Fractions and Linear Equations

Size: px
Start display at page:

Download "Fractions and Linear Equations"

Transcription

1 Fractions and Linear Equations Fraction Operations While you can perform operations on fractions using the calculator, for this worksheet you must perform the operations by hand. You must show all steps for full credit, but you are encouraged to check your answers using the calculator. Reducing: A fraction is reduced if the numerator and denominator have no common factors. You can reduce a fraction by dividing both numerator and denominator by the same value until they have no factors in common. Example: Consider the fraction 18/1. Dividing both 18 and 1 by the common factor results in the fraction 9/6. Dividing both 9 and 6 by the common factor results in the fraction /. Because the values and have no factors in common, the fraction has been reduced to lowest terms: 18 1 = 9 6 = Addition/Subtraction: To add or subtract fractions, they must have the same denominator. If two fractions do not have a common denominator, this is achieved by multiplying both numerator and denominator by the same number, which does not change the value of the fraction. Example: To add the fractions 1/ and 1/5, we must first find a common multiple of the denominators and 5. The smallest, or least, common multiple is the value. To obtain a common denominator, both numerator and denominator of 1/ are multiplied by 5 and both numerator and denominator of 1/5 are multiplied by. The fractions are then added by combining the numerators. A pictorial representation of the sum is also provided below = 5 + = 7 Subtraction is similar: = 5 = To show your work in computing the sum 1/ + 1/5 online, type 1/ + 1/5 = 5/ + / = 7/. If you include an additional step, keep in mind the proper use of parentheses: 1/ + 1/5 = 5/ + / = (5 + )/ = 7/. The expression 5 + / would be 5 + = 6 5.

2 Multiplication: To multiply two fractions, the numerators are multiplied together and the denominators are multiplied together. Keep in mind that the denominator of an integer is an understood 1. Examples: 5 = 5 = = 1 7 = 1 7 = 1 7 = 9 Division: In order to divide by a fraction, multiply by its reciprocal. That is, reverse the numerator and denominator of the fraction by which you are dividing and change the operation from division to multiplication. Examples: 5 = 5 = 1 = = 1 7 = 81 Linear Equations At this time only equations in one variable will be addressed. A linear equation is one in which the variable is raised only to the first power. To solve a linear equation, isolate the variable on one side of the equation by performing the same operation (addition, subtraction, multiplication, or division) to both sides of the equation. You have likely been solving linear equations since grade school, where you were asked to write into the box the missing number: + = 5. This is no different than solving the linear equation + x = 5. When dealing with variable expressions, remember that you can only combine like terms, which contain the same variable(s) raised to the same powers. For example, x + x = 5x, but + x cannot be simplified further. Example 1: To solve the equation = 9x 1x for x, first combine the like terms on the right-hand side of the equation and then divide both sides by - to isolate the x. = 9x 1x = x = x = x When dealing with negative fractions, the negative sign can be placed in front of the fraction or either in the numerator or denominator: = =. You can verify that your answer is correct by replacing the variable in the original equation with the value found: = 9(-/) 1(-/) = Because this is a true equation, the solution x = -/ is correct.

3 Example : To solve the equation below, we can start by multiplying all terms on both sides by the denominator to eliminate the fraction. 9x = 11x ( 9x ) = 11x 9x = 8 x 9x + x = 8 x + x 1x = 8 1x 1 = 8 1 x = 8 1 Example : If two fractions are equal to each other, then you can cross multiply to eliminate the fractions. That is, multiply the denominator of each fraction by the numerator of the other and set the products equal. In the solution of the equation below, this is equivalent to multiplying both sides by the common denominator, 18. To show your work in solving the above equation online, you could type: x(9) = (x 5) 7x = 8x 19x = - x = -/19 Example : If either side of the equation contains another term, cross multiplication cannot be used. In the following example, the fractions are eliminated by multiplying through by the common denominator, 7. b = b 7 7 b + 7 ( ) = 7 ( b 7 7 ) b = b 17 = b

4 Reduce each fraction to lowest terms Fractions and Linear Equations Examples (Solutions provided at bottom of page) Perform each fraction operation by hand. Give the answer in fractional form reduced to lowest terms Solve each equation. Give non-integer solutions in fractional form reduced to lowest terms = 6 + x 9. 1(x + ) + 1 = 5x -. 1 = x x 5 + = (x ) 1. x+8 5 = 7x (x+7) 1 = (x 11) (x + ) + 1 = 8x x + = (x 6) Solutions: 1. 11/1. /. 6/11. / + / = 1/ 5. / / = -7/ 6. 15/8 7. / * /5 = 6/0 = / 8. x = 8 9. x = -51/7. x = x = 5/8 1. x = 6/7 1. x = -11/7 1. x = x = 5/16

5 Worksheet 5 Fractions and Linear Equations 1. Reduce each fraction to lowest terms a. b. 90 c. d. 5 6 e. 5 0 Perform each fraction operation by hand. You must show your work for full credit. Give the answer in fractional form reduced to lowest terms Solve each equation. Give non-integer solutions in fractional form reduced to lowest terms. 6. x 9 = 7. 8x 5 = 9 + (x + 7) 8. 8(x + 1) + x = 9 9. x+9 = 11x 5. 5(x+) = 8(x )

A fraction is a noninteger quantity expressed in terms of a numerator and a denominator.

A fraction is a noninteger quantity expressed in terms of a numerator and a denominator. 1 Fractions Adding & Subtracting A fraction is a noninteger quantity expressed in terms of a numerator and a denominator. 1. FRACTION DEFINITIONS 1) Proper fraction: numerator is less than the denominator.

More information

Adding Integers. Example 1 Evaluate.

Adding Integers. Example 1 Evaluate. Adding Integers Adding Integers 0 Example 1 Evaluate. Adding Integers Example 2 Evaluate. Adding Integers Example 3 Evaluate. Subtracting Integers Subtracting Integers Subtracting Integers Change the subtraction

More information

Self-Directed Course: Transitional Math Module 2: Fractions

Self-Directed Course: Transitional Math Module 2: Fractions Lesson #1: Comparing Fractions Comparing fractions means finding out which fraction is larger or smaller than the other. To compare fractions, use the following inequality and equal signs: - greater than

More information

Accuplacer Arithmetic Study Guide

Accuplacer Arithmetic Study Guide Testing Center Student Success Center Accuplacer Arithmetic Study Guide I. Terms Numerator: which tells how many parts you have (the number on top) Denominator: which tells how many parts in the whole

More information

Chapter Audio Summary for McDougal Littell Pre-Algebra

Chapter Audio Summary for McDougal Littell Pre-Algebra Chapter Audio Summary for McDougal Littell Pre-Algebra Chapter Rational Numbers and Equations In Chapter you learned to write, compare, and order rational numbers. Then you learned to add and subtract

More information

Lesson 8: Working with Fractions

Lesson 8: Working with Fractions Lesson 8: Working with Fractions One area of math that is important to understand is fractions. This lesson covers the basics of what fractions are and how to work with them. Lesson Objectives After completing

More information

Properties of Signed Numbers

Properties of Signed Numbers .2 Properties of Signed Numbers.2 OBJECTIVES. Recognize applications of the commutative property 2. Recognize applications of the associative property. Recognize applications of the distributive property

More information

Sometimes it is easier to leave a number written as an exponent. For example, it is much easier to write

Sometimes it is easier to leave a number written as an exponent. For example, it is much easier to write 4.0 Exponent Property Review First let s start with a review of what exponents are. Recall that 3 means taking four 3 s and multiplying them together. So we know that 3 3 3 3 381. You might also recall

More information

Factors of 8 are 1 and 8 or 2 and 4. Let s substitute these into our factors and see which produce the middle term, 10x.

Factors of 8 are 1 and 8 or 2 and 4. Let s substitute these into our factors and see which produce the middle term, 10x. Quadratic equations A quadratic equation in x is an equation that can be written in the standard quadratic form ax + bx + c 0, a 0. Several methods can be used to solve quadratic equations. If the quadratic

More information

Adding and Subtracting Fractions. 1. The denominator of a fraction names the fraction. It tells you how many equal parts something is divided into.

Adding and Subtracting Fractions. 1. The denominator of a fraction names the fraction. It tells you how many equal parts something is divided into. Tallahassee Community College Adding and Subtracting Fractions Important Ideas:. The denominator of a fraction names the fraction. It tells you how many equal parts something is divided into.. The numerator

More information

Fractions Math Help. Junior High Math Interactives Page 1 of Alberta Education (www.learnalberta.ca)

Fractions Math Help. Junior High Math Interactives Page 1 of Alberta Education (www.learnalberta.ca) Fractions Math Help Learning Objective: Recognize that a fraction is a rational number. Identify the numerator and denominator of a fraction. Identify the multiples of a number. Identify the lowest common

More information

Basic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704.

Basic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704. Basic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704. The purpose of this Basic Math Refresher is to review basic math concepts so that students enrolled in PUBP704:

More information

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions. Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear

More information

Algebra 1A and 1B Summer Packet

Algebra 1A and 1B Summer Packet Algebra 1A and 1B Summer Packet Name: Calculators are not allowed on the summer math packet. This packet is due the first week of school and will be counted as a grade. You will also be tested over the

More information

Analysis. Pre-Algebra. Readiness Assessment: Analysis. 1. Correct Answer : Correct Answer : Correct Answer : 8.

Analysis. Pre-Algebra. Readiness Assessment: Analysis. 1. Correct Answer : Correct Answer : Correct Answer : 8. . Correct Answer : 24.098 Analysis The student needed to complete the following to solve this problem:. Write the equation vertically and align the decimal points. 2. Align the digits of each number vertically

More information

2.3 Solving Equations Containing Fractions and Decimals

2.3 Solving Equations Containing Fractions and Decimals 2. Solving Equations Containing Fractions and Decimals Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Solve equations containing fractions

More information

3.1. RATIONAL EXPRESSIONS

3.1. RATIONAL EXPRESSIONS 3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers

More information

Chapter 4 Fractions and Mixed Numbers

Chapter 4 Fractions and Mixed Numbers Chapter 4 Fractions and Mixed Numbers 4.1 Introduction to Fractions and Mixed Numbers Parts of a Fraction Whole numbers are used to count whole things. To refer to a part of a whole, fractions are used.

More information

Improper Fractions and Mixed Numbers

Improper Fractions and Mixed Numbers This assignment includes practice problems covering a variety of mathematical concepts. Do NOT use a calculator in this assignment. The assignment will be collected on the first full day of class. All

More information

Overview of Skill Development

Overview of Skill Development Basic Fractions equal more than whole Overview of Skill Development Concept of Fractions Basic Fractions teaches what the numbers in a fraction tell. The bottom number tells how many parts in each whole,

More information

HFCC Math Lab Arithmetic - 4. Addition, Subtraction, Multiplication and Division of Mixed Numbers

HFCC Math Lab Arithmetic - 4. Addition, Subtraction, Multiplication and Division of Mixed Numbers HFCC Math Lab Arithmetic - Addition, Subtraction, Multiplication and Division of Mixed Numbers Part I: Addition and Subtraction of Mixed Numbers There are two ways of adding and subtracting mixed numbers.

More information

Solving Equations. Jan 21 8:53 AM. An equation is an expression with an "equal" sign and another expression. Examples:

Solving Equations. Jan 21 8:53 AM. An equation is an expression with an equal sign and another expression. Examples: Solving Equations Jan 21 8:53 AM What is an equation? An equation is an expression with an "equal" sign and another expression. Examples: x + 5 = 4 2x - 6 = 13 There is a Left side, an equal sign, and

More information

Name: Date: Algebra 2/ Trig Apps: Simplifying Square Root Radicals. Arithmetic perfect squares: 1, 4, 9,,,,,,...

Name: Date: Algebra 2/ Trig Apps: Simplifying Square Root Radicals. Arithmetic perfect squares: 1, 4, 9,,,,,,... RADICALS PACKET Algebra 2/ Trig Apps: Simplifying Square Root Radicals Perfect Squares Perfect squares are the result of any integer times itself. Arithmetic perfect squares: 1, 4, 9,,,,,,... Algebraic

More information

LBASS. Little Boys Always Stain Shirts

LBASS. Little Boys Always Stain Shirts LBASS Little Boys Always Stain Shirts L Determine the LCD B Build up the fractions so they have the LCD A Add fractions with like denominators if this is the operation. S Subtract fractions with like denominators

More information

Solutions of Linear Equations in One Variable

Solutions of Linear Equations in One Variable 2. Solutions of Linear Equations in One Variable 2. OBJECTIVES. Identify a linear equation 2. Combine like terms to solve an equation We begin this chapter by considering one of the most important tools

More information

eday Lessons Mathematics Grade 8 Student Name:

eday Lessons Mathematics Grade 8 Student Name: eday Lessons Mathematics Grade 8 Student Name: Common Core State Standards- Expressions and Equations Work with radicals and integer exponents. 3. Use numbers expressed in the form of a single digit times

More information

How does the locations of numbers, variables, and operation signs in a mathematical expression affect the value of that expression?

How does the locations of numbers, variables, and operation signs in a mathematical expression affect the value of that expression? How does the locations of numbers, variables, and operation signs in a mathematical expression affect the value of that expression? You can use powers to shorten how you present repeated multiplication.

More information

north seattle community college

north seattle community college INTRODUCTION TO FRACTIONS If we divide a whole number into equal parts we get a fraction: For example, this circle is divided into quarters. Three quarters, or, of the circle is shaded. DEFINITIONS: The

More information

Arithmetic Study Guide for the ACCUPLACER Assessment Test

Arithmetic Study Guide for the ACCUPLACER Assessment Test Arithmetic Study Guide for the ACCUPLACER Assessment Test Fractions Terms Numerator: which tells how many parts you have (the number on top) Denominator: which tells how many parts in the whole (the number

More information

Finding equations of lines

Finding equations of lines Finding equations of lines A very typical question for a student in a math class will be to find the equation of a line. This worksheet will provide several examples of how to complete this task. Find

More information

Unit 2: Solving Equations & Inequalities

Unit 2: Solving Equations & Inequalities Unit : Solving Equations & Inequalities BASIC THINGS TO REMEMBER: 1. Always simplify both sides of the equation before you try to solve.. Keep it balanced! Whatever you do to one side of the equation,

More information

1.2 Linear Equations and Rational Equations

1.2 Linear Equations and Rational Equations Linear Equations and Rational Equations Section Notes Page In this section, you will learn how to solve various linear and rational equations A linear equation will have an variable raised to a power of

More information

Scientific Notation Study Guide

Scientific Notation Study Guide Scientific Notation Study Guide What is scientific notation?: Scientific notation is a shorthand method to represent VERY LARGE numbers or VERY SMALL numbers. Ex: 3,400,000,000 = 3.4 10 9 0.0000000576

More information

Listen & Learn PRESENTED BY LOVE2LEARN

Listen & Learn PRESENTED BY LOVE2LEARN Number Sense and Numeration Fractions Multiplication and PRESENTED BY LOVE2LEARN Mathematics, Grade 8 Introduction Welcome to today s topic Parts of Presentation, questions, Q&A Housekeeping NOT the Chat

More information

the LCD is the product found by using certain prime number factors of each denominator.

the LCD is the product found by using certain prime number factors of each denominator. DETAILED SOLUTIONS AND CONCEPTS - RATIONAL EXPRESSIONS AND EQUATIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions Comments to ingrid.stewart@csn.edu. Thank you! PLEASE

More information

1-2 Study Guide and Intervention

1-2 Study Guide and Intervention 1- Study Guide and Intervention Order of Operations Evaluate Numerical Expressions Numerical expressions often contain more than one operation. To evaluate them, use the rules for order of operations shown

More information

While it is possible to solve these equations as is, usually it is preferable to clear all of the fractions prior to solving.

While it is possible to solve these equations as is, usually it is preferable to clear all of the fractions prior to solving. MODULE. FRACTIONS c Solving Equations While it is possible to solve these equations as is, usually it is preferable to clear all of the fractions prior to solving. Clearing Fractions from the Equation

More information

The difference between an expression and an equation

The difference between an expression and an equation Section 0 7: Solving Linear Equations The difference between an epression and an equation Epressions do not contain an equal sign. An epression can be simplified to get a new epression. Equations contain

More information

POLYNOMIALS. Constants A single number in the equation that does not contain any variable. Example: 4, 6

POLYNOMIALS. Constants A single number in the equation that does not contain any variable. Example: 4, 6 POLYNOMIALS Polynomials can be defined as the sum or difference of terms or epressions. Each term can be either a constant or variable, have one or more terms, and be composed of like terms or different

More information

Chapter 15 Radical Expressions and Equations Notes

Chapter 15 Radical Expressions and Equations Notes Chapter 15 Radical Expressions and Equations Notes 15.1 Introduction to Radical Expressions The symbol is called the square root and is defined as follows: a = c only if c = a Sample Problem: Simplify

More information

Reteaching. Comparing and Ordering Integers

Reteaching. Comparing and Ordering Integers - Comparing and Ordering Integers The numbers and - are opposites. The numbers 7 and -7 are opposites. Integers are the set of positive whole numbers, their opposites, and zero. 7 6 4 0 negative zero 4

More information

FRACTION REVIEW. 3 and. Any fraction can be changed into an equivalent fraction by multiplying both the numerator and denominator by the same number

FRACTION REVIEW. 3 and. Any fraction can be changed into an equivalent fraction by multiplying both the numerator and denominator by the same number FRACTION REVIEW A. INTRODUCTION. What is a fraction? A fraction consists of a numerator (part) on top of a denominator (total) separated by a horizontal line. For example, the fraction of the circle which

More information

STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS

STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS The intermediate algebra skills illustrated here will be used extensively and regularly throughout the semester Thus, mastering these skills is an

More information

Adding and Subtracting Unlike Fractions

Adding and Subtracting Unlike Fractions . Adding and Subtracting Unlike Fractions. OBJECTIVES. Write the sum of two unlike fractions in simplest form. Write the difference of two unlike fractions in simplest form Adding or subtracting unlike

More information

This is a square root. The number under the radical is 9. (An asterisk * means multiply.)

This is a square root. The number under the radical is 9. (An asterisk * means multiply.) Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize

More information

Introduction to Fractions

Introduction to Fractions Introduction to Fractions Fractions represent parts of a whole. The top part of a fraction is called the numerator, while the bottom part of a fraction is called the denominator. The denominator states

More information

Scott Foresman-Addison Wesley envisionmath K-6 Combination Class Alignment. K/1 Topic Title Grade 1

Scott Foresman-Addison Wesley envisionmath K-6 Combination Class Alignment. K/1 Topic Title Grade 1 Grade K K/1 Grade 1 1 Sorting and Classifying 7 days 1 to 12 7 days 2 One to Five 2 Comparing and Ordering 3 More and Fewer 3 Understanding Addition 4 Six to Ten 15 days 5 Comparing 13 days 10 Patterns

More information

Mathematics Success Grade 8

Mathematics Success Grade 8 Mathematics Success Grade 8 T161 [OBJECTIVE] The student will know and apply the properties of integer exponents to generate equivalent numerical expressions. [PREREQUISITE SKILLS] Order of operations

More information

9.3 Solving Quadratic Equations by the Quadratic Formula

9.3 Solving Quadratic Equations by the Quadratic Formula 9.3 Solving Quadratic Equations by the Quadratic Formula OBJECTIVES 1 Identify the values of a, b, and c in a quadratic equation. Use the quadratic formula to solve quadratic equations. 3 Solve quadratic

More information

Scott Foresman-Addison Wesley envisionmath K-6 Combination Class Alignment K/1

Scott Foresman-Addison Wesley envisionmath K-6 Combination Class Alignment K/1 Grade K K/1 1 Sorting and Classifying 1 to 12 2 One to Five Grade 1 2 Comparing and Ordering 3 More and Fewer 3 Understanding Addition 4 Six to Ten 5 Comparing 4 Understanding 5 Five and Ten Relationships

More information

FRACTIONS COMMON MISTAKES

FRACTIONS COMMON MISTAKES FRACTIONS COMMON MISTAKES 0/0/009 Fractions Changing Fractions to Decimals How to Change Fractions to Decimals To change fractions to decimals, you need to divide the numerator (top number) by the denominator

More information

Operations With Fractions. Chapter 4 Math 7

Operations With Fractions. Chapter 4 Math 7 Operations With Fractions Chapter 4 Math 7 Estimating With Fractions and Mixed Numbers Lesson 4-1 Using Benchmarks With Fractions A benchmark is a convenient number used to replace fractions that are less

More information

Algebra 1 Review for Algebra 2

Algebra 1 Review for Algebra 2 for Algebra Table of Contents Section Topic Page 1.... 5. 6. Solving Equations Straight-lined Graphs Factoring Quadratic Trinomials Factoring Polynomials Binomials Trinomials Polynomials Eponential Notation

More information

Section 1.4 Notes Page Linear Equations in Two Variables and Linear Functions., x

Section 1.4 Notes Page Linear Equations in Two Variables and Linear Functions., x Section. Notes Page. Linear Equations in Two Variables and Linear Functions Slope Formula The slope formula is used to find the slope between two points ( x, y ) and ( ) x, y. x, y ) The slope is the vertical

More information

LINEAR EQUATIONS. Example: x + 2 = 4 Linear equation: highest exponent of the variable is 1.

LINEAR EQUATIONS. Example: x + 2 = 4 Linear equation: highest exponent of the variable is 1. LINEAR EQUATIONS A linear equation can be defined as an equation in which the highest exponent of the equation variable is one. When graphed, the equation is shown as a single line. Example: x + = 4 Linear

More information

Summer Math Packet. Number Sense & Math Skills For Students Entering Pre-Algebra. No Calculators!!

Summer Math Packet. Number Sense & Math Skills For Students Entering Pre-Algebra. No Calculators!! Summer Math Packet Number Sense & Math Skills For Students Entering Pre-Algebra No Calculators!! Within the first few days of your Pre-Algebra course you will be assessed on the prerequisite skills outlined

More information

Algebra Revision Sheet Questions 2 and 3 of Paper 1

Algebra Revision Sheet Questions 2 and 3 of Paper 1 Algebra Revision Sheet Questions and of Paper Simple Equations Step Get rid of brackets or fractions Step Take the x s to one side of the equals sign and the numbers to the other (remember to change the

More information

Arithmetic Study Guide for the ACCUPLACER (CPT) (developed by AIMS Community College)

Arithmetic Study Guide for the ACCUPLACER (CPT) (developed by AIMS Community College) Fractions Terms Numerator: which tells how many parts you have (the number on top) Denominator: which tells how many parts in the whole (the number on the bottom) is parts have a dot out of Proper fraction:

More information

Decimal and Fraction Review Sheet

Decimal and Fraction Review Sheet Decimal and Fraction Review Sheet Decimals -Addition To add 2 decimals, such as 3.25946 and 3.514253 we write them one over the other with the decimal point lined up like this 3.25946 +3.514253 If one

More information

= (x 1) x (x + 1) x 1 = (x 1)(x + 1) + x + 1. = x 1 + x + 1 (x 1)(x + 1) = 2x

= (x 1) x (x + 1) x 1 = (x 1)(x + 1) + x + 1. = x 1 + x + 1 (x 1)(x + 1) = 2x Algebra Review Quiz Solutions Simplify the given expressions. 1 (1) x + 1 + 1 x 1 In order to add two fractions, they need to have a common denominator. (Remember that the denominator is the bottom of

More information

6.1 Order of Operations

6.1 Order of Operations Chapter 6 6.1 Order of Operations is the study of unknown amounts. These unknown amounts are represented by. A is a specific amount added to or subtracted from a variable. For example, x + 7 or y 9. These

More information

1. Why is graphing a beneficial method for solving systems of equations? [OV, page 1]

1. Why is graphing a beneficial method for solving systems of equations? [OV, page 1] Student Activity Sheet 1; use with Overview 1. Why is graphing a beneficial method for solving systems of equations? [OV, page 1] (Answers may vary.) Graphing allows you to see quickly whether you have

More information

Factor Diamond Practice Problems

Factor Diamond Practice Problems Factor Diamond Practice Problems 1. x 2 + 5x + 6 2. x 2 +7x + 12 3. x 2 + 9x + 8 4. x 2 + 9x +14 5. 2x 2 7x 4 6. 3x 2 x 4 7. 5x 2 + x -18 8. 2y 2 x 1 9. 6-13x + 6x 2 10. 15 + x -2x 2 Factor Diamond Practice

More information

Project 6: Solving Equations, Part I

Project 6: Solving Equations, Part I Project 6: Solving Equations, Part I We can use the following properties to rewrite equations (to put them in a particular form like, or to solve them, or to combine multiple equations into a single equation).

More information

Algebra 1: Topic 1 Notes

Algebra 1: Topic 1 Notes Algebra 1: Topic 1 Notes Review: Order of Operations Please Parentheses Excuse Exponents My Multiplication Dear Division Aunt Addition Sally Subtraction Table of Contents 1. Order of Operations & Evaluating

More information

Unit 3: Rational Numbers. Rational Numbers

Unit 3: Rational Numbers. Rational Numbers Unit : Rational Numbers How many numbers are there in between -5 and -40? Rational Numbers How many numbers can you write between and 2? 2 In pairs or by yourself, create a number line from to 2. Write

More information

2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: 2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

More information

Date: Section P.2: Exponents and Radicals. Properties of Exponents: Example #1: Simplify. a.) 3 4. b.) 2. c.) 3 4. d.) Example #2: Simplify. b.) a.

Date: Section P.2: Exponents and Radicals. Properties of Exponents: Example #1: Simplify. a.) 3 4. b.) 2. c.) 3 4. d.) Example #2: Simplify. b.) a. Properties of Exponents: Section P.2: Exponents and Radicals Date: Example #1: Simplify. a.) 3 4 b.) 2 c.) 34 d.) Example #2: Simplify. a.) b.) c.) d.) 1 Square Root: Principal n th Root: Example #3: Simplify.

More information

MAT1033C Intermediate Algebra Lab 3: Basic Linear Inequalities Review

MAT1033C Intermediate Algebra Lab 3: Basic Linear Inequalities Review MAT1033C Intermediate Algebra Lab 3: Basic Linear Inequalities Review Lab Objectives: 1) Solve One-Step Linear Inequalities in One Variable. 2) Solve Two-Step Linear Inequalities in One Variable. 3) Graph

More information

3 cups ¾ ½ ¼ 2 cups ¾ ½ ¼. 1 cup ¾ ½ ¼. 1 cup. 1 cup ¾ ½ ¼ ¾ ½ ¼. 1 cup. 1 cup ¾ ½ ¼ ¾ ½ ¼

3 cups ¾ ½ ¼ 2 cups ¾ ½ ¼. 1 cup ¾ ½ ¼. 1 cup. 1 cup ¾ ½ ¼ ¾ ½ ¼. 1 cup. 1 cup ¾ ½ ¼ ¾ ½ ¼ cups cups cup Fractions are a form of division. When I ask what is / I am asking How big will each part be if I break into equal parts? The answer is. This a fraction. A fraction is part of a whole. The

More information

2.2 Solving Linear Equations With More Than Two Operations

2.2 Solving Linear Equations With More Than Two Operations 2.2 Solving Linear Equations With More Than Two Operations Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Solve equations involving more than

More information

How To Math Properties

How To Math Properties CLOSURE a + b is a real number; when you add 2 real numbers, the result is also a real number. and 5 are both real numbers, + 5 8 and the sum, 8, is also a real number. a b is a real number; when you subtract

More information

equals equals equals equals

equals equals equals equals Addition of Integers Rules Same Sign ---------------- Add --------------- Keep the Sign Different Signs -------- Subtract ------- Take the sign of the integer with the larger absolute value plus plus plus

More information

Solving ax 2 + bx + c = 0 Deriving the Quadratic Formula

Solving ax 2 + bx + c = 0 Deriving the Quadratic Formula Solving ax + bx + c = 0 SUGGESTED LEARNING STRATEGIES: Marking the Text, Group Presentation, Activating Prior Knowledge, Quickwrite Recall solving quadratic equations of the form a x + c = 0. To solve

More information

Inequalities. Learning objectives

Inequalities. Learning objectives CHAPTER Inequalities Learning objectives After studying this chapter, you should be able to: use sign diagrams to solve inequalities solve inequalities involving rational expressions. This chapter covers

More information

Module 2: Working with Fractions and Mixed Numbers. 2.1 Review of Fractions. 1. Understand Fractions on a Number Line

Module 2: Working with Fractions and Mixed Numbers. 2.1 Review of Fractions. 1. Understand Fractions on a Number Line Module : Working with Fractions and Mixed Numbers.1 Review of Fractions 1. Understand Fractions on a Number Line Fractions are used to represent quantities between the whole numbers on a number line. A

More information

Focus Questions Background Description Purpose

Focus Questions Background Description Purpose Focus Questions Background The student book is organized around three to five investigations, each of which contain three to five problems and a that students explore during class. In the Teacher Guide

More information

Lesson 4: Solving Equations

Lesson 4: Solving Equations Lesson 4: Solving Equations Topics and Objectives: Algebraic Equations o Definition of an Algebraic Equation o Verify that a given value is a solution to an equation o Equivalent Equations Solving One-Step

More information

Books & Materials Math in Focus A

Books & Materials Math in Focus A Lesson 28: Chapter 3 Opener Linear Equations MATH Lesson 28 CCSS K 12.MP2, 7 Objectives Determine whether equations are equivalent. Write a linear equation to represent a real-world situation. Books &

More information

Grade 8 NOTES: Unit 3 Fractions Name: Class: Remember: put ANSWERS in SIMPLEST FORM. Model. Circles. = mult by this form of 1 = -4

Grade 8 NOTES: Unit 3 Fractions Name: Class: Remember: put ANSWERS in SIMPLEST FORM. Model. Circles. = mult by this form of 1 = -4 Grade 8 NOTES: Unit 3 Fractions Name: Class: Remember: put ANSWERS in SIMPLEST FORM FRACTIONS: Model Area model of Number line Counters Circles Special Fractions Forms of 1 1 same number in numerator as

More information

FRACTIONS. a where b 0 b. In a fraction the number at the top is called the numerator, and the number at the bottom is called the denominator.

FRACTIONS. a where b 0 b. In a fraction the number at the top is called the numerator, and the number at the bottom is called the denominator. FRACTIONS A fraction is defined as a ratio of two numbers, where the number at the bottom cannot be equal to zero. a where b 0 b In a fraction the number at the top is called the numerator, and the number

More information

1.3 Algebraic Expressions

1.3 Algebraic Expressions 1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

More information

7. Solving Linear Inequalities and Compound Inequalities

7. Solving Linear Inequalities and Compound Inequalities 7. Solving Linear Inequalities and Compound Inequalities Steps for solving linear inequalities are very similar to the steps for solving linear equations. The big differences are multiplying and dividing

More information

Solving Linear Equations - Fractions

Solving Linear Equations - Fractions 1.4 Solving Linear Equations - Fractions Objective: Solve linear equations with rational coefficients by multiplying by the least common denominator to clear the fractions. Often when solving linear equations

More information

Radical Expressions Squaring a # and finding the square root and are inverse operations. Cubing a # and finding the cube root are inverse operations.

Radical Expressions Squaring a # and finding the square root and are inverse operations. Cubing a # and finding the cube root are inverse operations. Radical Expressions Squaring a # and finding the square root and are inverse operations. Since 5 2 = 25 a square root of 25 is 5. Since -5) 2 = 25, -5 is also a square root. Meaning if x 2 = 25 then x

More information

c The solution of the equation 5x 2x 11falls between what two consecutive integers? a. 0 and 1 b. 1 and 2 c. 2 and 3 d. 3 and 4 e.

c The solution of the equation 5x 2x 11falls between what two consecutive integers? a. 0 and 1 b. 1 and 2 c. 2 and 3 d. 3 and 4 e. Algebra Topics COMPASS Review revised Summer 0 You will be allowed to use a calculator on the COMPASS test. Acceptable calculators are basic calculators, scientific calculators, and approved graphing calculators.

More information

EXPONENTS. The first thing we need to do is move the power from outside of the parentheses to the inside of

EXPONENTS. The first thing we need to do is move the power from outside of the parentheses to the inside of EXPONENTS Exponents can be confusing at times, but once you understand the pattern, they become easier to work with. Let s try a few examples: Simplify the following expression: The first thing we need

More information

What are the power words in this poster? Why do you think these words were made to stand out?

What are the power words in this poster? Why do you think these words were made to stand out? http://library.duke.edu/rubenstein/scriptorium/eaa/broadsides/b03/b0304/b0304-01- 72dpi.html What are the power words in this poster? Why do you think these words were made to stand out? http://chnm.gmu.edu/tah-loudoun/wp-content/lessons/griffin/land-grant.1.jpeg

More information

Multiplying With Polynomials What do you do? 1. Distribute (or double-distribute/foil, when necessary) 2. Combine like terms

Multiplying With Polynomials What do you do? 1. Distribute (or double-distribute/foil, when necessary) 2. Combine like terms Regents Review Session #1 Polynomials Adding and Subtracting Polynomials What do you do? 1. Add/subtract like terms Example: 1. (8x 3-9x 2 + 6x + 2) - (-7x 3-5x 2 + 1x - 8) Multiplying With Polynomials

More information

This assignment will help you to prepare for Algebra 1 by reviewing some of the things you learned in Middle School. If you cannot remember how to complete a specific problem, there is an example at the

More information

Recall that multiplication with the same base results in addition of exponents; that is, a r a s = a r+s.

Recall that multiplication with the same base results in addition of exponents; that is, a r a s = a r+s. Section 5.2 Subtract Simplify Recall that multiplication with the same base results in addition of exponents; that is, a r a s = a r+s. Since division is the inverse operation of multiplication, we can

More information

Solutions for COMPASS sample questions: Numerical Skills / Prealgebra / Algebra

Solutions for COMPASS sample questions: Numerical Skills / Prealgebra / Algebra # 1-14, Numerical Skills / Prealgebra 1. 54 6 2 + 6 = 54 6 2 + 6 = 54 3 + 6 = 51 + 6 = 57 Follow steps 3 and 4 of the ORDER OF OPERATIONS: 1. Solve within parentheses or brackets (inner outer). 2. Simplify

More information

Simplification Problems to Prepare for Calculus

Simplification Problems to Prepare for Calculus Simplification Problems to Prepare for Calculus In calculus, you will encounter some long epressions that will require strong factoring skills. This section is designed to help you develop those skills.

More information

Fractions to decimals

Fractions to decimals Worksheet.4 Fractions and Decimals Section Fractions to decimals The most common method of converting fractions to decimals is to use a calculator. A fraction represents a division so is another way of

More information

Grade 5 Unit 4 Multiplication and Division of Fractions and Decimal Fractions

Grade 5 Unit 4 Multiplication and Division of Fractions and Decimal Fractions Grade 5 Unit 4 Multiplication and Division of Fractions and Decimal Fractions Standards NF.3 Interpret a fraction as division of the numerator by the denominator (a/b = a b). Solve word problems involving

More information

Solving Linear Equations: In solving an equation, we are trying to find the value of the variable(s) that would make the quation a true equation.

Solving Linear Equations: In solving an equation, we are trying to find the value of the variable(s) that would make the quation a true equation. Solving Linear Equations: In solving an equation, we are trying to find the value of the variable(s) that would make the quation a true equation. E.g. x + 3 = 5 In this equation, if x = 2, then the equation

More information

TYPES OF NUMBERS. Example 2. Example 1. Problems. Answers

TYPES OF NUMBERS. Example 2. Example 1. Problems. Answers TYPES OF NUMBERS When two or more integers are multiplied together, each number is a factor of the product. Nonnegative integers that have exactly two factors, namely, one and itself, are called prime

More information

Math Help and Additional Practice Websites

Math Help and Additional Practice Websites Name: Math Help and Additional Practice Websites http://www.coolmath.com www.aplusmath.com/ http://www.mathplayground.com/games.html http://www.ixl.com/math/grade-7 http://www.softschools.com/grades/6th_and_7th.jsp

More information

Number. 1.1 Properties of whole numbers CHAPTER. Example 1. Example 2. Example 3

Number. 1.1 Properties of whole numbers CHAPTER. Example 1. Example 2. Example 3 Number 1 CHAPTER 1.1 Properties of whole numbers A factor of a number, x, is a number which divides into x an exact number of times. So 3 is a factor of 1 because 3 1 3 and are called a factor pair of

More information

FRACTIONS OPERATIONS

FRACTIONS OPERATIONS FRACTIONS OPERATIONS Summary 1. Elements of a fraction... 1. Equivalent fractions... 1. Simplification of a fraction... 4. Rules for adding and subtracting fractions... 5. Multiplication rule for two fractions...

More information