Chapter 18. Preview. Objectives Schematic Diagrams Electric Circuits. Section 1 Schematic Diagrams and Circuits

Save this PDF as:

Size: px
Start display at page:

Download "Chapter 18. Preview. Objectives Schematic Diagrams Electric Circuits. Section 1 Schematic Diagrams and Circuits"

Transcription

1 Section 1 Schematic Diagrams and Circuits Preview Objectives Schematic Diagrams Electric Circuits

2 Section 1 Schematic Diagrams and Circuits Objectives Interpret and construct circuit diagrams. Identify circuits as open or closed. Deduce the potential difference across the circuit load, given the potential difference across the battery s terminals.

3 Section 1 Schematic Diagrams and Circuits Schematic Diagrams A schematic diagram is a representation of a circuit that uses lines to represent wires and different symbols to represent components. Some symbols used in schematic diagrams are shown at right.

4 Section 1 Schematic Diagrams and Circuits Schematic Diagram and Common Symbols Click below to watch the Visual Concept. Visual Concept

5 Section 1 Schematic Diagrams and Circuits Electric Circuits An electric circuit is a set of electrical components connected such that they provide one or more complete paths for the movement of charges. A schematic diagram for a circuit is sometimes called a circuit diagram. Any element or group of elements in a circuit that dissipates energy is called a load.

6 Section 1 Schematic Diagrams and Circuits Electric Circuits, continued A circuit which contains a complete path for electrons to follow is called a closed circuit. Without a complete path, there is no charge flow and therefore no current. This situation is called an open circuit. A short circuit is a closed circuit that does not contain a load. Short circuits can be hazardous.

7 Section 1 Schematic Diagrams and Circuits Electric Circuits, continued The source of potential difference and electrical energy is the circuits emf. Any device that transforms nonelectrical energy into electrical energy, such as a battery or a generator, is a source of emf. If the internal resistance of a battery is neglected, the emf equals the potential difference across the source s two terminals.

8 Section 1 Schematic Diagrams and Circuits Internal Resistance, emf, and Terminal Voltage Click below to watch the Visual Concept. Visual Concept

9 Section 1 Schematic Diagrams and Circuits Electric Circuits, continued The terminal voltage is the potential difference across a battery s positive and negative terminals. For conventional current, the terminal voltage is less than the emf. The potential difference across a load equals the terminal voltage.

10 Section 1 Schematic Diagrams and Circuits Light Bulb

11 Section 2 Resistors in Series or in Parallel TEKS The student is expected to: 5F design, construct, and calculate in terms of current through, potential difference across, resistance of, and power used by electric circuit elements connected in both series and parallel combinations

12 Section 2 Resistors in Series or in Parallel Preview Objectives Resistors in Series Resistors in Parallel Sample Problem

13 Section 2 Resistors in Series or in Parallel Objectives Calculate the equivalent resistance for a circuit of resistors in series, and find the current in and potential difference across each resistor in the circuit. Calculate the equivalent resistance for a circuit of resistors in parallel, and find the current in and potential difference across each resistor in the circuit.

14 Section 2 Resistors in Series or in Parallel Resistors in Series A series circuit describes two or more components of a circuit that provide a single path for current. Resistors in series carry the same current. The equivalent resistance can be used to find the current in a circuit. The equivalent resistance in a series circuit is the sum of the circuit s resistances. R eq = R 1 + R 2 + R 3

15 Section 2 Resistors in Series or in Parallel Resistors in Series

16 Section 2 Resistors in Series or in Parallel Resistors in Series, continued Two or more resistors in the actual circuit have the same effect on the current as one equivalent resistor. The total current in a series circuit equals the potential difference divided by the equivalent resistance. ΔV I = R eq

17 Section 2 Resistors in Series or in Parallel Sample Problem Resistors in Series A 9.0 V battery is connected to four light bulbs, as shown at right. Find the equivalent resistance for the circuit and the current in the circuit. Use the equivalent resistance to determine the total power dissipated by the resistors in the circuit.

18 Section 2 Resistors in Series or in Parallel Sample Problem, continued Resistors in Series 1. Define Given: V = 9.0 V R 1 = 2.0 Ω R 2 = 4.0 Ω R 3 = 5.0 Ω R 4 = 7.0 Ω Unknown: R eq =? I =? Diagram:

19 Section 2 Resistors in Series or in Parallel Sample Problem, continued Resistors in Series 2. Plan Choose an equation or situation: Because the resistors are connected end to end, they are in series. Thus, the equivalent resistance can be calculated with the equation for resistors in series. R eq = R 1 + R 2 + R 3 The following equation can be used to calculate the current. V = IR eq

20 Section 2 Resistors in Series or in Parallel Sample Problem, continued Resistors in Series 2. Plan, continued Rearrange the equation to isolate the unknown: No rearrangement is necessary to calculate R eq, but V = IR eq must be rearranged to calculate the current. ΔV I = R eq

21 Section 2 Resistors in Series or in Parallel Sample Problem, continued Resistors in Series 3. Calculate Substitute the values into the equation and solve: R = 2. 0 Ω Ω Ω Ω e q R = e q Ω Substitute the equivalent resistance value into the equation for current. I Δ V 9 = =. 0 V = 0 R Ω. 50 A e q

22 Section 2 Resistors in Series or in Parallel Sample Problem, continued Resistors in Series Use the value calculated for R eq to determine the total power dissipated by resistors in the circuit. P = (ΔV) 2 R eq = (9.0 V) 2 18 Ω = 4.5 W 4. Evaluate For resistors connected in series, the equivalent resistance should be greater than the largest resistance in the circuit Ω > 7.0 Ω

23 Section 2 Resistors in Series or in Parallel Resistors in Series, continued Series circuits require all elements to conduct electricity As seen below, a burned out filament in a string of bulbs has the same effect as an open switch. Because the circuit is no longer complete, there is no current.

24 Section 2 Resistors in Series or in Parallel Comparing Resistors in Series and in Parallel Click below to watch the Visual Concept. Visual Concept

25 Section 2 Resistors in Series or in Parallel Resistors in Parallel A parallel arrangement describes two or more components of a circuit that provide separate conducting paths for current because the components are connected across common points or junctions Lights wired in parallel have more than one path for current. Parallel circuits do not require all elements to conduct.

26 Section 2 Resistors in Series or in Parallel Resistors in Parallel

27 Section 2 Resistors in Series or in Parallel Resistors in Parallel, continued Resistors in parallel have the same potential differences across them. The sum of currents in parallel resistors equals the total current. The equivalent resistance of resistors in parallel can be calculated using a reciprocal relationship 1 R eq = 1 R R R 3...

28 Section 2 Resistors in Series or in Parallel Sample Problem Resistors in Parallel A 9.0 V battery is connected to four resistors, as shown at right. Find the equivalent resistance for the circuit and the total current in the circuit. Use the total current to determine the total power dissipated by the resistors in the circuit.

29 Section 2 Resistors in Series or in Parallel Sample Problem, continued Resistors in Parallel 1. Define Given: V = 9.0 V R 1 = 2.0 Ω R 2 = 4.0 Ω R 3 = 5.0 Ω R 4 = 7.0 Ω Unknown: R eq =? I =? Diagram:

30 Section 2 Resistors in Series or in Parallel Sample Problem, continued Resistors in Parallel 2. Plan Choose an equation or situation: Because both sides of each resistor are connected to common points, they are in parallel. Thus, the equivalent resistance can be calculated with the equation for resistors in parallel. 1 = R eq R 1 R 2 R 3 The following equation can be used to calculate the current. V = IR eq

31 Section 2 Resistors in Series or in Parallel Sample Problem, continued Resistors in Parallel 2. Plan, continued Rearrange the equation to isolate the unknown: No rearrangement is necessary to calculate R eq ; rearrange V = IR eq to calculate the total current delivered by the battery. ΔV I = R eq

32 Section 2 Resistors in Series or in Parallel Sample Problem, continued Resistors in Parallel 3. Calculate Substitute the values into the equation and solve: = R 2. 0 Ω 4. 0 Ω 5. 0 Ω 7. 0 Ω e q = =. 09 R Ω Ω Ω Ω Ω e q 1 Ω R e = = q 1. 09

33 Section 2 Resistors in Series or in Parallel Sample Problem, continued Resistors in Parallel 3. Calculate, continued Substitute the equivalent resistance value into the equation for current. I Δ V 9 = =. 0 V = R Ω e q 9.8 A Use the value calculated for I to determine the total power dissipated by resistors in the circuit. P = IΔV = (9.9 A)(9.0 V) = 88 W

34 Section 2 Resistors in Series or in Parallel Sample Problem, continued Resistors in Parallel 4. Evaluate For resistors connected in parallel, the equivalent resistance should be less than the smallest resistance in the circuit Ω < 2.0 Ω

35 Section 2 Resistors in Series or in Parallel Resistors in Series or in Parallel

36 Section 3 Complex Resistor Combinations TEKS The student is expected to: 5F design, construct, and calculate in terms of current through, potential difference across, resistance of, and power used by electric circuit elements connected in both series and parallel combinations

37 Section 3 Complex Resistor Combinations Preview Objectives Resistors Combined Both in Parallel and in Series Sample Problem

38 Section 3 Complex Resistor Combinations Objectives Calculate the equivalent resistance for a complex circuit involving both series and parallel portions. Calculate the current in and potential difference across individual elements within a complex circuit.

39 Section 3 Complex Resistor Combinations Resistors Combined Both in Parallel and in Series Many complex circuits can be understood by isolating segments that are in series or in parallel and simplifying them to their equivalent resistances. Work backward to find the current in and potential difference across a part of a circuit.

40 Section 3 Complex Resistor Combinations Analysis of Complex Circuits Click below to watch the Visual Concept. Visual Concept

41 Section 3 Complex Resistor Combinations Sample Problem Equivalent Resistance Determine the equivalent resistance of the complex circuit shown below.

42 Section 3 Complex Resistor Combinations Sample Problem, continued Equivalent Resistance Reasoning The best approach is to divide the circuit into groups of series and parallel resistors. This way, the methods presented in Sample Problems A and B can be used to calculate the equivalent resistance for each group.

43 Section 3 Complex Resistor Combinations Sample Problem, continued Equivalent Resistance 1. Redraw the circuit as a group of resistors along one side of the circuit. Because bends in a wire do not affect the circuit, they do not need to be represented in a schematic diagram. Redraw the circuit without the corners, keeping the arrangement of the circuit elements the same. TIP: For now, disregard the emf source, and work only with the resistances.

44 Section 3 Complex Resistor Combinations Sample Problem, continued Equivalent Resistance 2. Identify components in series, and calculate their equivalent resistance. Resistors in group (a) and (b) are in series. For group (a): R eq = 3.0 Ω Ω = 9.0 Ω For group (b): R eq = 6.0 Ω Ω = 8.0 Ω

45 Section 3 Complex Resistor Combinations Sample Problem, continued Equivalent Resistance 3. Identify components in parallel, and calculate their equivalent resistance. Resistors in group (c) are in parallel = + = =. 37 R 8. 0 Ω 4. 0 Ω 1 Ω 1 Ω 1 Ω R e q e q = 2. 7 Ω

46 Section 3 Complex Resistor Combinations Sample Problem, continued Equivalent Resistance 4. Repeat steps 2 and 3 until the resistors in the circuit are reduced to a single equivalent resistance.the remainder of the resistors, group (d), are in series. F o r g r o u p ( d ) : R e q = 9. 0 Ω Ω Ω R e q = Ω

47 Section 3 Complex Resistor Combinations Sample Problem Current in and Potential Difference Across a Resistor Determine the current in and potential difference across the 2.0 Ω resistor highlighted in the figure below.

48 Section 3 Complex Resistor Combinations Sample Problem, continued Current in and Potential Difference Across a Resistor Reasoning First determine the total circuit current by reducing the resistors to a single equivalent resistance. Then rebuild the circuit in steps, calculating the current and potential difference for the equivalent resistance of each group until the current in and potential difference across the 2.0 Ω resistor are known.

49 Section 3 Complex Resistor Combinations Sample Problem, continued Current in and Potential Difference Across a Resistor 1. Determine the equivalent resistance of the circuit. The equivalent resistance of the circuit is 12.7 Ω, as calculated in the previous Sample Problem.

50 Section 3 Complex Resistor Combinations Sample Problem, continued Current in and Potential Difference Across a Resistor 2. Calculate the total current in the circuit. Substitute the potential difference and equivalent resistance in V = IR, and rearrange the equation to find the current delivered by the battery. I Δ V 9 = =. 0 V = 0 R A e q Ω

51 Section 3 Complex Resistor Combinations Sample Problem, continued 3. Determine a path from the equivalent resistance found in step 1 to the 2.0 Ω resistor.` Review the path taken to find the equivalent resistance in the figure at right, and work backward through this path. The equivalent resistance for the entire circuit is the same as the equivalent resistance for group (d). The center resistor in group (d) in turn is the equivalent resistance for group (c). The top resistor in group (c) is the equivalent resistance for group (b), and the right resistor in group (b) is the 2.0 Ω resistor.

52 Section 3 Complex Resistor Combinations Sample Problem, continued Current in and Potential Difference Across a Resistor 4. Follow the path determined in step 3, and calculate the current in and potential difference across each equivalent resistance. Repeat this process until the desired values are found.

53 Section 3 Complex Resistor Combinations Sample Problem, continued 4. A. Regroup, evaluate, and calculate. Replace the circuit s equivalent resistance with group (d). The resistors in group (d) are in series; therefore, the current in each resistor is the same as the current in the equivalent resistance, which equals 0.71 A. The potential difference across the 2.7 Ω resistor in group (d) can be calculated using V = IR. Given: I = 0.71 A R = 2.7 Ω Unknown: V =? V = IR = (0.71 A)(2.7 Ω) = 1.9 V

54 Section 3 Complex Resistor Combinations Sample Problem, continued 4. B. Regroup, evaluate, and calculate. Replace the center resistor with group (c). The resistors in group (c) are in parallel; therefore, the potential difference across each resistor is the same as the potential difference across the 2.7 Ω equivalent resistance, which equals 1.9 V. The current in the 8.0 Ω resistor in group (c) can be calculated using V = IR. Given: V = 1.9 V R = 8.0 Ω Unknown: I =? I Δ V 1 = =. 9 V = 0 R 8. 0 Ω. 24 A

55 Section 3 Complex Resistor Combinations Sample Problem, continued 4. C. Regroup, evaluate, and calculate. Replace the 8.0 Ω resistor with group (b). The resistors in group (b) are in series; therefore, the current in each resistor is the same as the current in the 8.0 Ω equivalent resistance, which equals 0.24 A. I = 0.24 A The potential difference across the 2.0 Ω resistor can be calculated using V = IR. Given: I = 0.24 A R = 2.0 Ω Unknown: V =? Δ V = I R = ( A )( 2. 0 Ω ) Δ V = V

Schematic diagrams depict the construction of a circuit Uses symbols to represent specific circuit elements Documents how elements are connected so

Circuits Schematic diagrams depict the construction of a circuit Uses symbols to represent specific circuit elements Documents how elements are connected so that anyone reading diagram can understand the

Chapter 18: Circuits and Circuit Elements 1. Schematic diagram: diagram that depicts the construction of an electrical apparatus

Chapter 18: Circuits and Circuit Elements 1 Section 1: Schematic Diagrams and Circuits Schematic Diagrams Schematic diagram: diagram that depicts the construction of an electrical apparatus Uses symbols

Student Exploration: Circuits

Name: Date: Student Exploration: Circuits Vocabulary: ammeter, circuit, current, ohmmeter, Ohm s law, parallel circuit, resistance, resistor, series circuit, voltage Prior Knowledge Questions (Do these

EMF and Terminal Voltage Resistors in Series and Parallel Kirchhoff s Rules EMFs in Series and Parallel; Charging a Battery Circuits with Capacitors

Chapter 19 DC Electrical Circuits Topics in Chapter 19 EMF and Terminal Voltage Resistors in Series and Parallel Kirchhoff s Rules EMFs in Series and Parallel; Charging a Battery Circuits with Capacitors

Note-A-Rific: Characteristics

Note-A-Rific: Characteristics Any path along which electrons can flow is a circuit. For a continuous flow of electrons, there must be a complete circuit with no gaps. A gap is usually an electric switch

Chapter 27 = J. U = 120Ah 3600s 1h. Now we compute how long we can deliver a power of 100 W with this energy available.

Chapter 7 7. A certain car battery with 1.0 V emf has an initial carge of 10 A h. Assuming that the potential across the terminals stays constant until the battery is completely discharged, for how many

Physics Worksheet Electric Circuits Section: Name: Series Circuits

Do Now: (1) What is electric circuit? (2) Convert the following picture into schematic diagram. Series Circuits 4. Label every component of the circuit; identify each of the voltage and current. 5. Relation

Unit 7: Electric Circuits

Multiple Choice Portion 1. The diagram below shows part of an electrical circuit. Unit 7: Electric Circuits 4. A 12 V battery supplies a 5.0 A current to two light bulbs as shown below. What are the magnitude

Students will need about 30 minutes to complete these constructed response tasks.

Electric Title of Circuits Concept Constructed Response Teacher Guide Students will need about 30 minutes to complete these constructed response tasks. Objectives assessed: Understand the functions of

Series and Parallel Circuits

Series and Parallel Circuits Components in a circuit can be connected in series or parallel. A series arrangement of components is where they are inline with each other, i.e. connected end-to-end. A parallel

Lab 4 Series and Parallel Resistors

Lab 4 Series and Parallel Resistors What You Need To Know: (a) (b) R 3 FIGURE - Circuit diagrams. (a) and are in series. (b) and are not in series. The Physics Last week you examined how the current and

Physics 9 Fall 2009 Homework 6 - Solutions

. Chapter 32 - Exercise 8. Physics 9 Fall 29 Homework 6 - s How much power is dissipated by each resistor in the figure? First, let s figure out the current in the circuit. Since the two resistors are

Chapter 19. Electric Circuits

Chapter 9 Electric Circuits Series Wiring There are many circuits in which more than one device is connected to a voltage source. Series wiring means that the devices are connected in such a way that there

Chapter 11- Electricity

Chapter 11- Electricity Course Content Definition of Electricity Circuit Diagrams Series and Parallel Circuits Calculating total resistances Measurement of Electricity Ammeters and Voltmeters Ohm s Law

AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules

Name Period AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules Dr. Campbell 1. Four 240 Ω light bulbs are connected in series. What is the total resistance of the circuit? What

= (0.400 A) (4.80 V) = 1.92 W = (0.400 A) (7.20 V) = 2.88 W

Physics 2220 Module 06 Homework 0. What are the magnitude and direction of the current in the 8 Ω resister in the figure? Assume the current is moving clockwise. Then use Kirchhoff's second rule: 3.00

Electrostatics. Electrostatics Version 2

1. A 150-watt lightbulb is brighter than a 60.-watt lightbulb when both are operating at a potential difference of 110 volts. Compared to the resistance of and the current drawn by the 150-watt lightbulb,

Series and Parallel. How we wire the world

Series and Parallel How we wire the world Series vs Parallel Circuits Series Circuit Electrons only have one path to flow through. Parallel Circuit There are MULTIPLE paths for the current to flow through.

Resistors in Series and Parallel

Resistors in Series and Parallel Bởi: OpenStaxCollege Most circuits have more than one component, called a resistor that limits the flow of charge in the circuit. A measure of this limit on charge flow

Chapter 19 DC Circuits

Lecture PowerPoints Chapter 19 Physics: Principles with Applications, 6 th edition Giancoli Chapter 19 DC Circuits 2005 Pearson Prentice Hall This work is protected by United States copyright laws and

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 5 PARALLEL AND SERIES-PARALLEL CIRCUIT CHARACTERISTICS OBJECTIVES This experiment will have the student

Series and Parallel Resistive Circuits

Series and Parallel Resistive Circuits The configuration of circuit elements clearly affects the behaviour of a circuit. Resistors connected in series or in parallel are very common in a circuit and act

Electrical Fundamentals Module 3: Parallel Circuits

Electrical Fundamentals Module 3: Parallel Circuits PREPARED BY IAT Curriculum Unit August 2008 Institute of Applied Technology, 2008 ATE310- Electrical Fundamentals 2 Module 3 Parallel Circuits Module

Tristan s Guide to: Solving Series Circuits. Version: 1.0 Written in 2006. Written By: Tristan Miller Tristan@CatherineNorth.com

Tristan s Guide to: Solving Series Circuits. Version: 1.0 Written in 2006 Written By: Tristan Miller Tristan@CatherineNorth.com Series Circuits. A Series circuit, in my opinion, is the simplest circuit

People s Physics Book

The Big Ideas: The name electric current is given to the phenomenon that occurs when an electric field moves down a wire at close to the speed of light. Voltage is the electrical energy density (energy

Circuits. PHY2049: Chapter 27 1

Circuits PHY2049: Chapter 27 1 What You Already Know Nature of current Current density Drift speed and current Ohm s law Conductivity and resistivity Calculating resistance from resistivity Power in electric

Chapter 7 Direct-Current Circuits

Chapter 7 Direct-Current Circuits 7. Introduction...7-7. Electromotive Force...7-3 7.3 Resistors in Series and in Parallel...7-5 7.4 Kirchhoff s Circuit Rules...7-7 7.5 Voltage-Current Measurements...7-9

Lab 3 - DC Circuits and Ohm s Law

Lab 3 DC Circuits and Ohm s Law L3-1 Name Date Partners Lab 3 - DC Circuits and Ohm s Law OBJECTIES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in

AP1 Electricity. 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to

1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to (A) a force of repulsion between the shoes and the floor due to macroscopic gravitational forces.

Parallel and Series Resistors, Kirchoff s Law

Experiment 2 31 Kuwait University Physics 107 Physics Department Parallel and Series Resistors, Kirchoff s Law Introduction In this experiment the relations among voltages, currents and resistances for

CHAPTER 19: DC Circuits. Answers to Questions

HAPT 9: D ircuits Answers to Questions. The birds are safe because they are not grounded. Both of their legs are essentially at the same voltage (the only difference being due to the small resistance of

Circuits. The light bulbs in the circuits below are identical. Which configuration produces more light? (a) circuit I (b) circuit II (c) both the same

Circuits The light bulbs in the circuits below are identical. Which configuration produces more light? (a) circuit I (b) circuit II (c) both the same Circuit II has ½ current of each branch of circuit

FREQUENTLY ASKED QUESTIONS October 2, 2012

FREQUENTLY ASKED QUESTIONS October 2, 2012 Content Questions Why do batteries require resistors? Well, I don t know if they require resistors, but if you connect a battery to any circuit, there will always

Experiment 3 ~ Ohm's Law, Measurement of Voltage, Current and Resistance

Experiment 3 ~ Ohm's Law, Measurement of Voltage, Current and Resistance Objective: In this experiment you will learn to use the multi-meter to measure voltage, current and resistance. Equipment: Bread

Matrices & Their Applications: Nodal Analysis

Matrices & Their Applications: Nodal Analysis Introduction Nodal analysis is a method applied to electrical circuits to determine the nodal voltages. In electrical circuits nodes are points where two or

Electric circuits, Current, and resistance (Chapter 22 and 23)

Electric circuits, Current, and resistance (Chapter 22 and 23) Acknowledgements: Several Images and excerpts are taken from College Physics: A strategic approach, Pearson Education Inc Current If electric

Tristan s Guide to: Solving Parallel Circuits. Version: 1.0 Written in 2006. Written By: Tristan Miller Tristan@CatherineNorth.com

Tristan s Guide to: Solving Parallel Circuits. Version: 1.0 Written in 2006 Written By: Tristan Miller Tristan@CatherineNorth.com Parallel Circuits. Parallel Circuits are a little bit more complicated

Chapter 21 Electric Current and Direct-Current Circuit

Chapter 2 Electric Current and Direct-Current Circuit Outline 2- Electric Current 2-2 Resistance and Ohm s Law 2-3 Energy and Power in Electric Circuit 2-4 Resistance in Series and Parallel 2-5 Kirchhoff

Problem set #5 EE 221, 09/26/ /03/2002 1

Chapter 3, Problem 42. Problem set #5 EE 221, 09/26/2002 10/03/2002 1 In the circuit of Fig. 3.75, choose v 1 to obtain a current i x of 2 A. Chapter 3, Solution 42. We first simplify as shown, making

Ch. 20 Electric Circuits

Ch. 0 Electric Circuits 0. Electromotive Force Every electronic device depends on circuits. Electrical energy is transferred from a power source, such as a battery, to a device, say a light bulb. Conducting

Chapter 5. Parallel Circuits ISU EE. C.Y. Lee

Chapter 5 Parallel Circuits Objectives Identify a parallel circuit Determine the voltage across each parallel branch Apply Kirchhoff s current law Determine total parallel resistance Apply Ohm s law in

Q1. (a) The diagram shows the voltage-current graphs for three different electrical components.

Q. (a) The diagram shows the voltage-current graphs for three different electrical components. Which one of the components A, B or C could be a 3 volt filament lamp? Explain the reason for your choice...................

Resistors in Series and Parallel

OpenStax-CNX module: m42356 1 Resistors in Series and Parallel OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Draw a circuit

Resistors in Series and Parallel Circuits

69 Resistors in Series and Parallel Circuits E&M: Series and parallel circuits Equipment List DataStudio file: Not Required Qty s Part Numbers 1 C/DC Electronics Lab EM-8656 2 D cell 1.5 volt Introduction

TECH TIP # 37 SOLVING SERIES/PARALLEL CIRCUITS THREE LAWS --- SERIES CIRCUITS LAW # 1 --- THE SAME CURRENT FLOWS THROUGH ALL PARTS OF THE CIRCUIT

TECH TIP # 37 SOLVING SERIES/PARALLEL CIRCUITS Please study this Tech Tip along with assignment 4 in Basic Electricity. Parallel circuits differ from series circuits in that the current divides into a

Kirchhoff's Rules and Applying Them

[ Assignment View ] [ Eðlisfræði 2, vor 2007 26. DC Circuits Assignment is due at 2:00am on Wednesday, February 21, 2007 Credit for problems submitted late will decrease to 0% after the deadline has passed.

Preamble. Kirchoff Voltage Law (KVL) Series Resistors. In this section of my lectures we will be. resistor arrangements; series and

Preamble Series and Parallel Circuits Physics, 8th Edition Custom Edition Cutnell & Johnson Chapter 0.6-0.8, 0.0 Pages 60-68, 69-6 n this section of my lectures we will be developing the two common types

Cornerstone Electronics Technology and Robotics I Week 15 Combination Circuits (Series-Parallel Circuits)

Cornerstone Electronics Technology and Robotics I Week 15 Combination Circuits (Series-Parallel Circuits) Administration: o Prayer o Turn in quiz Electricity and Electronics, Chapter 8, Introduction: o

Series and Parallel Circuits

Direct Current (DC) Direct current (DC) is the unidirectional flow of electric charge. The term DC is used to refer to power systems that use refer to the constant (not changing with time), mean (average)

Analysis of a single-loop circuit using the KVL method

Analysis of a single-loop circuit using the KVL method Figure 1 is our circuit to analyze. We shall attempt to determine the current through each element, the voltage across each element, and the power

Series and Parallel Circuits

Series and Parallel Circuits Direct-Current Series Circuits A series circuit is a circuit in which the components are connected in a line, one after the other, like railroad cars on a single track. There

Lab 2: Resistance, Current, and Voltage

2 Lab 2: Resistance, Current, and Voltage I. Before you come to la.. A. Read the following chapters from the text (Giancoli): 1. Chapter 25, sections 1, 2, 3, 5 2. Chapter 26, sections 1, 2, 3 B. Read

Electrical Circuit Calculations

Electrical Circuit Calculations Series Circuits Many circuits have more than one conversion device in them (i.e. toaster. heater. lamps etc.) and some have more than one source of electrical energy. If

Maximum value. resistance. 1. Connect the Current Probe to Channel 1 and the Differential Voltage Probe to Channel 2 of the interface.

Series and Parallel Circuits Computer 23 Components in an electrical circuit are in series when they are connected one after the other, so that the same current flows through both of them. Components are

Student Content Brief Advanced Level Electric Circuits Background Information There are a variety of forces acting on the body of the Sea Perch. One important force is pushing electrons through the wires

Question Bank. Electric Circuits, Resistance and Ohm s Law

Electric Circuits, Resistance and Ohm s Law. Define the term current and state its SI unit. Ans. The rate of flow of charge in an electric circuit is called current. Its SI unit is ampere. 2. (a) Define

1 ANSWERS to CIRCUITS 1. The speed with which electrons move through a copper wire is typically 10-4 m s -1. a. Explain why is it that the electrons cannot travel faster in the conductor? b. Explain why

Storing And Releasing Charge In A Circuit

Storing And Releasing Charge In A Circuit Topic The characteristics of capacitors Introduction A capacitor is a device that can retain and release an electric charge, and is used in many circuits. There

Analog and Digital Meters

Analog and Digital Meters Devices and Measurements Objective At the conclusion of this presentation the student will describe and identify: Safety precautions when using test equipment Analog Multimeters

Chapter 23 Circuits Topics: Circuits containing multiple elements Series and parallel combinations RC circuits Electricity in the nervous system Reading Quiz 1. The bulbs in the circuit below are connected.

Parallel DC circuits

Parallel DC circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

Experiment: Series and Parallel Circuits

Phy203: General Physics Lab page 1 of 6 Experiment: Series and Parallel Circuits OBJECTVES MATERALS To study current flow and voltages in series and parallel circuits. To use Ohm s law to calculate equivalent

BJT AC Analysis. by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008

by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008 Introduction This note will discuss AC analysis using the beta, re transistor model shown in Figure 1 for the three types of amplifiers: common-emitter,

Experiment #6, Series and Parallel Circuits, Kirchhoff s Laws

Physics 182 Spring 2013 Experiment #6 1 Experiment #6, Series and Parallel Circuits, Kirchhoff s Laws 1 Purpose Our purpose is to explore and validate Kirchhoff s laws as a way to better understanding

Chapter 13: Electric Circuits

Chapter 13: Electric Circuits 1. A household circuit rated at 120 Volts is protected by a fuse rated at 15 amps. What is the maximum number of 100 watt light bulbs which can be lit simultaneously in parallel

TOPIC 3.1: ELECTRIC CIRCUITS

TOPIC 3.1: ELECTRIC CIRCUITS S4P-3-1 S4P-3-2 S4P-3-3 S4P-3-4 S4P-3-5 S4P-3-6 Describe the origin of conventional current and relate its direction to the electron flow in a conductor. Describe the historical

Experiment NO.3 Series and parallel connection

Experiment NO.3 Series and parallel connection Object To study the properties of series and parallel connection. Apparatus 1. DC circuit training system 2. Set of wires. 3. DC Power supply 4. Digital A.V.O.

Components in Series, Parallel, and Combination

Components in Series, Parallel, and Combination Kirchoff s Laws VOLTAGE LAW: A series circuit of voltages across the various components must add up to be equal to the voltage applied to the circuit. CURRENT

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 1 - D.C. CIRCUITS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME - D.C. CIRCUITS Be able to use circuit theory to determine voltage, current and resistance in direct

PHYS 202 (DDE) Solved problems in electricity 1

PHYS 202 (DDE) Solved problems in electricity 1 1. Common static electricity involves charges ranging from nanocoulombs to microcoulombs. How many electrons are needed to form a charge of -2.00 nc? How

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

ELECTRICAL CIRCUITS. Electrical Circuits

Electrical Circuits A complete path, or circuit, is needed before voltage can cause a current flow through resistances to perform work. There are several types of circuits, but all require the same basic

Σ I in = Σ I out E = IR 1 + IR 2 FXA 2008 KIRCHHOFF S LAWS 1. Candidates should be able to : LAW 1 (K1)

UNT G482 Module 3 2.3.1 Series & Parallel Circuits Candidates should be able to : KRCHHOFF S LAWS 1 LAW 1 (K1) State Kirchhoff s second law and appreciate that it is a consequence of conservation of energy.

Electricity Review-Sheet

Name: ate: 1. The unit of electrical charge in the MKS system is the. volt. ampere. coulomb. mho 2. Which sketch best represents the charge distribution around a neutral electroscope when a positively

Capacitors and RC Circuits

Chapter 6 Capacitors and RC Circuits Up until now, we have analyzed circuits that do not change with time. In other words, these circuits have no dynamic elements. When the behavior of all elements is

very small Ohm s Law and DC Circuits Purpose: Students will become familiar with DC potentiometers circuits and Ohm s Law. Introduction: P31220 Lab

Ohm s Law and DC Circuits Purpose: Students will become familiar with DC potentiometers circuits and Ohm s Law. Introduction: Ohm s Law for electrical resistance, V = IR, states the relationship between

Chapter 7. DC Circuits

Chapter 7 DC Circuits 7.1 Introduction... 7-3 Example 7.1.1: Junctions, branches and loops... 7-4 7.2 Electromotive Force... 7-5 7.3 Electrical Energy and Power... 7-9 7.4 Resistors in Series and in Parallel...

Objectives. to understand how to use a voltmeter to measure voltage

UNIT 10 MEASUREMENTS OF VOLTAGE (from Lillian C. McDermott and the Physics Education Group, Physics by Inquiry Volume II, John Wiley and Sons, NY, 1996) Objectives to understand how to use a voltmeter

Solutions to Bulb questions

Solutions to Bulb questions Note: We did some basic circuits with bulbs in fact three main ones I can think of I have summarized our results below. For the final exam, you must have an understanding of

Recitation 6 Chapter 21

Recitation 6 hapter 21 Problem 35. Determine the current in each branch of the circuit shown in Figure P21.35. 3. Ω 5. Ω 1. Ω 8. Ω 1. Ω ɛ 2 4 12 Let be the current on the left branch (going down), be the

Physics 133: tutorial week 4 Ohm s law, electrical power, emf and internal resistance.

Physics 133: tutorial week 4 Ohm s law, electrical power, emf and internal resistance. 41. The heating element of a clothes drier has a resistance of 11Ïand is connected across a 240V electrical outlet.

Transformer circuit calculations

Transformer circuit calculations This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

Answer, Key Homework 11 David McIntyre 1 1 A

nswer, Key Homework 11 avid Mcntyre 1 This print-out should have 36 questions, check that it is complete. Multiple-choice questions may continue on the next column or page: find all choices before making

CHAPTER 28 ELECTRIC CIRCUITS

CHAPTER 8 ELECTRIC CIRCUITS 1. Sketch a circuit diagram for a circuit that includes a resistor R 1 connected to the positive terminal of a battery, a pair of parallel resistors R and R connected to the

The current that flows is determined by the potential difference across the conductor and the resistance of the conductor (Ohm s law): V = IR P = VI

PHYS1000 DC electric circuits 1 Electric circuits Electric current Charge can move freely in a conductor if an electric field is present; the moving charge is an electric current (SI unit is the ampere

FB-DC3 Electric Circuits: Series and Parallel Circuits

CREST Foundation Electrical Engineering: DC Electric Circuits Kuphaldt FB-DC3 Electric Circuits: Series and Parallel Circuits Contents 1. What are "series" and "parallel"? 2. Simple series circuits 3.

Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws

Physics 182 Summer 2013 Experiment #5 1 Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws 1 Purpose Our purpose is to explore and validate Kirchhoff s laws as a way to better understanding

How do you measure voltage and current in electric circuits? Materials

20A Electricity How do you measure voltage and current in electric circuits? Electricity Investigation 20A We use electricity every day, nearly every minute! In this Investigation you will build circuits

Experiment 4 ~ Resistors in Series & Parallel

Experiment 4 ~ Resistors in Series & Parallel Objective: In this experiment you will set up three circuits: one with resistors in series, one with resistors in parallel, and one with some of each. You

17.4 Series and Parallel Circuits

17.4 Series and Parallel Circuits When multiple resistors are used in a circuit, the total resistance in the circuit must be found before finding the current. Resistors can be combined in a circuit in

Shining a Light. Design & Technology. Year 9. Structure of an electric torch. Shining a Light

Looking at electronic circuits and what is meant by current, voltage, and resistance. Shining a Light Have you ever taken an electric torch to pieces to find out how it works? Look at the diagram below

14 Capacitors in Series & Parallel

hapter 4 apacitors in Series & Parallel 4 apacitors in Series & Parallel The method of ever-simpler circuits that we used for circuits with more than one resistor can also be used for circuits having more

EE 1202 Experiment #2 Resistor Circuits

EE 1202 Experiment #2 Resistor Circuits 1. ntroduction and Goals: Demonstrates the voltage-current relationships in DC and AC resistor circuits. Providing experience in using DC power supply, digital multimeter,

NODAL ANALYSIS. Circuits Nodal Analysis 1 M H Miller

NODAL ANALYSIS A branch of an electric circuit is a connection between two points in the circuit. In general a simple wire connection, i.e., a 'short-circuit', is not considered a branch since it is known

DC Circuits: Operational Amplifiers Hasan Demirel

DC Circuits: Operational Amplifiers Hasan Demirel Op Amps: Introduction Op Amp is short form of operational amplifier. An op amp is an electronic unit that behaves like a voltage controlled voltage source.

Physics 227: Lecture 10 Circuits, EMF, Power

Physics 227: Lecture 10 Circuits, EMF, Power Lecture 9 review: Current continuous, charge does not build up I = neav d t/ t = neav d. ρ = E/j. V = IR. Conductor resistivity increases with temperature,

Kirchhoff s Voltage Law and RC Circuits

Kirchhoff s oltage Law and RC Circuits Apparatus 2 1.5 batteries 2 battery holders DC Power Supply 1 multimeter 1 capacitance meter 2 voltage probes 1 long bulb and 1 round bulb 2 sockets 1 set of alligator