PROCEDURE: 1. Measure and record the actual values of the four resistors listed in Table 10-1.

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "PROCEDURE: 1. Measure and record the actual values of the four resistors listed in Table 10-1."

Transcription

1

2 The answer to two questions will help you identify a series or parallel connection: (1) Will the identical current go through both components? f the answer is yes, the components are in series. (2) Are both ends of one component connected directly to both ends of another component? f yes, the components are in parallel. The components that are in series or parallel may be replaced with an equivalent component. This process continues until the circuit is reduced to a simple series or parallel circuit. After solving the equivalent circuit, the process is reversed in order to apply the solution to the original circuit. This idea will be studied in this experiment. PROCEDURE: 1. Measure and record the actual values of the four resistors listed in Table Connect the circuit shown in Figure Notice that the identical current is through R, and R4, so we know that they are in series. R2 has both ends connected directly to R3, SO these resistors are in parallel. Figure You can begin solving for the currents and voltages in the circuit by replacing resistors that are either in series or in parallel with an equivalent resistor. n this case, begin by replacing R2 and R3 with one equivalent resistor. Label the equivalent resistor R2,3. Draw the equivalent series circuit in the space provided in the report. Show the value of all components, including R The equivalent circuit you drew in step 3 is a series circuit. Compute the total resistance of this equivalent circuit and enter it in the first two columns of Table Then disconnect the power supply and measure the total resistance to confirm your calculation. Enter the measured total resistance, RT, in column The voltage divider rule can be applied directly to the equivalent series circuit to find the voltages across R,, R2,3, and R4. Find V,, V2.3, and V4 using the voltage divider rule. Tabulate the results in Table 10-2 in the Voltage Divider column. 6. Find the total current, T, in the circuit by substituting the total voltage and the total resistance into Ohm's law. Enter the computed total current in Table 10-2 in the Ohm's law column.

3 7. n the equivalent series circuit, the total current is through R1, R2,3, and R4. The voltage drop across each of these resistors can be found by applying Ohm's law to each resistor. Compute V,, V2,3, and V4 using this method. Enter the voltages in Table 10-2 in the Ohm's law column. 8. Use V2.3 and Ohm's law to compute the current in R2 and Rj of the original circuit. Enter the computed current in Table As a check, verify that the computed sum of 2 and 3 is equal to the computed total current. 9. Measure the voltages V,, V2,3, V4, and Vs. Enter the measured values in Table Change the circuit to the circuit shown in Figure n the space provided in your report, draw an equivalent circuit by combining the resistors that are in series. Enter the values of the equivalent resistors on your schematic drawing and in Table Figure Compute the total resistance, RT, of the equivalent circuit. Then apply Ohm's law to find the total current T. Enter the computed resistance and current in Table Complete the calculations of the circuit by solving for the remaining currents and voltages listed in Table Then measure the voltages across each resistor to confirm your computation. FOR FURTHER NVESTGATON: Figure 10-4 illustrates another series-parallel circuit using the same resistors. Develop a procedure for solving the currents and voltages throughout the circuit. Summarize your procedure in a laboratory report. Confirm your method by computing and measuring the voltages in the circuit. Q Figure 104

4 APPLCATON PROBLEM: For many years, resistive networks have been designed to control the signal level of audio or radio frequency circuits and to match the resistance of the source and load. Circuits that perform these functions are called attenuators, or pads. There are a number of variations in pad design, but in this problem we will design an L-pad used in matching a higher resistance to a lower resistance. The circuit is shown in Figure The first dotted box represents a signal source with a source resistance of 600 a. (The source resistance is internal on ac signal generators.) The L-pad consists of the two resistors shown in the second dotted box, and the load is in the third dotted box and represents the circuit being driven by the source.,"y~yq-n= Source L - pad Load i 1, 1, 0 R2 100 load R L J L Figure 10-5 The resistors in the L-pad depend on the source resistance, the load resistance, and the desired attenuation of the pad. n this design, the attenuation must be greater than the ratio of the source to load resistance. The equations for determining these resistors are where: Rs = source resistance RL= load resistance A = attenuation; the ratio of inputloutput voltage The design requires an L-pad that matches a 6000 source resistance to a 100 load resistance with a 10: 1 attenuation from the input of the L-pad. Compute the values of the resistors in the L-pad and construct the circuit based on your design using resistors as close as possible to the calculated values. The source can be a signal generator with an internal 600 i-2 resistance set for a 1 khz sine wave or a dc power supply with a series 600 i2 resistor. Set the source voltage to 5.0 V when it is connected to the rest of the circuit. f you have correctly calculated the values of the resistors in the L-pad, the output voltage measured across the load resistor should be 0.5 V and the resistance of the circuit measured looking into the L-pad should be 600 a. Summarize your results in your report.

5 Listed Measured Component Value Value R 2.2 kn R2 4.7 kn R3 R4 5.6 kfl 10.0 kn

6 EVALUATON AND REVEW QUESTONS: 1. The voltage divider rule was developed for a series circuit, yet it was applied to the circuit in Figure (a) Explain. (b) Could the voltage divider rule be applied to the circuit in Figure 10-3? Explain your answer. 2. As a check on your solution of the circuit in Figure 10-3, apply Kirchhoff's voltage law to each of two separate paths around the circuit. Show the application of the law. 3. Show the application of Kirchhoff's current law to the junction of R2 and R4 of the circuit in Figure n the circuit of Figure 10-3, assume you found that T was the same as the current in Rj and R4. (a) What are the possible problems? (b) How would you isolate the specific problem? 5. The circuit in Figure 10-6 has three equal resistors. (a) f the voltmeter reads +8.0 V, find the voltage drop across R1. V1 = (b) What is the source voltage? Vs = Figure What basic rules determine if two resistors in a series-parallel combination circuit are connected in series or in parallel?

Circuits. Page The diagram below represents a series circuit containing three resistors.

Circuits. Page The diagram below represents a series circuit containing three resistors. Name: Circuits Date: 1. Which circuit segment has an equivalent resistance of 6 ohms? 4. The diagram below represents a series circuit containing three resistors. 2. Base your answer to the following question

More information

Chapter 12. RL Circuits. Objectives

Chapter 12. RL Circuits. Objectives Chapter 12 RL Circuits Objectives Describe the relationship between current and voltage in an RL circuit Determine impedance and phase angle in a series RL circuit Analyze a series RL circuit Determine

More information

Series and Parallel Circuits

Series and Parallel Circuits Direct Current (DC) Direct current (DC) is the unidirectional flow of electric charge. The term DC is used to refer to power systems that use refer to the constant (not changing with time), mean (average)

More information

Series-Parallel Circuits. Objectives

Series-Parallel Circuits. Objectives Series-Parallel Circuits Objectives Identify series-parallel configuration Analyze series-parallel circuits Apply KVL and KCL to the series-parallel circuits Analyze loaded voltage dividers Determine the

More information

Series-Parallel Circuits

Series-Parallel Circuits Chapter 6 Series-Parallel Circuits Topics Covered in Chapter 6 6-1: Finding R T for Series-Parallel Resistances 6-2: Resistance Strings in Parallel 6-3: Resistance Banks in Series 6-4: Resistance Banks

More information

Series,"Parallel," and"series." Parallel"Circuits"

Series,Parallel, andseries. ParallelCircuits chapter 25 Series,"Parallel," and"series." Parallel"Circuits" FIGURE 25.1 A series circuit with three bulbs. All current flows through all resistances (bulbs). The total resistance of the circuit is the

More information

Lab 4 Series and Parallel Resistors

Lab 4 Series and Parallel Resistors Lab 4 Series and Parallel Resistors What You Need To Know: (a) (b) R 3 FIGURE - Circuit diagrams. (a) and are in series. (b) and are not in series. The Physics Last week you examined how the current and

More information

Experiment 8 Series-Parallel Circuits

Experiment 8 Series-Parallel Circuits Experiment 8 Series-Parallel Circuits EL 111 - DC Fundamentals By: Walter Banzhaf, E.K. Smith, and Winfield Young University of Hartford Ward College of Technology Objectives: 1. For the student to measure

More information

EELE 354 Lab Assignment 3: Series and Parallel Resistors, Ohm s Law and Kirchhoff s Circuit Laws

EELE 354 Lab Assignment 3: Series and Parallel Resistors, Ohm s Law and Kirchhoff s Circuit Laws EELE 354 Lab Assignment 3: Series and Parallel Resistors, Ohm s Law and Kirchhoff s Circuit Laws EELE 354 Lab Assignment 3 1 Lab Overview: Many electric loads such as electric heaters and light bulbs can

More information

Chapter 28A - Direct Current Circuits. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 28A - Direct Current Circuits. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Chapter 28A - Direct Current Circuits A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Objectives: After completing this module, you should

More information

Series and Parallel Circuits

Series and Parallel Circuits Pre-Laboratory Assignment Series and Parallel Circuits ECE 2100 Circuit Analysis Laboratory updated 16 May 2011 1. Consider the following series circuit. Derive a formula to calculate voltages V 1, V 2,

More information

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

More information

Exercise 4 - Broadband transistor amplifier

Exercise 4 - Broadband transistor amplifier ANALOG ELECTRONIC CIRCUITS Laboratory work Exercise 4 - Broadband transistor amplifier Task 1: Design a broadband amplifier using a bipolar NPN transistor in a common emitter orientation. For input signal

More information

SERIES-PARALLEL DC CIRCUITS

SERIES-PARALLEL DC CIRCUITS Name: Date: Course and Section: Instructor: EXPERIMENT 1 SERIES-PARALLEL DC CIRCUITS OBJECTIVES 1. Test the theoretical analysis of series-parallel networks through direct measurements. 2. Improve skills

More information

UNIVERSITY OF TURKISH AERONAUTICAL ASSOCIATION DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EEE203 ELECTRONIC CIRCUITS LABORATORY I

UNIVERSITY OF TURKISH AERONAUTICAL ASSOCIATION DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EEE203 ELECTRONIC CIRCUITS LABORATORY I UNIVERSITY OF TURKISH AERONAUTICAL ASSOCIATION DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EEE203 ELECTRONIC CIRCUITS LABORATORY I FALL 2014/2015 LAB 2: RESISTORS ASSOCIATION AND THE WHEATSTONE

More information

Chapter 6. Series-Parallel Circuits. Objectives

Chapter 6. Series-Parallel Circuits. Objectives Chapter 6 Series-Parallel Circuits Objectives Identify series-parallel relationships Analyze series-parallel circuits Analyze loaded voltage dividers Determine the loading effect of a voltmeter on a circuit

More information

R A _ + Figure 2: DC circuit to verify Ohm s Law. R is the resistor, A is the Ammeter, and V is the Voltmeter. A R _ +

R A _ + Figure 2: DC circuit to verify Ohm s Law. R is the resistor, A is the Ammeter, and V is the Voltmeter. A R _ + Physics 221 Experiment 3: Simple DC Circuits and Resistors October 1, 2008 ntroduction n this experiment, we will investigate Ohm s Law, and study how resistors behave in various combinations. Along the

More information

Chapter 10. RC Circuits. Objectives

Chapter 10. RC Circuits. Objectives Chapter 10 RC Circuits Objectives Describe the relationship between current and voltage in an RC circuit Determine impedance and phase angle in a series RC circuit Analyze a series RC circuit Determine

More information

Kirchhoff s Laws. Kirchhoff's Law #1 - The sum of the currents entering a node must equal the sum of the currents exiting a node.

Kirchhoff s Laws. Kirchhoff's Law #1 - The sum of the currents entering a node must equal the sum of the currents exiting a node. Kirchhoff s Laws There are two laws necessary for solving circuit problems. For simple circuits, you have been applying these equations almost instinctively. Kirchhoff's Law #1 - The sum of the currents

More information

EMF and Terminal Voltage Resistors in Series and Parallel Kirchhoff s Rules EMFs in Series and Parallel; Charging a Battery Circuits with Capacitors

EMF and Terminal Voltage Resistors in Series and Parallel Kirchhoff s Rules EMFs in Series and Parallel; Charging a Battery Circuits with Capacitors Chapter 19 DC Electrical Circuits Topics in Chapter 19 EMF and Terminal Voltage Resistors in Series and Parallel Kirchhoff s Rules EMFs in Series and Parallel; Charging a Battery Circuits with Capacitors

More information

1) 10. V 2) 20. V 3) 110 V 4) 220 V

1) 10. V 2) 20. V 3) 110 V 4) 220 V 1. The diagram below represents an electric circuit consisting of a 12-volt battery, a 3.0-ohm resistor, R 1, and a variable resistor, R 2. 3. What is the total resistance of the circuit 1) 6.6 Ω 2) 10

More information

Experiment 8 Series-Parallel Circuits

Experiment 8 Series-Parallel Circuits Experiment 8 Series-Parallel Circuits EL 111 - DC Fundamentals By: Walter Banzhaf, E.K. Smith, and Winfield Young University of Hartford Ward College of Technology Objectives: 1. For the student to measure

More information

ECE201 Laboratory 1 Basic Electrical Equipment and Ohm s and Kirchhoff s Laws (Created by Prof. Walter Green, Edited by Prof. M. J.

ECE201 Laboratory 1 Basic Electrical Equipment and Ohm s and Kirchhoff s Laws (Created by Prof. Walter Green, Edited by Prof. M. J. ECE201 Laboratory 1 Basic Electrical Equipment and Ohm s and Kirchhoff s Laws (Created by Prof. Walter Green, Edited by Prof. M. J. Roberts) Objectives The objectives of Laboratory 1 are learn to operate

More information

Chapter 12. RL Circuits ISU EE. C.Y. Lee

Chapter 12. RL Circuits ISU EE. C.Y. Lee Chapter 12 RL Circuits Objectives Describe the relationship between current and voltage in an RL circuit Determine impedance and phase angle in a series RL circuit Analyze a series RL circuit Determine

More information

Series and Parallel Circuits

Series and Parallel Circuits Series and Parallel Circuits Ver. 1.2 In this experiment we will investigate the properties of several resistors connected in series and parallel. Our purpose is to verify the simple equations for the

More information

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006 Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

More information

Series and Parallel Circuits

Series and Parallel Circuits Series and Parallel Circuits Components in a circuit can be connected in series or parallel. A series arrangement of components is where they are inline with each other, i.e. connected end-to-end. A parallel

More information

After completing this chapter, the student should be able to:

After completing this chapter, the student should be able to: DC Circuits OBJECTIVES After completing this chapter, the student should be able to: Solve for all unknown values (current, voltage, resistance, and power) in a series, parallel, or series-parallel circuit.

More information

Chapter 10. RC Circuits ISU EE. C.Y. Lee

Chapter 10. RC Circuits ISU EE. C.Y. Lee Chapter 10 RC Circuits Objectives Describe the relationship between current and voltage in an RC circuit Determine impedance and phase angle in a series RC circuit Analyze a series RC circuit Determine

More information

Experiment #6, Series and Parallel Circuits, Kirchhoff s Laws

Experiment #6, Series and Parallel Circuits, Kirchhoff s Laws Physics 182 Spring 2013 Experiment #6 1 Experiment #6, Series and Parallel Circuits, Kirchhoff s Laws 1 Purpose Our purpose is to explore and validate Kirchhoff s laws as a way to better understanding

More information

Lab 7: Operational Amplifiers Part I

Lab 7: Operational Amplifiers Part I Lab 7: Operational Amplifiers Part I Objectives The objective of this lab is to study operational amplifier (op amp) and its applications. We will be simulating and building some basic op amp circuits,

More information

Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012

Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012 1 Secondary Task List 100 SAFETY 101 Demonstrate an understanding of State and School safety regulations. 102 Practice safety techniques for electronics work. 103 Demonstrate an understanding of proper

More information

Analog and Digital Meters

Analog and Digital Meters Analog and Digital Meters Devices and Measurements Objective At the conclusion of this presentation the student will describe and identify: Safety precautions when using test equipment Analog Multimeters

More information

Experiment NO.3 Series and parallel connection

Experiment NO.3 Series and parallel connection Experiment NO.3 Series and parallel connection Object To study the properties of series and parallel connection. Apparatus 1. DC circuit training system 2. Set of wires. 3. DC Power supply 4. Digital A.V.O.

More information

EE301 - PARALLEL CIRCUITS AND KIRCHHOFF S CURRENT LAW

EE301 - PARALLEL CIRCUITS AND KIRCHHOFF S CURRENT LAW Objectives a. estate the definition of a node and demonstrate how to measure voltage and current in parallel circuits b. Solve for total circuit resistance of a parallel circuit c. State and apply KCL

More information

Chapter 5. Parallel Circuits ISU EE. C.Y. Lee

Chapter 5. Parallel Circuits ISU EE. C.Y. Lee Chapter 5 Parallel Circuits Objectives Identify a parallel circuit Determine the voltage across each parallel branch Apply Kirchhoff s current law Determine total parallel resistance Apply Ohm s law in

More information

13/02/2016. Diode Applications

13/02/2016. Diode Applications Diode Applications Introduction to diode circuits DC and AC diode circuits Diode applications Clippers Clampers Limiters Peak rectifiers Voltage multipliers Voltage regulators (with Zener diodes) Rectifiers

More information

EE/CE 3111 Electronic Circuits Laboratory Spring 2015

EE/CE 3111 Electronic Circuits Laboratory Spring 2015 Lab 2: Rectifiers Objectives The objective of this lab is for you to become familiar with the functionality of a diode in circuits. We will experiment the use of diodes in limiting and rectifying circuits.

More information

Unit 7: Electric Circuits

Unit 7: Electric Circuits Multiple Choice Portion 1. The diagram below shows part of an electrical circuit. Unit 7: Electric Circuits 4. A 12 V battery supplies a 5.0 A current to two light bulbs as shown below. What are the magnitude

More information

DC Circuits. 3. Three 8.0- resistors are connected in series. What is their equivalent resistance? a c b. 8.0 d. 0.13

DC Circuits. 3. Three 8.0- resistors are connected in series. What is their equivalent resistance? a c b. 8.0 d. 0.13 DC Circuits 1. The two ends of a 3.0- resistor are connected to a 9.0-V battery. What is the current through the resistor? a. 27 A c. 3.0 A b. 6.3 A d. 0.33 A 2. The two ends of a 3.0- resistor are connected

More information

April 8. Physics 272. Spring Prof. Philip von Doetinchem

April 8. Physics 272. Spring Prof. Philip von Doetinchem Physics 272 April 8 Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html Prof. Philip von Doetinchem philipvd@hawaii.edu Phys272 - Spring 14 - von Doetinchem - 218 L-C in parallel

More information

Experiment # (7) FSK Modulator

Experiment # (7) FSK Modulator Islamic University of Gaza Faculty of Engineering Electrical Department Experiment # (7) FSK Modulator Digital Communications Lab. Prepared by: Eng. Mohammed K. Abu Foul Experiment Objectives: 1. To understand

More information

EE 1202 Experiment #2 Resistor Circuits

EE 1202 Experiment #2 Resistor Circuits EE 1202 Experiment #2 Resistor Circuits 1. ntroduction and Goals: Demonstrates the voltage-current relationships in DC and AC resistor circuits. Providing experience in using DC power supply, digital multimeter,

More information

Chapter 5. BJT Biasing Circuits. 5.1 The DC Operation Point [5] DC Bias:

Chapter 5. BJT Biasing Circuits. 5.1 The DC Operation Point [5] DC Bias: Chapter 5 BJT Biasing Circuits 5.1 The DC Operation Point [5] DC Bias: Bias establishes the dc operating point for proper linear operation of an amplifier. If an amplifier is not biased with correct dc

More information

Designing a Poor Man s Square Wave Signal Generator. EE-100 Lab: Designing a Poor Man s Square Wave Signal Generator - Theory

Designing a Poor Man s Square Wave Signal Generator. EE-100 Lab: Designing a Poor Man s Square Wave Signal Generator - Theory EE-100 Lab: - Theory 1. Objective The purpose of this laboratory is to introduce nonlinear circuit measurement and analysis. Your measurements will focus mainly on limiters and clamping amplifiers. During

More information

Series and Parallel Circuits

Series and Parallel Circuits Series and Parallel Circuits Direct-Current Series Circuits A series circuit is a circuit in which the components are connected in a line, one after the other, like railroad cars on a single track. There

More information

R1 R2 R3. Figure1. Resistances in series V1 I. Figure 2. Equivalent circuit of figure 1 if RE= R1+R2+R3 VRE =V

R1 R2 R3. Figure1. Resistances in series V1 I. Figure 2. Equivalent circuit of figure 1 if RE= R1+R2+R3 VRE =V Supplementary Notes for Unit 2 - Part A (Unit 3 and 4 exams also includes the topics detailed in this note) Series circuits A series circuit is a circuit in which resistors are arranged in a chain, so

More information

Experiment 4 ~ Resistors in Series & Parallel

Experiment 4 ~ Resistors in Series & Parallel Experiment 4 ~ Resistors in Series & Parallel Objective: In this experiment you will set up three circuits: one with resistors in series, one with resistors in parallel, and one with some of each. You

More information

Eðlisfræði 2, vor 2007

Eðlisfræði 2, vor 2007 [ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 31. Alternating Current Circuits Assignment is due at 2:00am on Wednesday, March 21, 2007 Credit for problems submitted late will decrease to 0% after the

More information

Impedance Matching and Matching Networks. Valentin Todorow, December, 2009

Impedance Matching and Matching Networks. Valentin Todorow, December, 2009 Impedance Matching and Matching Networks Valentin Todorow, December, 2009 RF for Plasma Processing - Definition of RF What is RF? The IEEE Standard Dictionary of Electrical and Electronics Terms defines

More information

13.10: How Series and Parallel Circuits Differ pg. 571

13.10: How Series and Parallel Circuits Differ pg. 571 13.10: How Series and Parallel Circuits Differ pg. 571 Key Concepts: 5. Connecting loads in series and parallel affects the current, potential difference, and total resistance. - Using your knowledge of

More information

PHYSICS 176. Experiment 3. Kirchhoff's Laws. Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm).

PHYSICS 176. Experiment 3. Kirchhoff's Laws. Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm). PHYSICS 176 Experiment 3 Kirchhoff's Laws Equipment: Supplies: Digital Multimeter, Power Supply (0-20 V.). Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm). A. Kirchhoff's Loop Law Suppose that

More information

What you will do. Build a 3-band equalizer. Connect to a music source (mp3 player) Low pass filter High pass filter Band pass filter

What you will do. Build a 3-band equalizer. Connect to a music source (mp3 player) Low pass filter High pass filter Band pass filter Audio Filters What you will do Build a 3-band equalizer Low pass filter High pass filter Band pass filter Connect to a music source (mp3 player) Adjust the strength of low, high, and middle frequencies

More information

LINEAR INTEGRATED-CIRCUIT FUNCTION GENERATOR

LINEAR INTEGRATED-CIRCUIT FUNCTION GENERATOR ~. c EXPERIMENT 9 Name: LINEAR INTEGRATED-CIRCUIT FUNCTION GENERATOR OBJECTIVES: INTRODUCTION: 1. To observe the operation of a linear integrated-circuit function generator. 2. To observe the frequency-versus-timing

More information

RLC Series Resonance

RLC Series Resonance RLC Series Resonance 11EM Object: The purpose of this laboratory activity is to study resonance in a resistor-inductor-capacitor (RLC) circuit by examining the current through the circuit as a function

More information

ElectronicsLab2.nb. Electronics Lab #2. Simple Series and Parallel Circuits

ElectronicsLab2.nb. Electronics Lab #2. Simple Series and Parallel Circuits Electronics Lab #2 Simple Series and Parallel Circuits The definitions of series and parallel circuits will be given in this lab. Also, measurements in very simple series and parallel circuits will be

More information

GenTech Practice Questions

GenTech Practice Questions GenTech Practice Questions Basic Electronics Test: This test will assess your knowledge of and ability to apply the principles of Basic Electronics. This test is comprised of 90 questions in the following

More information

Reactance and Impedance

Reactance and Impedance Reactance and Impedance Capacitance in AC Circuits Professor Andrew H. Andersen 1 Objectives Describe capacitive ac circuits Analyze inductive ac circuits Describe the relationship between current and

More information

Circuits-Circuit Analysis

Circuits-Circuit Analysis Base your answers to questions 1 through 3 on the information and diagram below. 4. A 9-volt battery is connected to a 4-ohm resistor and a 5-ohm resistor as shown in the diagram below. A 3.0-ohm resistor,

More information

Lab 6 Transistor Amplifiers

Lab 6 Transistor Amplifiers ECET 242 Electronic Circuits Lab 6 Transistor Amplifiers Page 1 of 5 Name: Objective: Lab Report: Equipment: Students successfully completing this lab exercise will accomplish the following objectives:

More information

TESTS OF 1 MHZ SIGNAL SOURCE FOR SPECTRUM ANALYZER CALIBRATION 7/8/08 Sam Wetterlin

TESTS OF 1 MHZ SIGNAL SOURCE FOR SPECTRUM ANALYZER CALIBRATION 7/8/08 Sam Wetterlin TESTS OF 1 MHZ SIGNAL SOURCE FOR SPECTRUM ANALYZER CALIBRATION 7/8/08 Sam Wetterlin (Updated 7/19/08 to delete sine wave output) I constructed the 1 MHz square wave generator shown in the Appendix. This

More information

Chapter 07. Series-Parallel Circuits

Chapter 07. Series-Parallel Circuits Chapter 07 Series-Parallel Circuits Source: Circuit Analysis: Theory and Practice Delmar Cengage Learning The Series-Parallel Network Complex circuits May be separated both series and/or parallel elements

More information

Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws

Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws Physics 182 Summer 2013 Experiment #5 1 Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws 1 Purpose Our purpose is to explore and validate Kirchhoff s laws as a way to better understanding

More information

Nodal and Loop Analysis

Nodal and Loop Analysis Nodal and Loop Analysis The process of analyzing circuits can sometimes be a difficult task to do. Examining a circuit with the node or loop methods can reduce the amount of time required to get important

More information

Lecture PowerPoints. Chapter 19 Physics: Principles with Applications, 7th edition Giancoli

Lecture PowerPoints. Chapter 19 Physics: Principles with Applications, 7th edition Giancoli Lecture PowerPoints Chapter 19 Physics: Principles with Applications, 7th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

12. Transformers, Impedance Matching and Maximum Power Transfer

12. Transformers, Impedance Matching and Maximum Power Transfer 1 1. Transformers, Impedance Matching and Maximum Power Transfer Introduction The transformer is a device that takes AC at one voltage and transforms it into another voltage either higher or lower than

More information

LED level meter driver, 12-point, power scale, dot or bar display

LED level meter driver, 12-point, power scale, dot or bar display LED level meter driver, 12-point, power scale, dot or bar display The is a monolithic IC for LED power meter applications. The display level range is 9mVrms to 380mVrms (Typ.) divided into 12 points with

More information

Filters & Wave Shaping

Filters & Wave Shaping Module 8 AC Theory Filters & Wave Shaping Passive Filters & Wave Shaping What you'll learn in Module 8. Module 8 Introduction Recognise passive filters with reference to their response curves. High pass,

More information

Chapt ha e pt r e r 12 RL Circuits

Chapt ha e pt r e r 12 RL Circuits Chapter 12 RL Circuits Sinusoidal Response of RL Circuits The inductor voltage leads the source voltage Inductance causes a phase shift between voltage and current that depends on the relative values of

More information

LO1: Be able to apply AC and DC circuit theory to circuit design DC networks

LO1: Be able to apply AC and DC circuit theory to circuit design DC networks Unit 5: Electrical and electronic design LO1: Be able to apply AC and DC circuit theory to circuit design DC networks Instructions and answers for teachers These instructions should accompany the OCR resource

More information

CHAPTER.4: Transistor at low frequencies

CHAPTER.4: Transistor at low frequencies CHAPTER.4: Transistor at low frequencies Introduction Amplification in the AC domain BJT transistor modeling The re Transistor Model The Hybrid equivalent Model Introduction There are three models commonly

More information

Chapter 14. Transformers ISU EE. C.Y. Lee

Chapter 14. Transformers ISU EE. C.Y. Lee Chapter 14 Transformers Objectives Explain mutual inductance Describe how a transformer is constructed and how it works Explain how a step-up and -down transformer works Discuss the effect of a resistive

More information

series Connecting a voltage source across two resistors in parallel forces the voltage to be the same across both resistors.

series Connecting a voltage source across two resistors in parallel forces the voltage to be the same across both resistors. I. Objective To discover how DC values are measured using various tools in the laboratory. This includes the basic design of multimeters and oscilloscopes, and how to model these circuits using Spice.

More information

Electromagnetic Induction

Electromagnetic Induction Electromagnetic Induction "Concepts without factual content are empty; sense data without concepts are blind... The understanding cannot see. The senses cannot think. By their union only can knowledge

More information

Electrical Fundamentals Module 3: Parallel Circuits

Electrical Fundamentals Module 3: Parallel Circuits Electrical Fundamentals Module 3: Parallel Circuits PREPARED BY IAT Curriculum Unit August 2008 Institute of Applied Technology, 2008 ATE310- Electrical Fundamentals 2 Module 3 Parallel Circuits Module

More information

l E ectri c i C i rcu ts Physics 1

l E ectri c i C i rcu ts Physics 1 Electric Circuits i Physics 1 Potential Difference oltageemf n a battery, a series of chemical reactions occur in which electrons are transferred from one terminal to another. There is a potential difference

More information

UNIVERSITY of PENNSYLVANIA DEPARTMENT of ELECTRICAL and SYSTEMS ENGINEERING ESE206 - Electrical Circuits and Systems II Laboratory.

UNIVERSITY of PENNSYLVANIA DEPARTMENT of ELECTRICAL and SYSTEMS ENGINEERING ESE206 - Electrical Circuits and Systems II Laboratory. UNIVERSITY of PENNSYLVANIA DEPARTMENT of ELECTRICAL and SYSTEMS ENGINEERING ESE06 - Electrical Circuits and Systems II Laboratory. Objectives: Transformer Lab. Comparison of the ideal transformer versus

More information

Cornerstone Electronics Technology and Robotics I Week 15 Combination Circuits (Series-Parallel Circuits)

Cornerstone Electronics Technology and Robotics I Week 15 Combination Circuits (Series-Parallel Circuits) Cornerstone Electronics Technology and Robotics I Week 15 Combination Circuits (Series-Parallel Circuits) Administration: o Prayer o Turn in quiz Electricity and Electronics, Chapter 8, Introduction: o

More information

Example: Determine the power supplied by each of the sources, independent and dependent, in this circuit:

Example: Determine the power supplied by each of the sources, independent and dependent, in this circuit: Example: Determine the power supplied by each of the sources, independent and dependent, in this circuit: Solution: We ll begin by choosing the bottom node to be the reference node. Next we ll label the

More information

Introduction to Series-Parallel DC Circuits. Online Resource for ETCH 213 Faculty: B. Allen

Introduction to Series-Parallel DC Circuits. Online Resource for ETCH 213 Faculty: B. Allen Introduction to Series-Parallel DC Circuits Series-parallel circuit A network or circuit that contains components that are connected in both series and parallel. Series-parallel resistive circuits Tracking

More information

Chapter 19 DC Circuits

Chapter 19 DC Circuits Lecture PowerPoints Chapter 19 Physics: Principles with Applications, 6 th edition Giancoli Chapter 19 DC Circuits 2005 Pearson Prentice Hall This work is protected by United States copyright laws and

More information

BJT AC Analysis. by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008

BJT AC Analysis. by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008 by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008 Introduction This note will discuss AC analysis using the beta, re transistor model shown in Figure 1 for the three types of amplifiers: common-emitter,

More information

Series & Parallel Circuits Challenge

Series & Parallel Circuits Challenge Name: Part One: Series & Parallel Circuits Challenge 1. Build a circuit using two batteries and two light bulbs in a way to illuminate the two light bulbs so that if either light bulb is disconnected,

More information

Tutorial #5: Designing a Common-Emitter Amplifier

Tutorial #5: Designing a Common-Emitter Amplifier SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2115: ENGINEERING ELECTRONICS LABORATORY Tutorial #5: Designing a Common-Emitter Amplifier BACKGROUND There

More information

Special notes: The transistors we ll use are in a TO-92 package; the leads are arranged like this:

Special notes: The transistors we ll use are in a TO-92 package; the leads are arranged like this: Lab 4: Bipolar transistors and transistor circuits Objectives: investigate the current-amplifying properties of a transistor build a follower and investigate its properties (especially impedances) build

More information

INTRODUCTION TO ARBITRARY/FUNCTION GENERATOR

INTRODUCTION TO ARBITRARY/FUNCTION GENERATOR Page 1 of 7 INTRODUCTION TO ARBITRARY/FUNCTION GENERATOR BEFORE YOU BEGIN PREREQUISITE LABS Introduction to MATLAB Introduction to Oscilloscope EXPECTED KNOWLEDGE Ohm s law & Kirchhoff s laws Operation

More information

Direct-Current Circuits

Direct-Current Circuits Chapter 13 Direct-Current Circuits In This Chapter: Resistors in Series Resistors in Parallel EMF and Internal Resistance Kirchhoff s Rules Resistors in Series The equivalent resistance of a set of resistors

More information

LABORATORY 1 WRITEUP - PHYSICS 517/617. Prof. L. S. Durkin July 5, 1992

LABORATORY 1 WRITEUP - PHYSICS 517/617. Prof. L. S. Durkin July 5, 1992 LABORATORY 1 WRITEUP - PHYSICS 517/617 Prof. L. S. Durkin July 5, 1992 DISCLAIMER: There are many ways to write up a lab report, none of them superior to any other. Below is an example of an acceptable

More information

Series & parallel circuit measurements Part I

Series & parallel circuit measurements Part I Series parallel calculations sheet #1 Complete these problems below using your calculator. Both partners need to work the problems and agree on the answers. Record your answers below and analyze the work

More information

Chapter 2 Objectives

Chapter 2 Objectives Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and

More information

Chapter 28. Direct-Current Circuits

Chapter 28. Direct-Current Circuits Chapter 28. Direct-Current Circuits esistors in Series and Parallel (gnore internal resistances for batteries in this section.) 28-1. A 5- resistor is connected in series with a 3- resistor and a 16-V

More information

Part 1: AC MEASUREMENTS

Part 1: AC MEASUREMENTS Part 1: AC MEASUREMENTS OBJECTIVES: The objectives of this experiment are to become familiar with the electrical engineering machinery laboratory and making electrical measurements. MEASUREMENT TECHNIQUES:

More information

LAB #2: AUDIO MONITOR

LAB #2: AUDIO MONITOR EET-368L 2-1 LAB #2: AUDIO MONITOR INTRODUCTION: The last stage in many communications systems is an audio amplifier of some type. The audio amplifier provides both voltage and current gain for signals

More information

Rectifier: It is a circuit which employs one or more diodes to convert ac voltage into pulsating dc voltage. We will consider the following circuits:

Rectifier: It is a circuit which employs one or more diodes to convert ac voltage into pulsating dc voltage. We will consider the following circuits: Rectifier: It is a circuit which employs one or more diodes to convert ac voltage into pulsating dc voltage. We will consider the following circuits: (i) Half wave rectifier. (ii) Full wave rectifier.

More information

Preview of Period 12: Electric Circuits

Preview of Period 12: Electric Circuits Preview of Period 2: Electric Circuits 2. Voltage, Current, and esistance How are voltage, current, and resistance related? 2.2 esistance and Voltage of esistors in Connected in Series How does current

More information

Kirchhoff s Voltage Law

Kirchhoff s Voltage Law BASIC ELECTRICAL Kirchhoff s Voltage Law OBJECTIVES Define Kirchhoff s Voltage Law Discuss how Kirchhoff s Voltage Law applies to Series and Parallel Circuits Calculate Voltage drops in a Series and Parallel

More information

A Practical Exercise Name: Section:

A Practical Exercise Name: Section: Updated 16 AUG 2016 A Practical Exercise Name: Section: I. Purpose. 1. Review the construction of a DC series circuit on a quad board from a circuit schematic. 2. Review the application of Kirchhoff s

More information

ELEC 2020 EXPERIMENT 6 Zener Diodes and LED's

ELEC 2020 EXPERIMENT 6 Zener Diodes and LED's ELEC 2020 EXPERIMENT 6 Zener Diodes and LED's Objectives: The experiments in this laboratory exercise will provide an introduction to diodes. You will use the Bit Bucket breadboarding system to build and

More information

Henry Lin, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 3 (Electric Circuits) July 16 th, 2013

Henry Lin, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 3 (Electric Circuits) July 16 th, 2013 Henry Lin, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 3 (Electric Circuits) July 16 th, 2013 1 What is an electrical circuit? An electrical network

More information

Electronic Trainer. Combined Series and Parallel Circuits

Electronic Trainer. Combined Series and Parallel Circuits Electronic Trainer Combined Series and Parallel Circuits In this lab you will work with a circuit combining series and parallel elements. You will use six resistors to create a circuit with two parallel

More information