inverse Circular Function and Trigonometric Equation 1 2 Caution The 1 in f 1 is not an exponent. 3 Inverse Sine Function 4 Inverse Cosine Function 5 Inverse Tangent Function 6 Domain and Range of Inverse
More informationAlgebra 2/ Trigonometry Extended Scope and Sequence (revised )
Algebra 2/ Trigonometry Extended Scope and Sequence (revised 2012 2013) Unit 1: Operations with Radicals and Complex Numbers 9 days 1. Operations with radicals (p.88, 94, 98, 101) a. Simplifying radicals
More informationGraphing Calculator Manual TI83. Kathy V. Rodgers
Graphing Calculator Manual Kathy V. Rodgers University of Southern Indiana Evansville, Indiana to accompany Trigonometry, 5th Ed. Charles P. McKeague and Mark Turner Preface Technology, used appropriately,
More informationD.3. Angles and Degree Measure. Review of Trigonometric Functions
APPENDIX D Precalculus Review D7 SECTION D. Review of Trigonometric Functions Angles and Degree Measure Radian Measure The Trigonometric Functions Evaluating Trigonometric Functions Solving Trigonometric
More informationSOLVING TRIGONOMETRIC EQUATIONS
Mathematics Revision Guides Solving Trigonometric Equations Page 1 of 17 M.K. HOME TUITION Mathematics Revision Guides Level: AS / A Level AQA : C2 Edexcel: C2 OCR: C2 OCR MEI: C2 SOLVING TRIGONOMETRIC
More informationLesson Plan. Students will be able to define sine and cosine functions based on a right triangle
Lesson Plan Header: Name: Unit Title: Right Triangle Trig without the Unit Circle (Unit in 007860867) Lesson title: Solving Right Triangles Date: Duration of Lesson: 90 min. Day Number: Grade Level: 11th/1th
More informationThe integer is the base number and the exponent (or power). The exponent tells how many times the base number is multiplied by itself.
Exponents An integer is multiplied by itself one or more times. The integer is the base number and the exponent (or power). The exponent tells how many times the base number is multiplied by itself. Example:
More informationSECTIONS : TRIG FUNCTIONS (VALUES AND IDENTITIES)
4.08 SECTIONS 4.4.4: TRIG FUNCTIONS (VALUES AND IDENTITIES) We will consider two general approaches: the Right Triangle approach, and the Unit Circle approach. PART A: THE RIGHT TRIANGLE APPROACH The
More informationChapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis
Chapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis 2. Polar coordinates A point P in a polar coordinate system is represented by an ordered pair of numbers (r, θ). If r >
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) 110 B) 120 C) 60 D) 150
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Convert the angle to decimal degrees and round to the nearest hundredth of a degree. ) 56
More informationTrigonometric Functions
Trigonometric Functions MATH 10, Precalculus J. Robert Buchanan Department of Mathematics Fall 011 Objectives In this lesson we will learn to: identify a unit circle and describe its relationship to real
More informationPreCalculus 3 rd and 4 th NineWeeks Scope and Sequence
PreCalculus 3 rd and 4 th NineWeeks Scope and Sequence Topic 4: (45 50 days) A) Uses radian and degree angle measure to solve problems and perform conversions as needed. B) Uses the unit circle to explain
More informationPRECALCULUS GRADE 12
PRECALCULUS GRADE 12 [C] Communication Trigonometry General Outcome: Develop trigonometric reasoning. A1. Demonstrate an understanding of angles in standard position, expressed in degrees and radians.
More informationFinding Equations of Sinusoidal Functions From RealWorld Data
Finding Equations of Sinusoidal Functions From RealWorld Data **Note: Throughout this handout you will be asked to use your graphing calculator to verify certain results, but be aware that you will NOT
More informationHigher Education Math Placement
Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication
More informationWho uses this? Engineers can use angles measured in radians when designing machinery used to train astronauts. (See Example 4.)
1 The Unit Circle Objectives Convert angle measures between degrees and radians. Find the values of trigonometric functions on the unit circle. Vocabulary radian unit circle California Standards Preview
More informationTrigonometry Hard Problems
Solve the problem. This problem is very difficult to understand. Let s see if we can make sense of it. Note that there are multiple interpretations of the problem and that they are all unsatisfactory.
More information10 Polar Coordinates, Parametric Equations
Polar Coordinates, Parametric Equations ½¼º½ ÈÓÐ Ö ÓÓÖ Ò Ø Coordinate systems are tools that let us use algebraic methods to understand geometry While the rectangular (also called Cartesian) coordinates
More informationDefinition III: Circular Functions
SECTION 3.3 Definition III: Circular Functions Copyright Cengage Learning. All rights reserved. Learning Objectives 1 2 3 4 Evaluate a trigonometric function using the unit circle. Find the value of a
More informationCRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS ShiahSen Wang The graphs are prepared by ChienLun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 2012, Brooks/Cole
More informationTechniques of Integration
CHPTER 7 Techniques of Integration 7.. Substitution Integration, unlike differentiation, is more of an artform than a collection of algorithms. Many problems in applied mathematics involve the integration
More informationMATH 150 TOPIC 9 RIGHT TRIANGLE TRIGONOMETRY. 9a. Right Triangle Definitions of the Trigonometric Functions
Math 50 T9aRight Triangle Trigonometry Review Page MTH 50 TOPIC 9 RIGHT TRINGLE TRIGONOMETRY 9a. Right Triangle Definitions of the Trigonometric Functions 9a. Practice Problems 9b. 5 5 90 and 0 60 90
More information11.7 Polar Form of Complex Numbers
11.7 Polar Form of Complex Numbers 989 11.7 Polar Form of Complex Numbers In this section, we return to our study of complex numbers which were first introduced in Section.. Recall that a complex number
More informationAdditional Topics in Math
Chapter Additional Topics in Math In addition to the questions in Heart of Algebra, Problem Solving and Data Analysis, and Passport to Advanced Math, the SAT Math Test includes several questions that are
More informationTrigonometry. Week 1 Right Triangle Trigonometry
Trigonometry Introduction Trigonometry is the study of triangle measurement, but it has expanded far beyond that. It is not an independent subject of mathematics. In fact, it depends on your knowledge
More informationSolution Guide for Chapter 6: The Geometry of Right Triangles
Solution Guide for Chapter 6: The Geometry of Right Triangles 6. THE THEOREM OF PYTHAGORAS E. Another demonstration: (a) Each triangle has area ( ). ab, so the sum of the areas of the triangles is 4 ab
More informationSUM AND DIFFERENCE FORMULAS
SUM AND DIFFERENCE FORMULAS Introduction We have several identities that we are concentrating on in this section: o Difference Identities for Cosine o Sum Identities for Cosine o Cofunction Identities
More informationDear Accelerated PreCalculus Student:
Dear Accelerated PreCalculus Student: I am very excited that you have decided to take this course in the upcoming school year! This is a fastpaced, collegepreparatory mathematics course that will also
More informationUnit 8 Inverse Trig & Polar Form of Complex Nums.
HARTFIELD PRECALCULUS UNIT 8 NOTES PAGE 1 Unit 8 Inverse Trig & Polar Form of Complex Nums. This is a SCIENTIFIC OR GRAPHING CALCULATORS ALLOWED unit. () Inverse Functions (3) Invertibility of Trigonometric
More informationGraphing Trigonometric Skills
Name Period Date Show all work neatly on separate paper. (You may use both sides of your paper.) Problems should be labeled clearly. If I can t find a problem, I ll assume it s not there, so USE THE TEMPLATE
More informationTrigonometry. The inverse trig functions
Trigonometry The inverse trig functions If you re trying to answer the question, What angle has a sine (or cosine, or tangent) equal to a given value?  say sin x =.3456 you need an inverse operation to
More informationCPT I (Computerized Placement Test) REVIEW BOOKLET FOR COLLEGE ALGEBRA PRECALCULUS TRIGONOMETRY. Valencia Community College Orlando, Florida
CPT I (Computerized Placement Test) REVIEW BOOKLET FOR COLLEGE ALGEBRA PRECALCULUS TRIGONOMETRY Valencia Community College Orlando, Florida Prepared by James Lang Richard Weinsier East Campus Math Department
More informationG. GRAPHING FUNCTIONS
G. GRAPHING FUNCTIONS To get a quick insight int o how the graph of a function looks, it is very helpful to know how certain simple operations on the graph are related to the way the function epression
More information