SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve


 Frederick Farmer
 1 years ago
 Views:
Transcription
1 SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives To find the critical points, we solve f x = 6x 2 6xy 24x, f y = 3x 2 6y. f x = = x 2 xy 4x = = x(x y 4 = = x = or x y 4 = f y = = x 2 + 2y =. When x = we find y = from the second equation. In the second case, we solve the system below by substitution x y 4 =, x 2 + 2y = = x 2 + 2x 8 = = x = 2 or x = 4 = y = 2 or y = 8. The three critical points are (,, (2, 2, ( 4, 8. To find the nature of the critical points, we apply the second derivative test. We have At the point (, we have A = f xx = 2x 6y 24, B = f xy = 6x, C = f yy = 6. f xx = 24, f xy =, f yy = 6 = AC B 2 = ( 24( 6 > = (, is local max. Similarly, we find since and since The function has no global min since and similarly there is no global maximum since (2, 2 is a saddle point AC B 2 = (2( 6 ( 2 2 =< ( 4, 8 is saddle AC B 2 = ( 24( 6 (24 2 <. lim f(x, y = y,x= lim f(x, y =. x,y=
2 Problem 2. Determine the global max and min of the function f(x, y = x 2 2x + 2y 2 2y + 2xy over the compact region x, y 2. We look for the critical points in the interior: f = (2x 2 + 2y, 4y 2 + 2x = (, = 2x 2 + 2y = 4y 2 + 2x = = y =, x =. However, the point (, is not in the interior so we discard it for now. We check the boundary. There are four lines to be considered: the line x = : f(, y = 3 + 2y 2 4y. The critical points of this function of y are found by setting the derivative to zero: the line x = : y (3 + 2y2 4y = = 4y 4 = = y = with f(, =. f(, y = 2y 2. Computing the derivative and setting it to we find the critical point y =. The corresponding point (, is one of the corners, and we will consider it separately below. the line y = : f(x, = x 2 2x. Computing the derivative and setting it to we find 2x 2 = = x =. This gives the corner (, as before. the line y = 2: f(x, 2 = x 2 + 2x + 4 with critical point x = which is again a corner. Finally, we check the four corners The values of the function f are (,, (,, (, 2, (, 2. f(, = 3, f(, =, f(, 2 = 3, f(, 2 = 7. From the boxed values we select the lowest and the highest to find the global min and global max. We conclude that global minimum occurs at (, Problem 3. Using Lagrange multipliers, optimize the function global maximum occurs at (, 2. f(x, y = x 2 + (y + 2
3 subject to the constraint 2x 2 + (y 2 8. We check for the critical points in the interior The second derivative test shows this a local minimum with f x = 2x, f y = 2(y + = (, is a critical point. f xx = 2, f yy = 2, f xy = f(, =. We check the boundary g(x, y = 2x 2 + (y 2 = 8 via Lagrange multipliers. We compute Therefore In the first case x = we get with values f = (2x, 2(y + = λ g = λ(4x, 2(y. 2x = 4xλ = x = or λ = 2 2(y + = 2λ(y. g(, y = (y 2 = 8 = y = + 3 2, 3 2 f(, = ( , f(, 3 2 = ( In the second case λ = 2 we obtain from the second equation 2(y + = y = y = 3. Now, g(x, y = 8 = x = ±. At (±, 3, the function takes the value f(±, 3 = (± 2 + ( = 5. By comparing all boxed values, it is clear the (, is the minimum, while (, is the maximum. Problem 4. Consider the function w = e x2 y where x = u v, y = uv 2. Using the chain rule, compute the derivatives u, v.
4 We have x = 2xy exp(x2 y = 2u v ( uv 2 exp u 2 v uv 2 = 2 ( u v 3/2 exp v ( u y = x2 exp(x 2 y = u 2 v exp v x u = x v, v = u 2 v Thus Similarly, Problem 5. y u = u 2 v 2, u = x x u + y y u = 2 y v = 2 uv 3. v ( u u 2 v exp v ( u v 3/2 exp v = 2 ( u v exp ( u v v exp = ( u v v exp v. u = x x u + y y u = u ( u v 2 exp. v (i For what value of the parameter a, will the planes ax + 3y 4z = 2, x ay + 2z = 5 be perpendicular? (ii Find a vector parallel to the line of intersection of the planes (iii Find the plane through the origin parallel to (iv Find the angle between the vectors (v A plane has equation For what values of a is the vector normal to the plane? (i The normal vectors to the two planes are x y + 2z = 2, 3x y + 2z =. z = 4x 3y + 8. v = (,, 2, w = (, 3,. z = 5x 2y + 7. (a,, 2 n = (a, 3, 4, n 2 = (, a, 2. u 2 v 2 = The planes are perpendicular if n, n 2 are perpendicular. We compute the dot product n n 2 = = a + 3 ( a + ( 4 2 = = 2a 8 = = a = 4.
5 (ii The vectors normal to the two planes are n = (,, 2, n 2 = (3,, 2. The line of intersection will be perpendicular to both n, n 2. But so is the cross product. Thus the line of intersection will be parallel to the cross product n n 2 = (,, 2 (3,, 2 = (, 4, 2. (iii The second plane must have the same normal vector hence the same coefficients for x, y, z. Since it passes through the origin, the equation is z = 4x 3y. (iv We compute the angle using the dot product cos θ = (v The plane has the equation v w v w = 2 = x 2y z = 7 = 5 2 x + y + 2 z = 7 2 hence a normal vector is ( 5 2,, 2. Comparing with the vector we are given, we see that Problem 6. a = 5 2. (i Compute the second degree Taylor polynomial of the function f(x, y = e x2 y around (,. (ii Compute the second degree Taylor polynomial of the function f(x = sin(x 2 around x = π. (iii The second degree Taylor polynomial of a certain function f(x, y around (, equals 4x 2 2(y 2 + 3x(y. Can the point (, be a local minimum for f? How about a local maximum? (i After computing all derivatives and substituting, we find the answer + 2(x (y + 3(x (y 2 2(x (y. (ii We have f( π =. The first derivative is The second derivative is The Taylor polynomial is f x = 2x cos x 2 = f x ( π = 2 π cos π = 2 π. f xx = 2 cos x 2 2x sin x 2 = f xx ( π = 2. 2 π(x π (x π 2 = x 2 + π.
6 (iii From the Taylor polynomial we find f x (, = f y (, = so (, is a critical point. We can find the second derivatives 2 f xx(, = 4, 2 f yy(, = 2, f xy (, = 3. By the second derivative test Problem 7. AC B 2 = ( 8( >, A = 8 < = (, is a local maximum. (i The temperature T (x, y in a long thin plane at the point (x, y satisfies Laplace s equation Does the function T xx + T yy =. T (x, y = ln(x 2 + y 2 satisfy Laplace s equation? (ii For the function f(x, y = sin(x 2 + y 2 ln(x 4 y 4 + tan(xy is it true that (i We compute Therefore, T x = T y = f xyxyy = f yyxyx? 2x x 2 + y 2 = T xx = 2y2 2x 2 (x 2 + y 2 2 2y x 2 + y 2 = T yy = 2x2 2y 2 (x 2 + y 2 2. T xx + T yy = 2y2 2x 2 (x 2 + y x2 2y 2 (x 2 + y 2 2 =. (ii The two derivatives are equal as the order in which derivatives are computed is unimportant. Problem 8. Consider the function f(x, y = x2 y 4. (i Carefully draw the level curve passing through (,. On this graph, draw the gradient of the function at (,. (ii Compute the directional derivative of f at (, in the direction u = ( 4 5, 3 5. Use this calculation to estimate f((, +.u. (iii Find the unit direction v of steepest descent for the function f at (,. (iv Find the two unit directions w for which the derivative f w =.
7 (i The level is f(, =. The level curve is f(x, y = f(, = = x 2 = y 4 = x = ±y 2. The level curve is a union of two parabolas through the origin. The gradient ( 2x f = y 4, 4x2 y 5 = f(, = (2, 4 is normal to the parabolas. (ii We compute ( 4 f u = f u = (2, 4 5, 3 = 4. 5 For the approximation, we have f(, = and f((, +.u f(, +.f u = +. 4 =.4. (iii The direction of steepest decrease is opposite to the gradient. We need to divide by the length to get a unit vector: v = f ( (2, 4 = f =, (iv Write We have w = (w, w 2. f w = f w = (2, 4 w = 2w + 4w 2 = = w = 2w 2. Since w has unit length w 2 + w 2 2 = = ( 2w w 2 2 = = w 2 = ± 5. Therefore ( 2 w = ±,. 5 5 Problem 9. Consider the function f(x, y = ln(e 2x y 3. (i Write down the tangent plane to the graph of f at (2,. (ii Find the approximate value of the number ln(e 4. (.2 3. (i Using the chain rule, we compute 2e 2x e 2x f x = 2 ln(e 2x y 3 = ln(e 2x y 3 = f x(2, = = = ln e
8 Similarly, 3y 2 e 2x y 3 e 2x f y = 2 ln(e 2x y 3 = 3 2y ln(e 2x y 3 = f y(2, = 3 2 = 3 ln e 4 2 We compute The tangent plane is f(2, = ln e 4 = 4 = 2. z 2 = 2 (x (y = z = 2 x y + 4. (ii The number we are approximating is f(2.5, = = 3 4. Problem. Suppose that Calculate z = e 3x+2y, y = ln(3u w, x = u + 2v. z v, z. By the chain rule Similarly, Problem. z v = z x x v = 3e3x+2y 2 = 6e 3x e 2y = 6e 3u+6v e 2 ln(3u w = 6e 3u+6v (3u w 2. (i Find z such that (ii Calculate the series z = z y y = 2e3x+2y = 2e 3u+6v (3u w 2 3u w = 2e3u+6v e 2 ln(3u w 3u w 3u w = 2e3u+6v (3u w. + z + z 2 + z = (i This is a geometric series with step z. Its sum equals = 3 = z = 3 = z = 3 2. z
9 (ii This is a finite geometric series with terms and initial term /3 and step 2/3. The sum equals 3 ( 2 ( =. 3 3 Problem 2. The probability density function for the outcome x of a certain experiment is p(x = Ce x, for x. (i What is the value of the constant C? (ii What is the cumulative distribution function? (iii What is the median of the experiment? (iv What is the mean of the experiment? (v What is the probability that the outcome of the experiment is bigger than? (i The pdf must integrate to hence p(xdx = = C (ii The cdf is obtained by integrating the pdf: P (x = e x = = C e x x= = = C( = = C =. x p(tdt = x (iii To find the median, we set the pdf to /2: e t dt = e t t=x t= = e x. P (T = 2 = e T = 2 = e T = 2 = T = ln 2. (iv The mean is computed by the integral mean = xp(x dx = The last integral was found by integration by parts xe x = xe x x= + e x dx = + xe x =. e x dx = e x x= =. (v The probability the outcome is at most is P ( = e. The probability that x is Problem 3. P ( = e. Consider the function f(x, y = 5 (x + 2 y 2. (i Draw the cross section corresponding to x =. (ii Draw the contour diagram of f showing at least three levels. (iii Draw the graph of f. (iv What is the equation of the tangent plane to the graph of f at (,,? (i The cross section is the parabola z = y 2.
10 (ii The level curve for level c is f(x, y = c = (x y 2 = 5 c. The level curves are circles of centers (, and radius 5 c. For instance, picking levels c =, c = 2, c = 4 we get circles of radii 2, 3, of center (,. (iii The graph of f is a downward pointing paraboloid with vertex at (,, 5. (iv The partial derivatives The tangent plane is Problem 4. Find the point on the plane f x = 2(x + = f x (, = 4 f y = 2y = f y (, =. z = 4(x + (y = z = 4x x + 3y + 4z = 29 that is closest to the origin. You may want to minimize the square of the distance to the origin. We minimize the square of the distance to the origin subject to the constraint We use Lagrange multipliers Then Since f(x, y, z = x 2 + y 2 + z 2 g(x, y, z = 2x + 3y + 4z = 29. f = (2x, 2y, 2z, g = (2, 3, 4. f = λ g = 2x = 2λ, 2y = 3λ, 2z = 4λ = x = λ, y = 3λ 2, z = 2λ. 2x + 3y + 4z = 2λ + 9λ 2 The closest point is (2, 3, 4. Problem λ = 29λ 2 = 29 = λ = 2 = x = 2, y = 3, z = 4. Find the critical points of the function f(x, y = 2x 3 + 6xy + 3y 2 and describe their nature. We set the first derivatives to zero: We solve The critical points are (, and (,. We compute the second derivatives f x = 6x 2 + 6y = = x 2 + y = f y = 6x + 6y = = x + y =. y = x 2 = x = x 2 = x = x = or x =. A = f xx = 2x, B = f xy = 6, C = f yy = 6.
11 For the critical point (, we have AC B 2 = < = (, is saddle point. For the critical point (, we have AC B 2 = >, A > = (, is local minimum.
(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0,
Name: Solutions to Practice Final. Consider the line r(t) = 3 + t, t, 6. (a) Find symmetric equations for this line. (b) Find the point where the first line r(t) intersects the surface z = x + y. (a) We
More information1 3 4 = 8i + 20j 13k. x + w. y + w
) Find the point of intersection of the lines x = t +, y = 3t + 4, z = 4t + 5, and x = 6s + 3, y = 5s +, z = 4s + 9, and then find the plane containing these two lines. Solution. Solve the system of equations
More informationHOMEWORK 4 SOLUTIONS. All questions are from Vector Calculus, by Marsden and Tromba
HOMEWORK SOLUTIONS All questions are from Vector Calculus, by Marsden and Tromba Question :..6 Let w = f(x, y) be a function of two variables, and let x = u + v, y = u v. Show that Solution. By the chain
More information( 1)2 + 2 2 + 2 2 = 9 = 3 We would like to make the length 6. The only vectors in the same direction as v are those
1.(6pts) Which of the following vectors has the same direction as v 1,, but has length 6? (a), 4, 4 (b),, (c) 4,, 4 (d), 4, 4 (e) 0, 6, 0 The length of v is given by ( 1) + + 9 3 We would like to make
More informationL 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has
The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:
More informationPractice Final Math 122 Spring 12 Instructor: Jeff Lang
Practice Final Math Spring Instructor: Jeff Lang. Find the limit of the sequence a n = ln (n 5) ln (3n + 8). A) ln ( ) 3 B) ln C) ln ( ) 3 D) does not exist. Find the limit of the sequence a n = (ln n)6
More informationPractice Problems for Midterm 2
Practice Problems for Midterm () For each of the following, find and sketch the domain, find the range (unless otherwise indicated), and evaluate the function at the given point P : (a) f(x, y) = + 4 y,
More informationMath 53 Worksheet Solutions Minmax and Lagrange
Math 5 Worksheet Solutions Minmax and Lagrange. Find the local maximum and minimum values as well as the saddle point(s) of the function f(x, y) = e y (y x ). Solution. First we calculate the partial
More informationExam 1 Sample Question SOLUTIONS. y = 2x
Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can
More informationProblem 1 (10 pts) Find the radius of convergence and interval of convergence of the series
1 Problem 1 (10 pts) Find the radius of convergence and interval of convergence of the series a n n=1 n(x + 2) n 5 n 1. n(x + 2)n Solution: Do the ratio test for the absolute convergence. Let a n =. Then,
More informationMath 241, Exam 1 Information.
Math 241, Exam 1 Information. 9/24/12, LC 310, 11:1512:05. Exam 1 will be based on: Sections 12.112.5, 14.114.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)
More informationSolutions for Review Problems
olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector
More informationThis makes sense. t 2 1 + 1/t 2 dt = 1. t t 2 + 1dt = 2 du = 1 3 u3/2 u=5
1. (Line integrals Using parametrization. Two types and the flux integral) Formulas: ds = x (t) dt, d x = x (t)dt and d x = T ds since T = x (t)/ x (t). Another one is Nds = T ds ẑ = (dx, dy) ẑ = (dy,
More informationSolutions to old Exam 1 problems
Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections
More informationSolutions to Homework 5
Solutions to Homework 5 1. Let z = f(x, y) be a twice continously differentiable function of x and y. Let x = r cos θ and y = r sin θ be the equations which transform polar coordinates into rectangular
More informationFunctions and Equations
Centre for Education in Mathematics and Computing Euclid eworkshop # Functions and Equations c 014 UNIVERSITY OF WATERLOO Euclid eworkshop # TOOLKIT Parabolas The quadratic f(x) = ax + bx + c (with a,b,c
More informationSection 12.6: Directional Derivatives and the Gradient Vector
Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate
More informationDetermine whether the following lines intersect, are parallel, or skew. L 1 : x = 6t y = 1 + 9t z = 3t. x = 1 + 2s y = 4 3s z = s
Homework Solutions 5/20 10.5.17 Determine whether the following lines intersect, are parallel, or skew. L 1 : L 2 : x = 6t y = 1 + 9t z = 3t x = 1 + 2s y = 4 3s z = s A vector parallel to L 1 is 6, 9,
More informationName: ID: Discussion Section:
Math 28 Midterm 3 Spring 2009 Name: ID: Discussion Section: This exam consists of 6 questions: 4 multiple choice questions worth 5 points each 2 handgraded questions worth a total of 30 points. INSTRUCTIONS:
More informationUnderstanding Basic Calculus
Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other
More informationChapter 1 Vectors, lines, and planes
Simplify the following vector expressions: 1. a (a + b). (a + b) (a b) 3. (a b) (a + b) Chapter 1 Vectors, lines, planes 1. Recall that cross product distributes over addition, so a (a + b) = a a + a b.
More informationThe variable λ is a dummy variable called a Lagrange multiplier ; we only really care about the values of x, y, and z.
Math a Lagrange Multipliers Spring, 009 The method of Lagrange multipliers allows us to maximize or minimize functions with the constraint that we only consider points on a certain surface To find critical
More informationReview Sheet for Test 1
Review Sheet for Test 1 Math 26100 2 6 2004 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And
More informationThe Method of Lagrange Multipliers
The Method of Lagrange Multipliers S. Sawyer October 25, 2002 1. Lagrange s Theorem. Suppose that we want to maximize (or imize a function of n variables f(x = f(x 1, x 2,..., x n for x = (x 1, x 2,...,
More informationDerive 5: The Easiest... Just Got Better!
Liverpool John Moores University, 115 July 000 Derive 5: The Easiest... Just Got Better! Michel Beaudin École de Technologie Supérieure, Canada Email; mbeaudin@seg.etsmtl.ca 1. Introduction Engineering
More information1 Lecture 19: Implicit differentiation
Lecture 9: Implicit differentiation. Outline The technique of implicit differentiation Tangent lines to a circle Examples.2 Implicit differentiation Suppose we have two quantities or variables x and y
More informationx 2 + y 2 = 25 and try to solve for y in terms of x, we get 2 new equations y = 25 x 2 and y = 25 x 2.
Lecture : Implicit differentiation For more on the graphs of functions vs. the graphs of general equations see Graphs of Functions under Algebra/Precalculus Review on the class webpage. For more on graphing
More informationLimits and Continuity
Math 20C Multivariable Calculus Lecture Limits and Continuity Slide Review of Limit. Side limits and squeeze theorem. Continuous functions of 2,3 variables. Review: Limits Slide 2 Definition Given a function
More informationA QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS
A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors
More information13.4 THE CROSS PRODUCT
710 Chapter Thirteen A FUNDAMENTAL TOOL: VECTORS 62. Use the following steps and the results of Problems 59 60 to show (without trigonometry) that the geometric and algebraic definitions of the dot product
More informationThe Fourth International DERIVETI92/89 Conference Liverpool, U.K., 1215 July 2000. Derive 5: The Easiest... Just Got Better!
The Fourth International DERIVETI9/89 Conference Liverpool, U.K., 5 July 000 Derive 5: The Easiest... Just Got Better! Michel Beaudin École de technologie supérieure 00, rue NotreDame Ouest Montréal
More informationMATH SOLUTIONS TO PRACTICE FINAL EXAM. (x 2)(x + 2) (x 2)(x 3) = x + 2. x 2 x 2 5x + 6 = = 4.
MATH 55 SOLUTIONS TO PRACTICE FINAL EXAM x 2 4.Compute x 2 x 2 5x + 6. When x 2, So x 2 4 x 2 5x + 6 = (x 2)(x + 2) (x 2)(x 3) = x + 2 x 3. x 2 4 x 2 x 2 5x + 6 = 2 + 2 2 3 = 4. x 2 9 2. Compute x + sin
More informationGeoGebra. 10 lessons. Gerrit Stols
GeoGebra in 10 lessons Gerrit Stols Acknowledgements GeoGebra is dynamic mathematics open source (free) software for learning and teaching mathematics in schools. It was developed by Markus Hohenwarter
More informationHomework # 3 Solutions
Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8
More informationA vector is a directed line segment used to represent a vector quantity.
Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector
More informationSection 9.5: Equations of Lines and Planes
Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 35 odd, 237 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that
More informationSecondOrder Linear Differential Equations
SecondOrder Linear Differential Equations A secondorder linear differential equation has the form 1 Px d 2 y dx 2 dy Qx dx Rxy Gx where P, Q, R, and G are continuous functions. We saw in Section 7.1
More informationAlgebra I Vocabulary Cards
Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression
More informationNew HigherProposed OrderCombined Approach. Block 1. Lines 1.1 App. Vectors 1.4 EF. Quadratics 1.1 RC. Polynomials 1.1 RC
New HigherProposed OrderCombined Approach Block 1 Lines 1.1 App Vectors 1.4 EF Quadratics 1.1 RC Polynomials 1.1 RC Differentiationbut not optimisation 1.3 RC Block 2 Functions and graphs 1.3 EF Logs
More informationFURTHER VECTORS (MEI)
Mathematics Revision Guides Further Vectors (MEI) (column notation) Page of MK HOME TUITION Mathematics Revision Guides Level: AS / A Level  MEI OCR MEI: C FURTHER VECTORS (MEI) Version : Date: 97 Mathematics
More informationTaylor and Maclaurin Series
Taylor and Maclaurin Series In the preceding section we were able to find power series representations for a certain restricted class of functions. Here we investigate more general problems: Which functions
More informationExtra Credit Assignment Lesson plan. The following assignment is optional and can be completed to receive up to 5 points on a previously taken exam.
Extra Credit Assignment Lesson plan The following assignment is optional and can be completed to receive up to 5 points on a previously taken exam. The extra credit assignment is to create a typed up lesson
More informationSection 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables
The Calculus of Functions of Several Variables Section 1.4 Lines, Planes, Hyperplanes In this section we will add to our basic geometric understing of R n by studying lines planes. If we do this carefully,
More informationNonhomogeneous Linear Equations
Nonhomogeneous Linear Equations In this section we learn how to solve secondorder nonhomogeneous linear differential equations with constant coefficients, that is, equations of the form ay by cy G x where
More informationCalculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum
Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum UNIT I: The Hyperbolic Functions basic calculus concepts, including techniques for curve sketching, exponential and logarithmic
More information100. In general, we can define this as if b x = a then x = log b
Exponents and Logarithms Review 1. Solving exponential equations: Solve : a)8 x = 4! x! 3 b)3 x+1 + 9 x = 18 c)3x 3 = 1 3. Recall: Terminology of Logarithms If 10 x = 100 then of course, x =. However,
More informationAlgebra 2 Chapter 1 Vocabulary. identity  A statement that equates two equivalent expressions.
Chapter 1 Vocabulary identity  A statement that equates two equivalent expressions. verbal model A word equation that represents a reallife problem. algebraic expression  An expression with variables.
More information1. Firstorder Ordinary Differential Equations
Advanced Engineering Mathematics 1. Firstorder ODEs 1 1. Firstorder Ordinary Differential Equations 1.1 Basic concept and ideas 1.2 Geometrical meaning of direction fields 1.3 Separable differential
More informationLagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given.
Polynomials (Ch.1) Study Guide by BS, JL, AZ, CC, SH, HL Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Sasha s method
More informationAn important theme in this book is to give constructive definitions of mathematical objects. Thus, for instance, if you needed to evaluate.
Chapter 10 Series and Approximations An important theme in this book is to give constructive definitions of mathematical objects. Thus, for instance, if you needed to evaluate 1 0 e x2 dx, you could set
More informationCopyrighted Material. Chapter 1 DEGREE OF A CURVE
Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two
More informationcorrectchoice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:
Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that
More information3. Double Integrals 3A. Double Integrals in Rectangular Coordinates
3. Double Integrals 3A. Double Integrals in ectangular Coordinates 3A1 Evaluate each of the following iterated integrals: c) 2 1 1 1 x 2 (6x 2 +2y)dydx b) x 2x 2 ydydx d) π/2 π 1 u (usint+tcosu)dtdu u2
More informationx(x + 5) x 2 25 (x + 5)(x 5) = x 6(x 4) x ( x 4) + 3
CORE 4 Summary Notes Rational Expressions Factorise all expressions where possible Cancel any factors common to the numerator and denominator x + 5x x(x + 5) x 5 (x + 5)(x 5) x x 5 To add or subtract 
More information2 Integrating Both Sides
2 Integrating Both Sides So far, the only general method we have for solving differential equations involves equations of the form y = f(x), where f(x) is any function of x. The solution to such an equation
More informationAP Calculus BC 2004 Scoring Guidelines
AP Calculus BC Scoring Guidelines The materials included in these files are intended for noncommercial use by AP teachers for course and exam preparation; permission for any other use must be sought from
More informationMath 120 Final Exam Practice Problems, Form: A
Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,
More informationFINAL EXAM SOLUTIONS Math 21a, Spring 03
INAL EXAM SOLUIONS Math 21a, Spring 3 Name: Start by printing your name in the above box and check your section in the box to the left. MW1 Ken Chung MW1 Weiyang Qiu MW11 Oliver Knill h1 Mark Lucianovic
More information5.7 Maximum and Minimum Values
5.7 Maximum and Minimum Values Objectives Icandefinecriticalpoints. I know the di erence between local and absolute minimums/maximums. I can find local maximum(s), minimum(s), and saddle points for a given
More informationFigure 2.1: Center of mass of four points.
Chapter 2 Bézier curves are named after their inventor, Dr. Pierre Bézier. Bézier was an engineer with the Renault car company and set out in the early 196 s to develop a curve formulation which would
More informationSouth Carolina College and CareerReady (SCCCR) PreCalculus
South Carolina College and CareerReady (SCCCR) PreCalculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know
More informationSome Notes on Taylor Polynomials and Taylor Series
Some Notes on Taylor Polynomials and Taylor Series Mark MacLean October 3, 27 UBC s courses MATH /8 and MATH introduce students to the ideas of Taylor polynomials and Taylor series in a fairly limited
More informationCalculus with Analytic Geometry I Exam 10 Take Home part
Calculus with Analytic Geometry I Exam 10 Take Home part Textbook, Section 47, Exercises #22, 30, 32, 38, 48, 56, 70, 76 1 # 22) Find, correct to two decimal places, the coordinates of the point on the
More informationH.Calculating Normal Vectors
Appendix H H.Calculating Normal Vectors This appendix describes how to calculate normal vectors for surfaces. You need to define normals to use the OpenGL lighting facility, which is described in Chapter
More informationSAT Subject Math Level 2 Facts & Formulas
Numbers, Sequences, Factors Integers:..., 3, 2, 1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Arithmetic Sequences: PEMDAS (Parentheses
More informationMATH 2300 review problems for Exam 3 ANSWERS
MATH 300 review problems for Exam 3 ANSWERS. Check whether the following series converge or diverge. In each case, justify your answer by either computing the sum or by by showing which convergence test
More informationINTEGRATING FACTOR METHOD
Differential Equations INTEGRATING FACTOR METHOD Graham S McDonald A Tutorial Module for learning to solve 1st order linear differential equations Table of contents Begin Tutorial c 2004 g.s.mcdonald@salford.ac.uk
More information9 Multiplication of Vectors: The Scalar or Dot Product
Arkansas Tech University MATH 934: Calculus III Dr. Marcel B Finan 9 Multiplication of Vectors: The Scalar or Dot Product Up to this point we have defined what vectors are and discussed basic notation
More informationTwo vectors are equal if they have the same length and direction. They do not
Vectors define vectors Some physical quantities, such as temperature, length, and mass, can be specified by a single number called a scalar. Other physical quantities, such as force and velocity, must
More informationSolutions to Homework 10
Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x
More informationContents. 2 Lines and Circles 3 2.1 Cartesian Coordinates... 3 2.2 Distance and Midpoint Formulas... 3 2.3 Lines... 3 2.4 Circles...
Contents Lines and Circles 3.1 Cartesian Coordinates.......................... 3. Distance and Midpoint Formulas.................... 3.3 Lines.................................. 3.4 Circles..................................
More informationMATHEMATICS (CLASSES XI XII)
MATHEMATICS (CLASSES XI XII) General Guidelines (i) All concepts/identities must be illustrated by situational examples. (ii) The language of word problems must be clear, simple and unambiguous. (iii)
More informationLinear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices
MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two
More informationAdding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors
1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number
More informationApproximating functions by Taylor Polynomials.
Chapter 4 Approximating functions by Taylor Polynomials. 4.1 Linear Approximations We have already seen how to approximate a function using its tangent line. This was the key idea in Euler s method. If
More informationPolynomials. Key Terms. quadratic equation parabola conjugates trinomial. polynomial coefficient degree monomial binomial GCF
Polynomials 5 5.1 Addition and Subtraction of Polynomials and Polynomial Functions 5.2 Multiplication of Polynomials 5.3 Division of Polynomials Problem Recognition Exercises Operations on Polynomials
More informationMicroeconomic Theory: Basic Math Concepts
Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts
More informationx 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1
Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs
More informationAPPLICATIONS. are symmetric, but. are not.
CHAPTER III APPLICATIONS Real Symmetric Matrices The most common matrices we meet in applications are symmetric, that is, they are square matrices which are equal to their transposes In symbols, A t =
More informationEquations Involving Lines and Planes Standard equations for lines in space
Equations Involving Lines and Planes In this section we will collect various important formulas regarding equations of lines and planes in three dimensional space Reminder regarding notation: any quantity
More informationSolutions for 2015 Algebra II with Trigonometry Exam Written by Ashley Johnson and Miranda Bowie, University of North Alabama
Solutions for 0 Algebra II with Trigonometry Exam Written by Ashley Johnson and Miranda Bowie, University of North Alabama. For f(x = 6x 4(x +, find f(. Solution: The notation f( tells us to evaluate the
More informationFigure 1.1 Vector A and Vector F
CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have
More informationSolutions to Practice Problems for Test 4
olutions to Practice Problems for Test 4 1. Let be the line segmentfrom the point (, 1, 1) to the point (,, 3). Evaluate the line integral y ds. Answer: First, we parametrize the line segment from (, 1,
More informationParametric Equations and the Parabola (Extension 1)
Parametric Equations and the Parabola (Extension 1) Parametric Equations Parametric equations are a set of equations in terms of a parameter that represent a relation. Each value of the parameter, when
More information2.3. Finding polynomial functions. An Introduction:
2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned
More informationMath 265 (Butler) Practice Midterm II B (Solutions)
Math 265 (Butler) Practice Midterm II B (Solutions) 1. Find (x 0, y 0 ) so that the plane tangent to the surface z f(x, y) x 2 + 3xy y 2 at ( x 0, y 0, f(x 0, y 0 ) ) is parallel to the plane 16x 2y 2z
More information6.1 Add & Subtract Polynomial Expression & Functions
6.1 Add & Subtract Polynomial Expression & Functions Objectives 1. Know the meaning of the words term, monomial, binomial, trinomial, polynomial, degree, coefficient, like terms, polynomial funciton, quardrtic
More informationSurface Normals and Tangent Planes
Surface Normals and Tangent Planes Normal and Tangent Planes to Level Surfaces Because the equation of a plane requires a point and a normal vector to the plane, nding the equation of a tangent plane to
More informationLimit processes are the basis of calculus. For example, the derivative. f f (x + h) f (x)
SEC. 4.1 TAYLOR SERIES AND CALCULATION OF FUNCTIONS 187 Taylor Series 4.1 Taylor Series and Calculation of Functions Limit processes are the basis of calculus. For example, the derivative f f (x + h) f
More information299ReviewProblemSolutions.nb 1. Review Problems. Final Exam: Wednesday, 12/16/2009 1:30PM. Mathematica 6.0 Initializations
99ReviewProblemSolutions.nb Review Problems Final Exam: Wednesday, /6/009 :30PM Mathematica 6.0 Initializations R.) Put x@td = t  and y@td = t . Sketch on the axes below the curve traced out by 8x@tD,
More informationIdentifying second degree equations
Chapter 7 Identifing second degree equations 7.1 The eigenvalue method In this section we appl eigenvalue methods to determine the geometrical nature of the second degree equation a 2 + 2h + b 2 + 2g +
More informationTangent line of a circle can be determined once the tangent point or the slope of the line is known.
Worksheet 7: Tangent Line of a Circle Name: Date: Tangent line of a circle can be determined once the tangent point or the slope of the line is known. Straight line: an overview General form : Ax + By
More information1 Lecture: Integration of rational functions by decomposition
Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.
More informationAlgebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 201213 school year.
This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra
More informationPRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.
PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle
More informationWASSCE / WAEC ELECTIVE / FURTHER MATHEMATICS SYLLABUS
Visit this link to read the introductory text for this syllabus. 1. Circular Measure Lengths of Arcs of circles and Radians Perimeters of Sectors and Segments measure in radians 2. Trigonometry (i) Sine,
More information19.6. Finding a Particular Integral. Introduction. Prerequisites. Learning Outcomes. Learning Style
Finding a Particular Integral 19.6 Introduction We stated in Block 19.5 that the general solution of an inhomogeneous equation is the sum of the complementary function and a particular integral. We have
More informationVectors, Gradient, Divergence and Curl.
Vectors, Gradient, Divergence and Curl. 1 Introduction A vector is determined by its length and direction. They are usually denoted with letters with arrows on the top a or in bold letter a. We will use
More informationFACTORING QUADRATICS 8.1.1 and 8.1.2
FACTORING QUADRATICS 8.1.1 and 8.1.2 Chapter 8 introduces students to quadratic equations. These equations can be written in the form of y = ax 2 + bx + c and, when graphed, produce a curve called a parabola.
More informationMathematics (Project Maths Phase 3)
2014. M329 Coimisiún na Scrúduithe Stáit State Examinations Commission Leaving Certificate Examination 2014 Mathematics (Project Maths Phase 3) Paper 1 Higher Level Friday 6 June Afternoon 2:00 4:30 300
More information