# 7. Basics of Turbulent Flow

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 1 7. Basics of Turbulent Flow Whether a flow is laminar or turbulent depends of the relative importance of fluid friction (viscosity) and flow inertia. The ratio of inertial to viscous forces is the Reynolds number. Given the characteristic velocity scale, U, and length scale, L, for a system, the Reynolds number is Re = UL/ν, where ν is the kinematic viscosity of the fluid. For most surface water systems the characteristic length scale is the basin-scale. Because this scale is typically large (1 m to 100's km), most surface water systems are turbulent. In contrast, the characteristic length scale for groundwater systems is the pore scale, which is typically quite small (< 1 mm), and groundwater flow is nearly always laminar. The characteristic length-scale for a channel of width w and depth h is the hydraulic radius, R h = wh/p, where P is the wetted perimeter. For an open channel P = (2h + w) and for a closed conduit P = 2(h+w). As a general rule, open channel flow is laminar if the Reynolds number defined by the hydraulic radius, Re = UR h /ν is less than 500. As the Reynolds number increases above this limit burst of turbulent appear intermittently in the flow. As Re increases the frequency and duration of the turbulent bursts also increases until Re > O(1000), at which point the turbulence is fully persistent. If the conduit boundary is rough, the transition to fully turbulent flow can occur at lower Reynolds numbers. Alternatively, laminar conditions can persist to higher Reynolds numbers if the conduit is smooth and inlet conditions are carefully designed. Figure 1. Tracer transport in laminar and turbulent flow. The straight, parallel black lines are streamlines, which are everywhere parallel to the mean flow. In laminar flow the fluid particles follow the streamlines exactly, as shown by the linear dye trace in the laminar region. In turbulent flow eddies of many sizes are superimposed onto the mean flow. When dye enters the turbulent region it traces a path dictated by both the mean flow (streamlines) and the eddies. Larger eddies carry the dye laterally across streamlines. Smaller eddies create smaller scale stirring that causes the dye filament to spread (diffuse).

2 2 Characterizing Turbulence: Turbulent eddies create fluctuations in velocity. As an example, the longitudinal (u) and vertical (v) velocity measured at point A in figure 1 are shown below. Both velocities varying in time due to turbulent fluctuations. If the flow were steady and laminar then u = u and v= v for all time t, where the over-bar denotes a time average. For turbulent flow, however, the velocity record includes both a mean and a turbulent component. We decompose the flow as follows. u (t) = u + u (t) v (t) = v + v (t) mean turbulent fluctuation (1) This is commonly called a Reynolds decomposition. u [cm/s] v [cm/s] u'(t) = u(t) - u u v = 0 t [seconds] Figure 2. Velocity recorded at Point A in Figure 1. Because the turbulent motions associated with the eddies are approximately random, we can characterize them using statistical concepts. In theory the velocity record is continuous and the mean can be evaluated through integration. However, in practice the measured velocity records are a series of discrete points, u i. Below an overbar is used to denote a time average over the time interval t to t+t, where T is much longer than any turbulence time scale, but much shorter than the time-scale for mean flow unsteadiness, e.g. wave or tidal fluctuation. t+ T N 1 Mean velocity: u = u(t) dt = N u i t 1 continuous record discrete, equi-spaced pts. (2) Turbulent Fluctuation: u () t = ut () u : continuous record u = u u : discrete points i i (3) 1 N 2 2 Turbulence Strength: u rms = u (t) = ( u i) (4) N i= 1 continuous record discrete, equi-spaced pts

3 3 Turbulence Intensity: u rms / u (5) The subscript rms stands for root-mean-square. You should recognize the definition of u rms given in (4) as the standard deviation of the set of random velocity fluctuations, u i. Similar definitions apply to the lateral and vertical velocities, v(t) and w(t). A larger u rms indicates a higher level turbulence. In the figure below, both records have the same mean velocity, but the record on the left has a higher level of turbulence. U [cm/s] U [cm/s] U urms U u rms t [seconds] t [seconds] Mean Velocity Profiles - Turbulent Boundary Layers: Near a solid boundary the flow has a distinct structure, called a boundary layer. The most important aspect of a boundary layer is that the velocity of the fluid goes to zero at the boundary. This is called the "no-slip" condition, i.e. the fluid velocity matches (has no slip relative to) the boundary velocity. This arises because of viscosity, ν, which is a fluid's resistance to flowing, i.e. fluid friction. The fluid literally sticks to the boundary. The higher its viscosity, the more a fluid resists flowing. Honey, for example, has a higher viscosity than water. The kinematic viscosity of water is ν = 0.01 cm 2 /s. The figure below depicts a typical mean velocity profile, u(y), above a solid boundary. The vertical axis (y) denotes the distance above the boundary. The fluid velocity at the boundary (y = 0) is zero. At some distance above the boundary the velocity reaches a constant value, U, called the free stream velocity. Between the bed and the free stream the velocity varies over the vertical coordinate. The spatial variation of velocity is called shear. The region of velocity shear near a boundary is called the momentum boundary layer. The height of the boundary layer, δ, is typically defined as the distance above the bed at which u = 0.99 U.

4 4 Shear Produces Turbulence: Turbulence is an instability generated by shear. The stronger the shear, the stronger the turbulence. This is evident in profiles of turbulence strength (u rms ) within a boundary layer (see figure below). The shear in the boundary layer decreases moving away from the bed, ( u y) y< 0, and as a result the turbulence intensity also decreases. Very close to the bed, however, the turbulence intensity is diminished, reaching zero at the bed (y=0). This is because the no-slip condition applies to the turbulent velocities as well as to the mean velocity. Thus, in a thin region very close to the bed, no turbulence is present. This region is called the laminar sub-layer, δ s. Note that the profiles shown below are normalized by the free-stream velocity, U. This is done to emphasize the fact that the mean and turbulent profiles within a boundary layer are self-similar with respect to the free stream velocity, U. This means that both profiles have the same shape regardless of the absolute magnitude of the external flow, U. Because of this self-similarity, we have the general rule of thumb that the turbulence level increases with the free stream velocity, u rms ~ U, where the symbol ~ is read scales on. In addition, as the turbulence level increases, the thickness of the laminar sub-layer decreases. In general, δ s ~ (1/U ) y y δ δ s u / U 1 u rms / U 0.1 As a second example, consider the profiles of mean and turbulent velocity measured across a jet. The profiles are self-similar when normalized by the centerline velocity, U CL. The maximum turbulence level occurs at the positions of maximum shear. At the centerline the shear is zero ( u y = 0), and the turbulence strength is diminished.

5 5 Friction [Shear] Velocity, U * : Physically, we know that the turbulence level scales on the shear, u rms ~ u/ y. But this scale relationship is not dimensionally consistent, so we introduce a velocity scale to represent the shear strength. This velocity scale, u *, is called the shear velocity, or the friction velocity, and it characterizes the shear at the boundary. The definition of u * is based on the bed stress, τ bed, i.e. τ bed = ρu * 2, (6) where τ bed is defined by the stress-strain relation, τ bed = u ρν. (7) y y=0 Thus, u = τρ = ν u y (8) * ( ) The shear velocity characterizes the turbulence strength and laminar sub-layer thickness. u rms ~ u * (9) δ s = 5 ν / u * (10) y=0 Turbulent Velocity Profile: The Logarithmic Velocity Profile: The shape of the velocity profile within a turbulent boundary layer is well-established by theory and experiment. The profile has specific characteristics very close to the bed where viscosity controls the vertical transport of momentum, and different characteristics farther from the bed where turbulence controls the vertical transport of momentum. The region closest to the boundary is called the Laminar Sub-Layer, because within the region turbulence is suppressed by viscosity. In this region the velocity profile is defined by the stress-relation given in (7). We substitute the definition given in (6) into (7) and use the approximation u/ y u/y to solve for the velocity profile. Laminar Sub-Layer [y < δ s = 5 ν / u * ]: u(y) = u * 2 y / ν (11) Above the Laminar Sub-Layer (y > δ s ) the velocity profile is logarithmic. The profile shape depends both on the bed stress (through u * ) as well as on the bed texture, described by the characteristics roughness, y O. Logarithmic Layer [y > δ s ]: u(y) 2.3u* log y y κ = ( ) 10 o (12) κ = 0.4 is an empirical constant, known as von Karman s constant. Nikuradse studied the influence of boundary texture on velocity profile shape. He glued uniform sand grains of diameter ε, to the bed of a flume and measured the velocity profile

6 6 over the bed at different flow speeds. He found two different behaviors defined by the roughness Reynolds number, εu * /ν. For conditions with εu * /ν < 5, yo = ν/9u *, i.e., the characteristic roughness is NOT a function of the real roughness scale. This means that the velocity profile shape, through yo, is not a function of the real roughness scale, or, simply, the logarithmic portion of the velocity profile is independent of the surface roughness under these conditions. To understand why, recall from (10) that the thickness of the laminar sublayer, δ s = 5 ν / u *. So, Nikuradse s findings simply say that when the surface texture is smaller than the laminar sub-layer (ε < 5 ν / u * ), then the flow above the laminar sub-layer does not feel the surface texture. We call this regime Smooth Turbulent Flow. When the roughness becomes larger than the laminar sub-layer, specifically ε > (70 to 100)ν /u* = 14 to 20 δ s, then the flow above the laminar sub-layer does feel the surface texture. Under these conditions yo = ε /30, i.e. the characteristic roughness IS a function of the real roughness scale, and the logarithmic profile is altered, through y o, by the surface texture. We call this regime Rough Turbulent Flow. u * ε ν ν u 5, y = * ε ε < o > , yo = 9u * ν 30 Example of Fitting a Logarithmic Profile. An example of a mean velocity profile is graphed in two forms on the following page, using logarithmic and linear axes. The linear axes reveal the more familiar boundary layer profile. The logarithmic portion of the profile appears linear on the logarithmic axes. By fitting the logarithmic portion of the profile, we can estimate the characteristic roughness, y o, and the friction velocity, u *. The red line is the log-linear fit to the velocity profile. We ignore the two points closest to the bed, as these do not follow the same log-linear trend as the rest of the profile, and we suspect (and will later check) that they lie within the laminar sub-layer. From (12) the slope of the red, fitted line gives us an estimate for u *. Specifically, we select two points on the red line, y1 = 6 cm and y2 = 0.05 cm, with velocity u1 = 1.2 cms -1 and u2 = 0 cms -1, respectively. Then, u* = κ u2 u1 κ cm / s = = 01. cm / s 23. log 10( y1) log 10( y2) 2. 3log 10( 6/ 0. 05) The characteristic roughness, y o, is the y-intercept of the red line. That is, from (12), u = 0 when y = y o. From the graph, y o = 0.05 cm. Since y o > ν/9u * = 0.01, the flow is not Smooth Turbulent. From (10) the laminar sub-layer thickness is 0.5 cm, which confirms that the two points closest to the boundary lie inside the laminar sub-layer. Finally, if we

7 7 assume the flow is Fully Rough Turbulent, ε = 30 y o = 1.5 cm. Then the roughness Reynolds number is εu * /ν = 15. Because εu * /ν < 70, we conclude that the flow is not Rough Turbulent, but in a transition between Smooth and Rough. y[cm] 10 y[cm] u [cm/s] u [cm/s] Turbulent Transport in the Equation of Mass Conservation The presence of turbulence creates fluctuations in concentration. As we did with the velocity field above (see equation 1), we decompose the concentration into a temporal mean and turbulent fluctuations around that mean. As above, the over-bar indicates an average over time-scale T, which is long compared to the turbulent fluctuations. C (t) = C + C (t) (13) For simplicity we start with a one-dimensional version of the equation of mass conservation (transport equation), C t + (uc) x = x D C x, (14) x into which we substitute the decomposition of velocity and concentration. ( ) ( ) ( ) C+ C ( u+ u )( C+ C ) C+ C + = Dx t x x x (15) Now, we time average each term. By definition, a = 0, and a = a. Then (15) becomes, ( ) C t + uc + u C x = D C x. (16) x x

8 8 The term u C represents the net mass flux due to turbulent advection. If we could fully calculate the turbulence field, we could calculate the turbulent flux and solve (16). Unfortunately this is quite complex and computationally intensive, and for many flows quite prohibitive. Alternatively we can devise a model for the turbulent flux in terms of the mean velocity and concentration, which are easily known. Then (16) can be readily solved. A simple mixing-length model is proposed below. It assumes the turbulent motions can be characterized by the length-scale of the eddies. Mixing-Length Model for Turbulent Flux- Below is a long narrow tube with linear concentration gradient C/ x < 0. There is no mean current in the tube, u =0. Consider the transport achieved by a single eddy with length-scale lx. At the top of the eddy u > 0, and the eddy carries forward fluid of higher concentration, such that a probe positioned at the dashed line would momentarily record a concentration greater than the local mean when this eddy is present. That is, at the position of the dashed line, C> 0 where u > 0. Similarly, for this eddy, where u< 0 then C< 0. The magnitude of the concentration fluctuations will be of the scale, C ~ lx C/ x. The sign of the concentration fluctuation depends on both the sign of the concentration gradient and the sign of the velocity fluctuation. Again we consider the picture above in which C/ x is negative. The part of the eddy for which u is also negative produces a negative c'. The part of the eddy for which u is positive produces a positive C. In a region with positive gradient, C/ x > 0, u positive produces C negative, and u negative produces C positive. In general, when C/ x and u have the same sign, C< 0, and when C/ x have opposite sign, C > 0. So, the sign of C is -sign ( u C/ x). Using this definition for the sign of C we can now write the turbulent advection generated by an isolated velocity fluctuation u.

9 9 u C = - u lx C/ x Averaging over an ensemble of random fluctuations associated with the many eddies within a turbulent system, we write uc~ u C = - u lx C/ x. (17) This relation tells us that the turbulent flux behaves as a Fickian diffusion. The flux is proportional to the mean concentration gradient, and is counter gradient. Following this analogy, we define a turbulent diffusion coefficient, or turbulent diffusivity, D t,x ~ u lx, (18) Such that the turbulent flux can explicitly modeled as an additional diffusion term, uc= -D t,x C/ x. (19) Simply stated, this model shows that the turbulent flux depends on the strength of the turbulence ( u) and the scale of the turbulence (lx). From our previous discussion, the strength of turbulence is characterized by the friction velocity, i.e. u~ u *. In fact many length-scales of turbulence co-exist in a turbulent flow, so to apply (18) we must select the length scale that is most important to the turbulent flux. In general, this will be the largest length-scale in the system, because (18) tells us the effective diffusivity increases with eddy scale. Thus, the dominant length-scale of the turbulent transport will depend on the geometric constraints of the domain, which dictates the largest eddy scale in the domain. Returning to (16) and replacing the turbulent correlation (19), we arrive at C t + ( uc) x C = (D x + Dt,x ) x x (20) Thus, we have shown that the effect of turbulence on the transport equation can be modeled simply by increasing the coefficient of diffusion by an amount dictated by the strength and intensity of the turbulence. In general the turbulent diffusivity, D t,x is much greater than its molecular counterpart, such that the latter is simply ignored. Now, the solutions already devised for the transport equation can be applied in turbulent flow, but with the molecular diffusivity replaced by its turbulent cousin. Finally, through similar reasoning on can quickly show that the turbulent diffusivity in the vertical and lateral dimension will scale as, D t,y ~ vly D t,z ~ w lz. (21) Because turbulence is often anisotropic in both length-scale (lx ly lz) and intensity ( u v w, we expect that the turbulent diffusivity will also be anisotropic (D t,x D t,y D t,z ).

10 10 Turbulent Diffusivity in a Channel The turbulence in a channel may be characterized by the bed friction velocity, u *, and a characteristic length-scale. A reasonable and convenient choice for the length-scale is the flow depth, h. Then, from (18), the turbulent diffusivity in the river scale as D t ~ u * h. The scaling constant must be determined from tracer studies. Table 1 presents range of scale coefficients compiled from multiple tracer studies. Table 1. Turbulent Diffusivity in Channels (x,y,z)=(streamwise, lateral, vertical) D t, x = ( ) u * h 0.15 u * h straight channel D t, y = 0.6 u * h gentle meanders 3.4 u * h strong meanders D t,z = 1 15 u * h Constants are empirical, except for D t,z which is based on theoretical models of length-scale. The aspect ratio of most channels is such that lx >> ly > lz, so that we expect from (18) and (21) that D X > D Y > D Z. This is indeed the case for straight channels. However, curvature (or meanders) in a channel introduce secondary circulations (lateral currents) that increase lateral mixing. With strong meanders the effect is sufficiently strong to make D t,y >> D t,x. Typical river values are: D t,x = cm 2 /s, D t,y = cm 2 /s, D t,z = cm 2 /s. From Table 1, to estimate the diffusivity in a river we need the channel depth and friction velocity. It is often difficult to measure sufficiently detailed velocity profiles from which to estimate the friction velocity, such that a simpler method has become common. Consider steady flow in a wide channel of width b, depth h << b, and bed-slope, S = sin θ, where θ is the angle to the horizontal. The momentum balance is between the component of fluid weight directed along the channel and the bed stress. Consider a length of channel dx. Neglecting the wall-stress (reasonable for a wide channel), ρ g dx h b S τ bed dx b = 0. (22) Using the definition of friction velocity, τ bed = ρ u * 2, (21) can be solved for u *. u * = ghs (23)

### Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture No. # 36 Pipe Flow Systems

Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture No. # 36 Pipe Flow Systems Welcome back to the video course on Fluid Mechanics. In today

### Open channel flow Basic principle

Open channel flow Basic principle INTRODUCTION Flow in rivers, irrigation canals, drainage ditches and aqueducts are some examples for open channel flow. These flows occur with a free surface and the pressure

### Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

### Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations

Chapter 2. Derivation of the Equations of Open Channel Flow 2.1 General Considerations Of interest is water flowing in a channel with a free surface, which is usually referred to as open channel flow.

### Civil Engineering Hydraulics Mechanics of Fluids. Flow in Pipes

Civil Engineering Hydraulics Mechanics of Fluids Flow in Pipes 2 Now we will move from the purely theoretical discussion of nondimensional parameters to a topic with a bit more that you can see and feel

### 1.4 Review. 1.5 Thermodynamic Properties. CEE 3310 Thermodynamic Properties, Aug. 26,

CEE 3310 Thermodynamic Properties, Aug. 26, 2011 11 1.4 Review A fluid is a substance that can not support a shear stress. Liquids differ from gasses in that liquids that do not completely fill a container

### Chapter 8: Flow in Pipes

Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks

### Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22

BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =

### Hydraulic losses in pipes

Hydraulic losses in pipes Henryk Kudela Contents 1 Viscous flows in pipes 1 1.1 Moody Chart.................................... 2 1.2 Types of Fluid Flow Problems........................... 5 1.3 Minor

### Viscous flow in pipe

Viscous flow in pipe Henryk Kudela Contents 1 Laminar or turbulent flow 1 2 Balance of Momentum - Navier-Stokes Equation 2 3 Laminar flow in pipe 2 3.1 Friction factor for laminar flow...........................

### Fluids and Solids: Fundamentals

Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.

### Fluent Software Training TRN Boundary Conditions. Fluent Inc. 2/20/01

Boundary Conditions C1 Overview Inlet and Outlet Boundaries Velocity Outline Profiles Turbulence Parameters Pressure Boundaries and others... Wall, Symmetry, Periodic and Axis Boundaries Internal Cell

### Basic Equations, Boundary Conditions and Dimensionless Parameters

Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were

### When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

### ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts

ME 305 Fluid Mechanics I Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared by Dr. Cüneyt Sert Mechanical Engineering Department Middle East Technical University Ankara, Turkey csert@metu.edu.tr

### Chapter 13 OPEN-CHANNEL FLOW

Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Lecture slides by Mehmet Kanoglu Copyright The McGraw-Hill Companies, Inc. Permission required

### CHAPTER 9 CHANNELS APPENDIX A. Hydraulic Design Equations for Open Channel Flow

CHAPTER 9 CHANNELS APPENDIX A Hydraulic Design Equations for Open Channel Flow SEPTEMBER 2009 CHAPTER 9 APPENDIX A Hydraulic Design Equations for Open Channel Flow Introduction The Equations presented

### For Water to Move a driving force is needed

RECALL FIRST CLASS: Q K Head Difference Area Distance between Heads Q 0.01 cm 0.19 m 6cm 0.75cm 1 liter 86400sec 1.17 liter ~ 1 liter sec 0.63 m 1000cm 3 day day day constant head 0.4 m 0.1 m FINE SAND

### Basic Principles in Microfluidics

Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces

### du u U 0 U dy y b 0 b

BASIC CONCEPTS/DEFINITIONS OF FLUID MECHANICS (by Marios M. Fyrillas) 1. Density (πυκνότητα) Symbol: 3 Units of measure: kg / m Equation: m ( m mass, V volume) V. Pressure (πίεση) Alternative definition:

### There are a number of criteria to consider when designing canals Below is a list of main criteria, not necessarily in order of importance:

Lecture 15 Canal Design Basics I. Canal Design Factors There are a number of criteria to consider when designing canals Below is a list of main criteria, not necessarily in order of importance: 1. Flow

### Dimensional Analysis

Dimensional Analysis An Important Example from Fluid Mechanics: Viscous Shear Forces V d t / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Ƭ = F/A = μ V/d More generally, the viscous

### Macroscopic Balances for Nonisothermal Systems

Transport Phenomena Macroscopic Balances for Nonisothermal Systems 1 Macroscopic Balances for Nonisothermal Systems 1. The macroscopic energy balance 2. The macroscopic mechanical energy balance 3. Use

### CHAPTER 4 FLOW IN CHANNELS

CHAPTER 4 FLOW IN CHANNELS INTRODUCTION 1 Flows in conduits or channels are of interest in science, engineering, and everyday life. Flows in closed conduits or channels, like pipes or air ducts, are entirely

### ME19b. SOLUTIONS. Feb. 11, 2010. Due Feb. 18

ME19b. SOLTIONS. Feb. 11, 21. Due Feb. 18 PROBLEM B14 Consider the long thin racing boats used in competitive rowing events. Assume that the major component of resistance to motion is the skin friction

### Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2)

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) In this lecture How does turbulence affect the ensemble-mean equations of fluid motion/transport? Force balance in a quasi-steady turbulent boundary

### 4.What is the appropriate dimensionless parameter to use in comparing flow types? YOUR ANSWER: The Reynolds Number, Re.

CHAPTER 08 1. What is most likely to be the main driving force in pipe flow? A. Gravity B. A pressure gradient C. Vacuum 2.What is a general description of the flow rate in laminar flow? A. Small B. Large

### FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER

VISUAL PHYSICS School of Physics University of Sydney Australia FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER? What type of fluid flow is observed? The above pictures show how the effect

### FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions

FLUID DYNAMICS Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID FLOW Laminar or

### Experiment 3 Pipe Friction

EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A cross-sectional

### XI / PHYSICS FLUIDS IN MOTION 11/PA

Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A

### Appendix 4-C. Open Channel Theory

4-C-1 Appendix 4-C Open Channel Theory 4-C-2 Appendix 4.C - Table of Contents 4.C.1 Open Channel Flow Theory 4-C-3 4.C.2 Concepts 4-C-3 4.C.2.1 Specific Energy 4-C-3 4.C.2.2 Velocity Distribution Coefficient

### 3. Mixing in Rivers: Turbulent Diffusion and Dispersion

3. Mixing in Rivers: Turbulent Diffusion and Dispersion In previous chapters we considered the processes of advection and molecular diffusion and have seen some example problems with so called turbulent

### Chapter 9. Steady Flow in Open channels

Chapter 9 Steady Flow in Open channels Objectives Be able to define uniform open channel flow Solve uniform open channel flow using the Manning Equation 9.1 Uniform Flow in Open Channel Open-channel flows

### 11 Navier-Stokes equations and turbulence

11 Navier-Stokes equations and turbulence So far, we have considered ideal gas dynamics governed by the Euler equations, where internal friction in the gas is assumed to be absent. Real fluids have internal

### Lecture 11 Boundary Layers and Separation. Applied Computational Fluid Dynamics

Lecture 11 Boundary Layers and Separation Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Overview Drag. The boundary-layer

### Chapter 1. Governing Equations of Fluid Flow and Heat Transfer

Chapter 1 Governing Equations of Fluid Flow and Heat Transfer Following fundamental laws can be used to derive governing differential equations that are solved in a Computational Fluid Dynamics (CFD) study

### Abaqus/CFD Sample Problems. Abaqus 6.10

Abaqus/CFD Sample Problems Abaqus 6.10 Contents 1. Oscillatory Laminar Plane Poiseuille Flow 2. Flow in Shear Driven Cavities 3. Buoyancy Driven Flow in Cavities 4. Turbulent Flow in a Rectangular Channel

### Physics 41 HW Set 1 Chapter 15

Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,

### Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics

Lecture 6 - Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.

### NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics

### Blasius solution. Chapter 19. 19.1 Boundary layer over a semi-infinite flat plate

Chapter 19 Blasius solution 191 Boundary layer over a semi-infinite flat plate Let us consider a uniform and stationary flow impinging tangentially upon a vertical flat plate of semi-infinite length Fig

### 2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT

2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT Open channel flow is defined as flow in any channel where the liquid flows with a free surface. Open channel flow is not under pressure; gravity is the

### Introduction to basic principles of fluid mechanics

2.016 Hydrodynamics Prof. A.H. Techet Introduction to basic principles of fluid mechanics I. Flow Descriptions 1. Lagrangian (following the particle): In rigid body mechanics the motion of a body is described

### Chapter 28 Fluid Dynamics

Chapter 28 Fluid Dynamics 28.1 Ideal Fluids... 1 28.2 Velocity Vector Field... 1 28.3 Mass Continuity Equation... 3 28.4 Bernoulli s Principle... 4 28.5 Worked Examples: Bernoulli s Equation... 7 Example

### 3. Diffusion of an Instantaneous Point Source

3. Diffusion of an Instantaneous Point Source The equation of conservation of mass is also known as the transport equation, because it describes the transport of scalar species in a fluid systems. In this

### Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module No. # 04 Convective Heat Transfer Lecture No. # 03 Heat Transfer Correlation

### Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids

Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction Last lab you investigated flow loss in a pipe due to the roughness

### GEOMETRICAL OPTICS. Lens Prism Mirror

GEOMETRICAL OPTICS Geometrical optics is the treatment of the passage of light through lenses, prisms, etc. by representing the light as rays. A light ray from a source goes in a straight line through

### Chapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any

Chapter 10 Flow Measurements Material from Theory and Design for Mechanical Measurements; Figliola, Third Edition Flow Rate Flow rate can be expressed in terms of volume flow rate (volume/time) or mass

### OPEN-CHANNEL FLOW. Free surface. P atm

OPEN-CHANNEL FLOW Open-channel flow is a flow of liquid (basically water) in a conduit with a free surface. That is a surface on which pressure is equal to local atmospheric pressure. P atm Free surface

### CEE 370 Fall 2015. Laboratory #3 Open Channel Flow

CEE 70 Fall 015 Laboratory # Open Channel Flow Objective: The objective of this experiment is to measure the flow of fluid through open channels using a V-notch weir and a hydraulic jump. Introduction:

### ANALYSIS OF OPEN-CHANNEL VELOCITY MEASUREMENTS COLLECTED WITH AN ACOUSTIC DOPPLER CURRENT PROFILER

Reprint from RIVERTECH 96 Proceedings from the1st International Conference On New/Emerging Concepts for Rivers Organized by the International Water Resources Association Held September 22-26, 1996, Chicago,

### HEAVY OIL FLOW MEASUREMENT CHALLENGES

HEAVY OIL FLOW MEASUREMENT CHALLENGES 1 INTRODUCTION The vast majority of the world s remaining oil reserves are categorised as heavy / unconventional oils (high viscosity). Due to diminishing conventional

### CHEMICAL ENGINEERING AND CHEMICAL PROCESS TECHNOLOGY - Vol. I - Interphase Mass Transfer - A. Burghardt

INTERPHASE MASS TRANSFER A. Burghardt Institute of Chemical Engineering, Polish Academy of Sciences, Poland Keywords: Turbulent flow, turbulent mass flux, eddy viscosity, eddy diffusivity, Prandtl mixing

### Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. Dr Tay Seng Chuan

Ground Rules PC11 Fundamentals of Physics I Lectures 3 and 4 Motion in One Dimension Dr Tay Seng Chuan 1 Switch off your handphone and pager Switch off your laptop computer and keep it No talking while

### I-campus project School-wide Program on Fluid Mechanics Modules on High Reynolds Number Flows K. P. Burr, T. R. Akylas & C. C. Mei

1 I-campus project School-wide Program on Fluid Mechanics Modules on High Reynolds Number Flows K. P. Burr, T. R. Akylas & C. C. Mei CHAPTER TWO TWO-DIMENSIONAL LAMINAR BOUNDARY LAYERS 1 Introduction.

### In order to describe motion you need to describe the following properties.

Chapter 2 One Dimensional Kinematics How would you describe the following motion? Ex: random 1-D path speeding up and slowing down In order to describe motion you need to describe the following properties.

### Physics of the Atmosphere I

Physics of the Atmosphere I WS 2008/09 Ulrich Platt Institut f. Umweltphysik R. 424 Ulrich.Platt@iup.uni-heidelberg.de heidelberg.de Last week The conservation of mass implies the continuity equation:

### p atmospheric Statics : Pressure Hydrostatic Pressure: linear change in pressure with depth Measure depth, h, from free surface Pressure Head p gh

IVE1400: n Introduction to Fluid Mechanics Statics : Pressure : Statics r P Sleigh: P..Sleigh@leeds.ac.uk r J Noakes:.J.Noakes@leeds.ac.uk January 008 Module web site: www.efm.leeds.ac.uk/ive/fluidslevel1

### Open Channel Flow. M. Siavashi. School of Mechanical Engineering Iran University of Science and Technology

M. Siavashi School of Mechanical Engineering Iran University of Science and Technology W ebpage: webpages.iust.ac.ir/msiavashi Email: msiavashi@iust.ac.ir Landline: +98 21 77240391 Fall 2013 Introduction

### Theory of Chromatography

Theory of Chromatography The Chromatogram A chromatogram is a graph showing the detector response as a function of elution time. The retention time, t R, for each component is the time needed after injection

### Dimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena.

Dimensional Analysis and Similarity Dimensional analysis is very useful for planning, presentation, and interpretation of experimental data. As discussed previously, most practical fluid mechanics problems

### Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass

Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of

### A Guide to Calculate Convection Coefficients for Thermal Problems Application Note

A Guide to Calculate Convection Coefficients for Thermal Problems Application Note Keywords: Thermal analysis, convection coefficients, computational fluid dynamics, free convection, forced convection.

### Heat transfer in Flow Through Conduits

Heat transfer in Flow Through Conduits R. Shankar Suramanian Department of Chemical and Biomolecular Engineering Clarkson University A common situation encountered y the chemical engineer is heat transfer

### Using CFD to improve the design of a circulating water channel

2-7 December 27 Using CFD to improve the design of a circulating water channel M.G. Pullinger and J.E. Sargison School of Engineering University of Tasmania, Hobart, TAS, 71 AUSTRALIA Abstract Computational

### Lecture 8 - Turbulence. Applied Computational Fluid Dynamics

Lecture 8 - Turbulence Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Turbulence What is turbulence? Effect of turbulence

### Representing Vector Fields Using Field Line Diagrams

Minds On Physics Activity FFá2 5 Representing Vector Fields Using Field Line Diagrams Purpose and Expected Outcome One way of representing vector fields is using arrows to indicate the strength and direction

### Fluid Mechanics: Static s Kinematics Dynamics Fluid

Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three

### Diffusion and Fluid Flow

Diffusion and Fluid Flow What determines the diffusion coefficient? What determines fluid flow? 1. Diffusion: Diffusion refers to the transport of substance against a concentration gradient. ΔS>0 Mass

### Bead moving along a thin, rigid, wire.

Bead moving along a thin, rigid, wire. odolfo. osales, Department of Mathematics, Massachusetts Inst. of Technology, Cambridge, Massachusetts, MA 02139 October 17, 2004 Abstract An equation describing

### Effects of mass transfer processes in designing a heterogeneous catalytic reactor

Project Report 2013 MVK160 Heat and Mass Transport May 13, 2013, Lund, Sweden Effects of mass transfer processes in designing a heterogeneous catalytic reactor Maryneth de Roxas Dept. of Energy Sciences,

### Introduction to COMSOL. The Navier-Stokes Equations

Flow Between Parallel Plates Modified from the COMSOL ChE Library module rev 10/13/08 Modified by Robert P. Hesketh, Chemical Engineering, Rowan University Fall 2008 Introduction to COMSOL The following

### Pressure drop in pipes...

Pressure drop in pipes... PRESSURE DROP CALCULATIONS Pressure drop or head loss, occurs in all piping systems because of elevation changes, turbulence caused by abrupt changes in direction, and friction

### u = φ where 2 φ = 0. (1.1) (y εh) = Dt y ε h t ε φ h h x and

Kelvin-Helmholtz and Rayleigh-Taylor Instabilities Consider two fluid regions, y > 0 and y < 0. In y > 0 let the fluid have uniform velocity u = (U, 0, 0 and constant density ρ =, whereas in y < 0 let

### 1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

### High resolution modelling of flow-vegetation interactions: From the stem scale to the reach scale

Septième École Interdisciplinaire de Rennes sur les Systèmes Complexes - 13 th October 2015 High resolution modelling of flow-vegetation interactions: From the stem scale to the reach scale Tim Marjoribanks

### Review of Fundamental Mathematics

Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools

### Fluid flow in circular and noncircular pipes is commonly encountered in

cen72367_ch08.qxd 11/4/04 7:13 PM Page 321 FLOW IN PIPES CHAPTER 8 Fluid flow in circular and noncircular pipes is commonly encountered in practice. The hot and cold water that we use in our homes is pumped

### Calculating resistance to flow in open channels

Alternative Hydraulics Paper 2, 5 April 2010 Calculating resistance to flow in open channels http://johndfenton.com/alternative-hydraulics.html johndfenton@gmail.com Abstract The Darcy-Weisbach formulation

### charge is detonated, causing the smaller glider with mass M, to move off to the right at 5 m/s. What is the

This test covers momentum, impulse, conservation of momentum, elastic collisions, inelastic collisions, perfectly inelastic collisions, 2-D collisions, and center-of-mass, with some problems requiring

### 7. DYNAMIC LIGHT SCATTERING 7.1 First order temporal autocorrelation function.

7. DYNAMIC LIGHT SCATTERING 7. First order temporal autocorrelation function. Dynamic light scattering (DLS) studies the properties of inhomogeneous and dynamic media. A generic situation is illustrated

### 5.2 Rotational Kinematics, Moment of Inertia

5 ANGULAR MOTION 5.2 Rotational Kinematics, Moment of Inertia Name: 5.2 Rotational Kinematics, Moment of Inertia 5.2.1 Rotational Kinematics In (translational) kinematics, we started out with the position

### Review D: Potential Energy and the Conservation of Mechanical Energy

MSSCHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Fall 2005 Review D: Potential Energy and the Conservation of Mechanical Energy D.1 Conservative and Non-conservative Force... 2 D.1.1 Introduction...

### Acoustic Velocity, Impedance, Reflection, Transmission, Attenuation, and Acoustic Etalons

Acoustic Velocity, Impedance, Reflection, Transmission, Attenuation, and Acoustic Etalons Acoustic Velocity The equation of motion in a solid is (1) T = ρ 2 u t 2 (1) where T is the stress tensor, ρ is

### Force on Moving Charges in a Magnetic Field

[ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

### Table 9.1 Types of intrusions of a fluid into another and the corresponding terminology.

Chapter 9 Turbulent Jets SUMMARY: This chapter is concerned with turbulent jets, namely their overall shape and velocity structure. The first jets being considered are those penetrating in homogeneous

### CET Moving Charges & Magnetism

CET 2014 Moving Charges & Magnetism 1. When a charged particle moves perpendicular to the direction of uniform magnetic field its a) energy changes. b) momentum changes. c) both energy and momentum

### The Viscosity of Fluids

Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

### Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE

1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object

### HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi

HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi 2 Rajesh Dudi 1 Scholar and 2 Assistant Professor,Department of Mechanical Engineering, OITM, Hisar (Haryana)

### Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity

1 Lecture 5 Hemodynamics Description of fluid flow Hydrodynamics is the part of physics, which studies the motion of fluids. It is based on the laws of mechanics. Hemodynamics studies the motion of blood

### Exemplar Problems Physics

Chapter Eight GRAVITATION MCQ I 8.1 The earth is an approximate sphere. If the interior contained matter which is not of the same density everywhere, then on the surface of the earth, the acceleration

### Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION

1 P a g e Inertia Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION The property of an object by virtue of which it cannot change its state of rest or of uniform motion along a straight line its own, is

### Chapter 6 Work and Energy

Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

### Distinguished Professor George Washington University. Graw Hill

Mechanics of Fluids Fourth Edition Irving H. Shames Distinguished Professor George Washington University Graw Hill Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis Bangkok

### Graphical Presentation of Data

Graphical Presentation of Data Guidelines for Making Graphs Titles should tell the reader exactly what is graphed Remove stray lines, legends, points, and any other unintended additions by the computer