7. DYNAMIC LIGHT SCATTERING 7.1 First order temporal autocorrelation function.


 Gyles Ray
 2 years ago
 Views:
Transcription
1 7. DYNAMIC LIGHT SCATTERING 7. First order temporal autocorrelation function. Dynamic light scattering (DLS) studies the properties of inhomogeneous and dynamic media. A generic situation is illustrated in Fig., where a plane wave scatters on a system of randomly moving particles. y k m R r m P r m r m R k i z x Figure 7. Light scattering on a system of moving particles.
2 At observation point P of vector position R, particle m, of fluctuating position r t, scatters along direction t m R r. m For weakly scattering media, the problem can be described by the Born approximation, where we consider the scattering medium to be discrete and the particle positions to fluctuate in time. Define a dynamic scattering potential, as a collection of point scatterers. F r, t F0 r r r j t. (7.) j Equation is analogous to the earlier equation when describing static scattering under the Born approximation, now the particle positions change in time. F 0 is the scattering potential of a single particle and the summation is over all the particles. Variable t is due to fluctuations in particle positions and should not be confused with the reciprocal variable of optical frequency.
3 The scattering potential is still in the frequency domain, F r, ; we ignored the explicit argument for simplicity. The dynamic scattering amplitude is given by the Fourier transform of Eq., 0 i qr j t j f q, t f q e, (7.) qks k i The dynamic signal originates in the superposition of scattered fields with fluctuating phases. To characterize these fluctuations, we calculate the temporal autocorrelation of the field scattered along k s, as q, f q, t f * q, t 0 q mn, i t t m n f e qr r. (7.3) 3
4 is the firstorder (field) correlation function, to be distinguished from the intensity correlation. In Eq. 3, the angular brackets denote temporal averaging, f t T T T f t dt. Assume particles move independently from one another, always true for a sparse distribution of particles. Under these circumstances, correlations between displacements of different particles vanish, r iqr t t m n e 0, for mn. (7.4) Combining Eqs. 3 and 4, we obtain q, q d N d q qr m e e r i m t m t r iqr t t, (7.5) 4
5 d q f q is the differential cross section associated with a single particle 0 and N is the total number of particles in the scattering volume. We assumed that all terms in the summation are equal, i.e. all particles are governed by the same statistics. The temporal autocorrelation is typically normalized to give g q, N e q, d q r iqr m t m t (7.6) The subscript indicates that g is a firstorder correlation function. 5
6 7. Secondorder correlation function. The Siegert relationship. In practice, one only has access to the intensity scattered along direction k s. An intensity autocorrelation function is the measurable quantity, defined as g It I t I t (7.7), where I t Um t U* n t, (7.8) mn, The angular brackets denote temporal average, and the double summation is over the ensemble of the scattered fields. Combining Eqs. 7 and 8, we obtain g U t U t U t U t I t mn, kl, m n* k l *. (7.9) 6
7 In Eq. 9, there are two different contributions: o for mnk l, summation gives I t o for m=l and n=k, m n, we obtain terms of the form I * mg Ing. Because the particles scattered independently m n from one another, all the other terms vanish. Thus, Eq. 9 becomes q I t I t g, I t (7.0) which readily simplifies to g g (7.) 7
8 Equation connects the firstorder and the secondorder correlation functions and is known as the Siegert relationship. To evaluate the average e iqr, with r the displacement of a single particle, we need information regarding the physical phenomenon that generates fluctuations in the particle positions. This will provide the displacement probability density, to evaluate the average. Let us assume that this probability density is r,t. The average of interest can be calculated as an ensemble average, iqr t iqr t e r, t e d V q, t 3 r (7.) The average is simply the 3D spatial Fourier transform of the probability density r,t. In the following section, we determine and the average diffusive particles, which is a situation widely encountered in practice. 8 i e qr t for
9 7.3 Particles under Brownian motion. For particles fluctuating at thermal equilibrium, undergoing Brownian motion, the probability density associated with a particle at position r and time t verifies the (homogeneous) diffusion equation r, r, 0. (7.3) t D t t D is the diffusion coefficient, which for a spherical particle of radius a is given by the StokesEinstein equation kt B D (7.4) 6a B k is the Boltzmann constant, k B 9 3 J.38 0, T is the absolute K temperature (T=98K for room temperature), the viscosity of the surrounding 3 fluid ( 0 N s 0 Pa s for water at room temperature). m
10 Taking the spatial Fourier transform of Eq. 3, we obtain q, t t Dq q, t (7.5) The first order differential equation in time immediately yields Dq t qt, e (7.6) It follows from Eqs 6, 3 and 6 that the first order correlation function for Brownian particles has the form g q, e e iqr Dq. 0 (7.7) Equation 7 is commonly used in dynamic light scattering. It establishes, for measurements at a fixed scattering angle, which corresponds to q the field correlation function has a characteristic time 0 Dq. 4 sin,
11 The larger the scattering angle and the larger the diffusion coefficient, the shorter the correlation time 0. For example, a particle of m diameter, suspended in water at room temperature, has a characteristic 0.5ms. Experimentally one has access directly to the secondorder correlation function and, using the Siegert relationship, information about the diffusion coefficient can be obtained via g Dq. e (7.8)
12 Figure shows a qualitative description of the measured intensity and two different correlation times. g for I A I B t t A q B q A 0 B 0 Figure 7. DLS signals in two different conditions.
13 The decay (correlation) time has the form Dq 0 6 a qkt B (7.9) Therefore a A A B can be obtained in a variety of conditions A and B: 0 0 ab, A B, qa qb, TA TB (all other parameters constant). Sometimes, the power spectrum of intensity fluctuations is measured, q, q, q, Fg q, t i P I t I t e d (7.0) Equation 0 states that the measured power spectrum is related to g via a Fourier transform, which simply follows from the WienerKintchin theorem. 3
14 Thus, for diffusive particles, we expect a power spectrum of Lorentzian shape P F e 0, (7.) With. Thus, the width of the power spectrum is equally informative. 0 4
arxiv:1111.4354v2 [physics.accph] 27 Oct 2014
Theory of Electromagnetic Fields Andrzej Wolski University of Liverpool, and the Cockcroft Institute, UK arxiv:1111.4354v2 [physics.accph] 27 Oct 2014 Abstract We discuss the theory of electromagnetic
More informationPhysics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
More informationF en = mω 0 2 x. We should regard this as a model of the response of an atom, rather than a classical model of the atom itself.
The Electron Oscillator/Lorentz Atom Consider a simple model of a classical atom, in which the electron is harmonically bound to the nucleus n x e F en = mω 0 2 x origin resonance frequency Note: We should
More informationLecture 1: Introduction to Random Walks and Diffusion
Lecture : Introduction to Random Walks and Diffusion Scribe: Chris H. Rycroft (and Martin Z. Bazant) Department of Mathematics, MIT February, 5 History The term random walk was originally proposed by Karl
More informationDYNAMIC LIGHT SCATTERING COMMON TERMS DEFINED
DYNAMIC LIGHT SCATTERING COMMON TERMS DEFINED Abstract: There are a number of sources of information that give a mathematical description of the terms used in light scattering. However, these will not
More informationHighConcentration Submicron Particle Size Distribution by Dynamic Light Scattering
HighConcentration Submicron Particle Size Distribution by Dynamic Light Scattering Power spectrum development with heterodyne technology advances biotechnology and nanotechnology measurements. M. N. Trainer
More informationPhysics 53. Wave Motion 1
Physics 53 Wave Motion 1 It's just a job. Grass grows, waves pound the sand, I beat people up. Muhammad Ali Overview To transport energy, momentum or angular momentum from one place to another, one can
More informationDetermination of Acceleration due to Gravity
Experiment 2 24 Kuwait University Physics 105 Physics Department Determination of Acceleration due to Gravity Introduction In this experiment the acceleration due to gravity (g) is determined using two
More informationA Theoretical Model for Mutual Interaction between Coaxial Cylindrical Coils Lukas Heinzle
A Theoretical Model for Mutual Interaction between Coaxial Cylindrical Coils Lukas Heinzle Page 1 of 15 Abstract: The wireless power transfer link between two coils is determined by the properties of the
More informationBoundary Conditions in Fluid Mechanics
Boundary Conditions in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University The governing equations for the velocity and pressure fields are partial
More informationIntroduction of LDA. Last Class: 1. Matlab Programming 2. An example of PIV in Matlab code 3. EDPIV 4. PIV plugin for ImageJ 5.
Introduction of LDA Last Class: 1. Matlab Programming 2. An example of PIV in Matlab code 3. EDPIV 4. PIV plugin for ImageJ 5. JPIV Today s Contents: 1. Fundamentals of LDA 2. Turbulent Flow Properties
More informationWe consider a hydrogen atom in the ground state in the uniform electric field
Lecture 13 Page 1 Lectures 1314 Hydrogen atom in electric field. Quadratic Stark effect. Atomic polarizability. Emission and Absorption of Electromagnetic Radiation by Atoms Transition probabilities and
More informationProtein sizing by light scattering, molecular weight and polydispersity
Protein sizing by light scattering, molecular weight and polydispersity Ulf Nobbmann Malvern Instruments Malvern, Worcestershire WR14 1XZ Outline Why light scattering? Crystallization
More informationChapter 1: Introduction
! Revised August 26, 2013 7:44 AM! 1 Chapter 1: Introduction Copyright 2013, David A. Randall 1.1! What is a model? The atmospheric science community includes a large and energetic group of researchers
More informationUsing light scattering method to find The surface tension of water
Experiment (8) Using light scattering method to find The surface tension of water The aim of work: The goals of this experiment are to confirm the relationship between angular frequency and wave vector
More informationChapter 24 Physical Pendulum
Chapter 4 Physical Pendulum 4.1 Introduction... 1 4.1.1 Simple Pendulum: Torque Approach... 1 4. Physical Pendulum... 4.3 Worked Examples... 4 Example 4.1 Oscillating Rod... 4 Example 4.3 Torsional Oscillator...
More informationStochastic Doppler shift and encountered wave period distributions in Gaussian waves
Ocean Engineering 26 (1999) 507 518 Stochastic Doppler shift and encountered wave period distributions in Gaussian waves G. Lindgren a,*, I. Rychlik a, M. Prevosto b a Department of Mathematical Statistics,
More informationApplications of SecondOrder Differential Equations
Applications of SecondOrder Differential Equations Secondorder linear differential equations have a variety of applications in science and engineering. In this section we explore two of them: the vibration
More informationMechanical Vibrations
Mechanical Vibrations A mass m is suspended at the end of a spring, its weight stretches the spring by a length L to reach a static state (the equilibrium position of the system). Let u(t) denote the displacement,
More informationLecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows
Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows 3. 1 Basics: equations of continuum mechanics  balance equations for mass and momentum  balance equations for the energy and the chemical
More informationPSS 27.2 The Electric Field of a Continuous Distribution of Charge
Chapter 27 Solutions PSS 27.2 The Electric Field of a Continuous Distribution of Charge Description: Knight ProblemSolving Strategy 27.2 The Electric Field of a Continuous Distribution of Charge is illustrated.
More informationDifferential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation
Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of
More informationChapter 11. Differential Equations Introduction Unlimited population growth
Chapter 11 Differential Equations 11.1 Introduction A differential equation is a relationship between some (unknown) function and one of its derivatives. Generally, such equations are encountered in scientific
More information6 J  vector electric current density (A/m2 )
Determination of Antenna Radiation Fields Using Potential Functions Sources of Antenna Radiation Fields 6 J  vector electric current density (A/m2 ) M  vector magnetic current density (V/m 2 ) Some problems
More informationSimple harmonic motion
PH122 Dynamics Page 1 Simple harmonic motion 02 February 2011 10:10 Force opposes the displacement in A We assume the spring is linear k is the spring constant. Sometimes called stiffness constant Newton's
More informationThe Role of Electric Polarization in Nonlinear optics
The Role of Electric Polarization in Nonlinear optics Sumith Doluweera Department of Physics University of Cincinnati Cincinnati, Ohio 45221 Abstract Nonlinear optics became a very active field of research
More informationThe Central Equation
The Central Equation Mervyn Roy May 6, 015 1 Derivation of the central equation The single particle Schrödinger equation is, ( H E nk ψ nk = 0, ) ( + v s(r) E nk ψ nk = 0. (1) We can solve Eq. (1) at given
More informationUnderstanding Poles and Zeros
MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.14 Analysis and Design of Feedback Control Systems Understanding Poles and Zeros 1 System Poles and Zeros The transfer function
More informationIntroduction to acoustic imaging
Introduction to acoustic imaging Contents 1 Propagation of acoustic waves 3 1.1 Wave types.......................................... 3 1.2 Mathematical formulation.................................. 4 1.3
More informationBasic Principles of Magnetic Resonance
Basic Principles of Magnetic Resonance Contents: Jorge Jovicich jovicich@mit.edu I) Historical Background II) An MR experiment  Overview  Can we scan the subject?  The subject goes into the magnet 
More informationPeriodic wave in spatial domain  length scale is wavelength Given symbol l y
1.4 Periodic Waves Often have situations where wave repeats at regular intervals Electromagnetic wave in optical fibre Sound from a guitar string. These regularly repeating waves are known as periodic
More informationFrom Fourier Series to Fourier Integral
From Fourier Series to Fourier Integral Fourier series for periodic functions Consider the space of doubly differentiable functions of one variable x defined within the interval x [ L/2, L/2]. In this
More informationTransport of passive and active tracers in turbulent flows
Chapter 3 Transport of passive and active tracers in turbulent flows A property of turbulence is to greatly enhance transport of tracers. For example, a dissolved sugar molecule takes years to diffuse
More informationLet s first see how precession works in quantitative detail. The system is illustrated below: ...
lecture 20 Topics: Precession of tops Nutation Vectors in the body frame The free symmetric top in the body frame Euler s equations The free symmetric top ala Euler s The tennis racket theorem As you know,
More informationRotation: Kinematics
Rotation: Kinematics Rotation refers to the turning of an object about a fixed axis and is very commonly encountered in day to day life. The motion of a fan, the turning of a door knob and the opening
More informationAcoustic Velocity, Impedance, Reflection, Transmission, Attenuation, and Acoustic Etalons
Acoustic Velocity, Impedance, Reflection, Transmission, Attenuation, and Acoustic Etalons Acoustic Velocity The equation of motion in a solid is (1) T = ρ 2 u t 2 (1) where T is the stress tensor, ρ is
More informationElectromagnetic Waves
Electromagnetic Waves Maxwell s equations predict the propagation of electromagnetic energy away from timevarying sources (current and charge) in the form of waves. Consider a linear, homogeneous, isotropic
More informationStructure Factors 59553 78
78 Structure Factors Until now, we have only typically considered reflections arising from planes in a hypothetical lattice containing one atom in the asymmetric unit. In practice we will generally deal
More informationFourier Analysis. Nikki Truss. Abstract:
Fourier Analysis Nikki Truss 09369481 Abstract: The aim of this experiment was to investigate the Fourier transforms of periodic waveforms, and using harmonic analysis of Fourier transforms to gain information
More informationSimple Harmonic Motion Concepts
Simple Harmonic Motion Concepts INTRODUCTION Have you ever wondered why a grandfather clock keeps accurate time? The motion of the pendulum is a particular kind of repetitive or periodic motion called
More informationVCO Phase noise. Characterizing Phase Noise
VCO Phase noise Characterizing Phase Noise The term phase noise is widely used for describing short term random frequency fluctuations of a signal. Frequency stability is a measure of the degree to which
More informationQ ( q(m, t 0 ) n) S t.
THE HEAT EQUATION The main equations that we will be dealing with are the heat equation, the wave equation, and the potential equation. We use simple physical principles to show how these equations are
More informationDamping in a variable mass on a spring pendulum
Damping in a variable mass on a spring pendulum Rafael M. Digilov, a M. Reiner, and Z. Weizman Department of Education in Technology and Science, TechnionIsrael Institute of Technology, Haifa 32000, Israel
More informationHooke s Law. Spring. Simple Harmonic Motion. Energy. 12/9/09 Physics 201, UWMadison 1
Hooke s Law Spring Simple Harmonic Motion Energy 12/9/09 Physics 201, UWMadison 1 relaxed position F X = kx > 0 F X = 0 x apple 0 x=0 x > 0 x=0 F X =  kx < 0 x 12/9/09 Physics 201, UWMadison 2 We know
More informationPhysics 41 HW Set 1 Chapter 15
Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,
More informationCBE 6333, R. Levicky 1. Potential Flow
CBE 6333, R. Levicky Part I. Theoretical Background. Potential Flow Potential Flow. Potential flow is irrotational flow. Irrotational flows are often characterized by negligible viscosity effects. Viscous
More informationWaves & Oscillations
Physics 42200 Waves & Oscillations Lecture 3 French, Chapter 1 Spring 2013 Semester Matthew Jones Simple Harmonic Motion The time dependence of a single dynamical variable that satisfies the differential
More informationRefractive Index Measurement Principle
Refractive Index Measurement Principle Refractive index measurement principle Introduction Detection of liquid concentrations by optical means was already known in antiquity. The law of refraction was
More informationPARTICLE SIZE. Instrument Solutions
PARTICLE SIZE Instrument Solutions There are numerous techniques by which to determine the quantity vs. equivalent size distribution of a collection of particles. Selecting the right technique is critical
More informationPhysics 53. Rotational Motion 1. We're going to turn this team around 360 degrees. Jason Kidd
Physics 53 Rotational Motion 1 We're going to turn this team around 360 degrees. Jason Kidd Rigid bodies To a good approximation, a solid object behaves like a perfectly rigid body, in which each particle
More informationChapter 8 Steady Incompressible Flow in Pressure Conduits
Chapter 8 Steady Incompressible Flow in Pressure Conduits Outline 8.1 Laminar Flow and turbulent flow Reynolds Experiment 8.2 Reynolds number 8.3 Hydraulic Radius 8.4 Friction Head Loss in Conduits of
More informationWaves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one
5.1.1 Oscillating Systems Waves Review Checklist 5.1.2 Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one Four pendulums are built as shown
More informationChapter 28 Fluid Dynamics
Chapter 28 Fluid Dynamics 28.1 Ideal Fluids... 1 28.2 Velocity Vector Field... 1 28.3 Mass Continuity Equation... 3 28.4 Bernoulli s Principle... 4 28.5 Worked Examples: Bernoulli s Equation... 7 Example
More informationCirculation Bjerknes Circulation Theorem Vorticity Potential Vorticity Conservation of Potential Vorticity. ESS227 Prof. JinYi Yu
Lecture 4: Circulation and Vorticity Circulation Bjerknes Circulation Theorem Vorticity Potential Vorticity Conservation of Potential Vorticity Measurement of Rotation Circulation and vorticity are the
More informationAngular Momentum Problems Challenge Problems
Angular Momentum Problems Challenge Problems Problem 1: Toy Locomotive A toy locomotive of mass m L runs on a horizontal circular track of radius R and total mass m T. The track forms the rim of an otherwise
More informationLecture L222D Rigid Body Dynamics: Work and Energy
J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L  D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L3 for
More informationMultiple Electrokinetic Actuators for Feedback Control of Colloidal Crystal Size
Multiple Electrokinetic Actuators for Feedback Control of Colloidal Crystal Size Jaime J. Juárez a*, ramod. Mathai b, c, J. Alexander Liddle c, and Michael A. Bevan a a Chemical and Biomolecular Engineering,
More informationVersion PREVIEW Practice 8 carroll (11108) 1
Version PREVIEW Practice 8 carroll 11108 1 This printout should have 12 questions. Multiplechoice questions may continue on the net column or page find all choices before answering. Inertia of Solids
More informationTheory From the diffraction pattern to the distribution size
Theory From the diffraction pattern to the distribution size 1 Principle This method is based on diffraction and diffusion phenomenon. To obtain the particle size Fraunhofer and Mie theory are used. When
More informationGround Rules. PC1221 Fundamentals of Physics I. Force. Zero Net Force. Lectures 9 and 10 The Laws of Motion. Dr Tay Seng Chuan
PC1221 Fundamentals of Physics I Lectures 9 and 10 he Laws of Motion Dr ay Seng Chuan 1 Ground Rules Switch off your handphone and pager Switch off your laptop computer and keep it No talking while lecture
More informationNanoPlus / 0.1nm µm. Particle Size. Dynamic Light Scattering and Zeta Potential. Air Permeability. Electrical Sensing Zone
There are numerous techniques by which to determine the quantity vs. equivalent size distribution of a collection of particles. Selecting the right technique is critical in obtaining reliable data. No
More informationRotation: Moment of Inertia and Torque
Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn
More informationQuantum Fields in Curved Spacetime
Quantum Fields in Curved Spacetime Lecture 1: Introduction Finn Larsen Michigan Center for Theoretical Physics Yerevan, August 20, 2016. Intro: Fields Setting: many microscopic degrees of freedom interacting
More informationAcoustics Analysis of Speaker
Acoustics Analysis of Speaker 1 Introduction ANSYS 14.0 offers many enhancements in the area of acoustics. In this presentation, an example speaker analysis will be shown to highlight some of the acoustics
More informationUpdated 2013 (Mathematica Version) M1.1. Lab M1: The Simple Pendulum
Updated 2013 (Mathematica Version) M1.1 Introduction. Lab M1: The Simple Pendulum The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are
More informationChapter 10 Introduction to Time Series Analysis
Chapter 1 Introduction to Time Series Analysis A time series is a collection of observations made sequentially in time. Examples are daily mortality counts, particulate air pollution measurements, and
More informationFirst Semester Learning Targets
First Semester Learning Targets 1.1.Can define major components of the scientific method 1.2.Can accurately carry out conversions using dimensional analysis 1.3.Can utilize and convert metric prefixes
More informationSTANDING WAVES. Objective: To verify the relationship between wave velocity, wavelength, and frequency of a transverse wave.
STANDING WAVES Objective: To verify the relationship between wave velocity, wavelength, and frequency of a transverse wave. Apparatus: Magnetic oscillator, string, mass hanger and assorted masses, pulley,
More informationSound. References: L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol. 2, Gas Dynamics, Chapter 8
References: Sound L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol., Gas Dynamics, Chapter 8 1 Speed of sound The phenomenon of sound waves is one that
More informationPhysics of the Atmosphere I
Physics of the Atmosphere I WS 2008/09 Ulrich Platt Institut f. Umweltphysik R. 424 Ulrich.Platt@iup.uniheidelberg.de heidelberg.de Last week The conservation of mass implies the continuity equation:
More informationA B = AB sin(θ) = A B = AB (2) For two vectors A and B the cross product A B is a vector. The magnitude of the cross product
1 Dot Product and Cross Products For two vectors, the dot product is a number A B = AB cos(θ) = A B = AB (1) For two vectors A and B the cross product A B is a vector. The magnitude of the cross product
More informationNanoparticle Size Measurement with Microfluidic Channel and Dielectrophoresis
Nanoparticle Size Measurement with Microfluidic Channel and Dielectrophoresis Yi Qiao Measurement and Inspection Lab, Corporate Research, 3M Company, St Paul, MN, 55144 Outline 1. Background of Nanoparticle
More informationA C O U S T I C S of W O O D Lecture 3
Jan Tippner, Dep. of Wood Science, FFWT MU Brno jan. tippner@mendelu. cz Content of lecture 3: 1. Damping 2. Internal friction in the wood Content of lecture 3: 1. Damping 2. Internal friction in the wood
More informationSample Questions for the AP Physics 1 Exam
Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiplechoice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each
More informationNuclear Magnetic Resonance
Nuclear Magnetic Resonance Author: James Dragan Lab Partner: Stefan Evans Physics Department, Stony Brook University, Stony Brook, NY 794. (Dated: December 5, 23) We study the principles behind Nuclear
More informationDynamic Light Scattering (aka QLS, PCS)
Dynamic Light Scattering (aka QLS, PCS) Oriented particles create interference patterns, each bright spot being a speckle. The speckle pattern moves as the particle move, creating flickering. All the motions
More information* Biot Savart s Law Statement, Proof Applications of Biot Savart s Law * Magnetic Field Intensity H * Divergence of B * Curl of B. PPT No.
* Biot Savart s Law Statement, Proof Applications of Biot Savart s Law * Magnetic Field Intensity H * Divergence of B * Curl of B PPT No. 17 Biot Savart s Law A straight infinitely long wire is carrying
More informationBruce B. Weiner, Walther W. Tscharnuter, David Fairhurst Brookhaven Instruments Corporation Holtsville, NY 11742 US
Zeta Potential: A New Approach by Bruce B. Weiner, Walther W. Tscharnuter, David Fairhurst Brookhaven Instruments Corporation Holtsville, NY 11742 US A paper presented at the Canadian Mineral Analysts
More informationAPPLIED MATHEMATICS ADVANCED LEVEL
APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications
More informationCBE 6333, R. Levicky 1 Fluid Kinematics and Constitutive Laws
CBE 6333, R. Levicky 1 Fluid Kinematics and Constitutive Laws In using the differential balance equations derived previously, it will be insightful to better understand the basic types of motion that a
More informationAN ROINN OIDEACHAIS AGUS EOLAÍOCHTA LEAVING CERTIFICATE EXAMINATION, 2001 APPLIED MATHEMATICS HIGHER LEVEL
M3 AN ROINN OIDEACHAIS AGUS EOLAÍOCHTA LEAVING CERTIFICATE EXAMINATION, 00 APPLIED MATHEMATICS HIGHER LEVEL FRIDAY, JUNE AFTERNOON,.00 to 4.30 Six questions to be answered. All questions carry equal marks.
More informationAssignment 3. Solutions. Problems. February 22.
Assignment. Solutions. Problems. February.. Find a vector of magnitude in the direction opposite to the direction of v = i j k. The vector we are looking for is v v. We have Therefore, v = 4 + 4 + 4 =.
More informationThe Dispersal of an Initial Concentration of Motile Bacteria
Journal of General Microbiology (I976), 9,253 I Printed in Great Britain The Dispersal of an Initial Concentration of Motile Bacteria By P. C. THONEMANN AND C. J. EVANS Department of Physics, University
More informationPrelab Exercises: Hooke's Law and the Behavior of Springs
59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically
More informationSaturation Vapour Pressure above a Solution Droplet
Appendix C Saturation Vapour Pressure above a Solution Droplet In this appendix, the Köhler equation is derived. As in Appendix B, the theory summarised here can be found in Pruppacher & Klett (1980) and
More informationPhysics 53. Oscillations. You've got to be very careful if you don't know where you're going, because you might not get there.
Physics 53 Oscillations You've got to be very careful if you don't know where you're going, because you might not get there. Yogi Berra Overview Many natural phenomena exhibit motion in which particles
More informationLecture 24  Surface tension, viscous flow, thermodynamics
Lecture 24  Surface tension, viscous flow, thermodynamics Surface tension, surface energy The atoms at the surface of a solid or liquid are not happy. Their bonding is less ideal than the bonding of atoms
More informationy = a sin ωt or y = a cos ωt then the object is said to be in simple harmonic motion. In this case, Amplitude = a (maximum displacement)
5.5 Modelling Harmonic Motion Periodic behaviour happens a lot in nature. Examples of things that oscillate periodically are daytime temperature, the position of a weight on a spring, and tide level. If
More information4. Introduction to Heat & Mass Transfer
4. Introduction to Heat & Mass Transfer This section will cover the following concepts: A rudimentary introduction to mass transfer. Mass transfer from a molecular point of view. Fundamental similarity
More informationResponse to Harmonic Excitation Part 2: Damped Systems
Response to Harmonic Excitation Part 2: Damped Systems Part 1 covered the response of a single degree of freedom system to harmonic excitation without considering the effects of damping. However, almost
More informationBlackbody radiation derivation of Planck s radiation low
Blackbody radiation derivation of Planck s radiation low 1 Classical theories of Lorentz and Debye: Lorentz (oscillator model): Electrons and ions of matter were treated as a simple harmonic oscillators
More informationUnsteady Pressure Measurements
Quite often the measurements of pressures has to be conducted in unsteady conditions. Typical cases are those of the measurement of timevarying pressure (with periodic oscillations or step changes) the
More informationLab M1: The Simple Pendulum
Lab M1: The Simple Pendulum Introduction. The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are usually regarded as the beginning of
More informationChapter 13, example problems: x (cm) 10.0
Chapter 13, example problems: (13.04) Reading Fig. 1330 (reproduced on the right): (a) Frequency f = 1/ T = 1/ (16s) = 0.0625 Hz. (since the figure shows that T/2 is 8 s.) (b) The amplitude is 10 cm.
More informationResponse to Harmonic Excitation
Response to Harmonic Excitation Part 1 : Undamped Systems Harmonic excitation refers to a sinusoidal external force of a certain frequency applied to a system. The response of a system to harmonic excitation
More informationANALYSIS AND APPLICATIONS OF LAPLACE /FOURIER TRANSFORMATIONS IN ELECTRIC CIRCUIT
www.arpapress.com/volumes/vol12issue2/ijrras_12_2_22.pdf ANALYSIS AND APPLICATIONS OF LAPLACE /FOURIER TRANSFORMATIONS IN ELECTRIC CIRCUIT M. C. Anumaka Department of Electrical Electronics Engineering,
More informationLECTURE 11 : GLASSY DYNAMICS  Intermediate scattering function  Mean square displacement and beyond  Dynamic heterogeneities  Isoconfigurational
LECTURE 11 : GLASSY DYNAMICS  Intermediate scattering function  Mean square displacement and beyond  Dynamic heterogeneities  Isoconfigurational Ensemble  Energy landscapes A) INTERMEDIATE SCATTERING
More informationFig. 2 shows a simple step waveform in which switching time of power devices are not considered and assuming the switch is ideal.
CHAPTER 3: ANAYSIS OF THREEEE INERTER In this chapter an analysis of threelevel converter is presented by considering the output voltage waveform in order to determine the switching angle of power devices.
More informationThe First Law of Thermodynamics: Closed Systems. Heat Transfer
The First Law of Thermodynamics: Closed Systems The first law of thermodynamics can be simply stated as follows: during an interaction between a system and its surroundings, the amount of energy gained
More information3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT8016 Basic Analog Circuits 2005/2006 1
3. Diodes and Diode Circuits 3. Diodes and Diode Circuits TLT8016 Basic Analog Circuits 2005/2006 1 3.1 Diode Characteristics SmallSignal Diodes Diode: a semiconductor device, which conduct the current
More information