Tristan s Guide to: Solving Series Circuits. Version: 1.0 Written in Written By: Tristan Miller

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Tristan s Guide to: Solving Series Circuits. Version: 1.0 Written in 2006. Written By: Tristan Miller Tristan@CatherineNorth.com"

Transcription

1 Tristan s Guide to: Solving Series Circuits. Version: 1.0 Written in 2006 Written By: Tristan Miller

2 Series Circuits. A Series circuit, in my opinion, is the simplest circuit to solve. The definition of Series is: Similar things placed in order or happening one after another. This means, things that happen one after another. Let s look at a sample Series circuit. Here, we have 4 Resistors. R1, R2, R3 and R4. The Resistors are connected in Series with the battery, E1. When the electrons leave the Positive side of the battery, they travel down the wire, and into Point A on R1. The electrons travel through R1, then down the short wire to the right of R1, and into the left side of R2. Through R2, then through R3, then through R4, and the electrons finally return to the Negative side of the battery. The red arrows show how the electricity will travel in this circuit. (Conventional Theory) From the battery, Through R1, and then through R2, and then through R3, and then through R4, and then back to the battery. Tristan Miller s Guide To Solving Series Circuits Ver:

3 Calculating Total Resistance in Series Circuits. The circuits Total Resistance is very easy to calculate. Because the resistors are in a straight line, the Total Resistance is equal too all the resistor values added together. Let s throw some random numbers into the circuit from the last page. These are just made up numbers, they can be any value; it does change how we solve it. R1 is 500 Ohms R2 is 600 Ohms R3 is 40 Ohms R4 is 790 Ohms E1 is 10 Volts. As I said before, the Total Resistance is equal to all of the Resistor s values added together. In an equation, Total resistance can be written as RT. RT = R1 + R2 + R3 + R4 That is the equation for this circuit. All of the resistor s values added together, equal the Total Resistance. To use this equation, you just have to substitute the numbers that you know, into the right spot. RT = R1 + R2 + R3 + R4 RT = 500 Ohms Ohms + 40 Ohms Ohms RT = 1930 Ohms. Therefore, the total resistance of the circuit is 1930 Ohms. Let s say you had a Series circuit with 6 resistors in it. You use the same process to find the total resistance. Add all the resistor values together. RT = R1 + R2 + R3 + R4 + R5 + R6 It will be the same if you have 2 resistors, or 1000 resistors. Add each and every resistor together, to find out the total resistance. Tristan Miller s Guide To Solving Series Circuits Ver:

4 Calculating an Unknown Resistor Value Let s say you re given a circuit, with 3 resistors in Series. You re told the Total Resistance, and Two of the resistor s values. You can rearrange the formula to find out what the Unknown Resistor s value is. Let s use this random circuit as an example. The Total Resistance, RT, is 200 Ohms. R1 is 30 Ohms R2 is 100 Ohms R3 is Unknown. The formula for the Total Resistance is; RT = R1 + R2 + R3 Let s put the values we know, into that formula. 200 Ohms = 30 Ohms Ohms + R3 What we want to do now, is get R3 by its self, on one side of the = sign. Subtracting R1 and R2 from each side of the = sign will give us R3 by its self, on the right of the = sign. RT R1 R2 = R1 R1 + R2 R2 + R3 This formula can now be simplified, because R1 R1 = 0 and R2 R2 = 0 RT R1 R2 = R3 Let s substitute the numbers in again, and solve it. 200 Ohms 30 Ohms 100 Ohms = R3 170 Ohms 100 Ohms = R3 70 Ohms = R3 Therefore; R3 is equal to 70 Ohms. Tristan Miller s Guide To Solving Series Circuits Ver:

5 Calculating The Current in a Series Circuit. The current that flows through a Series Circuit is the same at any point in the circuit. Let s use the first circuit as our example. The current that is flowing through R1, is the same as the current that is flowing through R2, and R3, and R4. This is because all of the electrons have to go through each resistor, before they return to the battery. To find out the Current that is flowing through the entire circuit, we use the formula: Voltage E Total Current = Or: IT = Total Resistance RT Remember this circuit? We already calculated the Total Resistance of the circuit; it was 1930 Ohms. E1 is 10 Volts. Tristan Miller s Guide To Solving Series Circuits Ver:

6 Let s enter these two values into the formula. E 10 Volts IT = = = Amperes RT 1930 Ohms This is a ridiculously long number, and should be rounded in most cases. Let s round it to 8 decimal places Amperes This still looks weird, so let s convert it into Milliamps. 1 Amp is equal to 1000 Milliamps. Multiply the calculated ampere value by 1000, and we will have the value in Milliamps Amps * 1000 = Milliamps Therefore, the current that is flowing through our circuit, is mA. This also means that there is mA flowing through each resistor in our circuit. As you can see, I ve placed 5 Amp Meters into the circuit. All of the meters show the same reading of 5.18 ma. This is the same number that we calculated. This just shows you that the current is the same at any point in the circuit. So; IT = I1 = I2 = I3 = I4 Tristan Miller s Guide To Solving Series Circuits Ver:

7 Calculating Total Current Using Voltage and Current. Let s say you are given a circuit, and you want to know what the Total Resistance of the circuit is. IT is 50 Milliamps. E1 is 10 Volts. We use the following formula to calculate the Total Resistance. Voltage E Total Resistance = or: Total Current IT We have to convert the number 50mA into Amperes. To do this, we divide our Milliamp value by So: 50mA = A 1000 Let s enter our numbers into the formula. E 10 Volts = = 200 Ohms. IT Amps So the total resistance in this circuit is 200 Ohms. Tristan Miller s Guide To Solving Series Circuits Ver:

8 Calculating Voltage with Total Current and Total Resistance. IT is 150mA. R1 is 60 Ohms. E1 is Unknown. We use this formula to calculate the Voltage. Voltage = Current * Resistance or: E = I * R or simply written as: E = IR First we convert the 150 ma value into Amperes, by dividing the ma value by mA = A 1000 Let s enter our values into the formula. E = I*R E = 0.150Amps * 60 Ohms E = 9 Volts Tristan Miller s Guide To Solving Series Circuits Ver:

9 Calculating the Voltage across a Resistor with the Current. Going back to the first circuit, let s find the voltage that is across each resistor. R1 is 500 Ohms. R2 is 600 Ohms. R3 is 40 Ohms. R4 is 790 Ohms. IT is 5.18mA. E1 is 10 Volts. Let s calculate the voltage across R1. We know that the current going through R1 is equal to IT. And we know that R1 has a resistance of 500 Ohms. Voltage across R1 = Current * Resistance of R1. ER1 = IT * R1. ER1 = A * 500 Ohms. ER1 = 2.59 Volts. So, the voltage across R1 is 2.59 Volts. To calculate the voltage across the other resistors, we use the same formula, except R1 is replaced by the number of the resistor that you are calculating the voltage of. Tristan Miller s Guide To Solving Series Circuits Ver:

10 -- This page is intentionally left blank -- Tristan Miller s Guide To Solving Series Circuits Ver:

Tristan s Guide to: Solving Parallel Circuits. Version: 1.0 Written in 2006. Written By: Tristan Miller Tristan@CatherineNorth.com

Tristan s Guide to: Solving Parallel Circuits. Version: 1.0 Written in 2006. Written By: Tristan Miller Tristan@CatherineNorth.com Tristan s Guide to: Solving Parallel Circuits. Version: 1.0 Written in 2006 Written By: Tristan Miller Tristan@CatherineNorth.com Parallel Circuits. Parallel Circuits are a little bit more complicated

More information

Circuits. Page The diagram below represents a series circuit containing three resistors.

Circuits. Page The diagram below represents a series circuit containing three resistors. Name: Circuits Date: 1. Which circuit segment has an equivalent resistance of 6 ohms? 4. The diagram below represents a series circuit containing three resistors. 2. Base your answer to the following question

More information

Experiment 3 ~ Ohm's Law, Measurement of Voltage, Current and Resistance

Experiment 3 ~ Ohm's Law, Measurement of Voltage, Current and Resistance Experiment 3 ~ Ohm's Law, Measurement of Voltage, Current and Resistance Objective: In this experiment you will learn to use the multi-meter to measure voltage, current and resistance. Equipment: Bread

More information

Electrical Circuit Calculations

Electrical Circuit Calculations Electrical Circuit Calculations Series Circuits Many circuits have more than one conversion device in them (i.e. toaster. heater. lamps etc.) and some have more than one source of electrical energy. If

More information

Experiment NO.3 Series and parallel connection

Experiment NO.3 Series and parallel connection Experiment NO.3 Series and parallel connection Object To study the properties of series and parallel connection. Apparatus 1. DC circuit training system 2. Set of wires. 3. DC Power supply 4. Digital A.V.O.

More information

Student Exploration: Circuits

Student Exploration: Circuits Name: Date: Student Exploration: Circuits Vocabulary: ammeter, circuit, current, ohmmeter, Ohm s law, parallel circuit, resistance, resistor, series circuit, voltage Prior Knowledge Questions (Do these

More information

Resistors. Jeffrey La Favre

Resistors. Jeffrey La Favre 1 Resistors Jeffrey La Favre Resistors One of the most basic components (parts) used in electronics is the resistor. Resistors are used to control the amount of current that flows in a circuit and to reduce

More information

1) 10. V 2) 20. V 3) 110 V 4) 220 V

1) 10. V 2) 20. V 3) 110 V 4) 220 V 1. The diagram below represents an electric circuit consisting of a 12-volt battery, a 3.0-ohm resistor, R 1, and a variable resistor, R 2. 3. What is the total resistance of the circuit 1) 6.6 Ω 2) 10

More information

Series and Parallel Circuits

Series and Parallel Circuits Series and Parallel Circuits Components in a circuit can be connected in series or parallel. A series arrangement of components is where they are inline with each other, i.e. connected end-to-end. A parallel

More information

Series,"Parallel," and"series." Parallel"Circuits"

Series,Parallel, andseries. ParallelCircuits chapter 25 Series,"Parallel," and"series." Parallel"Circuits" FIGURE 25.1 A series circuit with three bulbs. All current flows through all resistances (bulbs). The total resistance of the circuit is the

More information

Electrical Fundamentals Module 3: Parallel Circuits

Electrical Fundamentals Module 3: Parallel Circuits Electrical Fundamentals Module 3: Parallel Circuits PREPARED BY IAT Curriculum Unit August 2008 Institute of Applied Technology, 2008 ATE310- Electrical Fundamentals 2 Module 3 Parallel Circuits Module

More information

Resistors. Some substances are insulators. A battery will not make detectible current flow through them.

Resistors. Some substances are insulators. A battery will not make detectible current flow through them. Resistors Some substances are insulators. A battery will not make detectible current flow through them. Many substances (lead, iron, graphite, etc.) will let current flow. For most substances that are

More information

Circuits-Circuit Analysis

Circuits-Circuit Analysis Base your answers to questions 1 through 3 on the information and diagram below. 4. A 9-volt battery is connected to a 4-ohm resistor and a 5-ohm resistor as shown in the diagram below. A 3.0-ohm resistor,

More information

Physics Worksheet Electric Circuits Section: Name: Series Circuits

Physics Worksheet Electric Circuits Section: Name: Series Circuits Do Now: (1) What is electric circuit? (2) Convert the following picture into schematic diagram. Series Circuits 4. Label every component of the circuit; identify each of the voltage and current. 5. Relation

More information

PARALLEL CIRCUITS. The voltage is the same across all components in a parallel circuit. Figure 1.

PARALLEL CIRCUITS. The voltage is the same across all components in a parallel circuit. Figure 1. Reading 6 Ron Bertrand VK2DQ http://www.radioelectronicschool.com PARALLEL CIRCUITS When two or more components are connected across one voltage source they form a parallel circuit. The two lamps in figure

More information

Series-Parallel Circuits

Series-Parallel Circuits Chapter 6 Series-Parallel Circuits Topics Covered in Chapter 6 6-1: Finding R T for Series-Parallel Resistances 6-2: Resistance Strings in Parallel 6-3: Resistance Banks in Series 6-4: Resistance Banks

More information

PHY 101 Lab 7 on Electric circuits: Direct current circuits Your name: Other team members:

PHY 101 Lab 7 on Electric circuits: Direct current circuits Your name: Other team members: PHY 101 Lab 7 on Electric circuits: Direct current circuits Your name: Other team members: Goals: To explore the basic principles of electric circuits, and how to measure them. Materials: Electrical resistors

More information

A) The potential difference across the 6-ohm B) 2.0 A resistor is the same as the potential difference across the 3-ohm resistor. D) 4.

A) The potential difference across the 6-ohm B) 2.0 A resistor is the same as the potential difference across the 3-ohm resistor. D) 4. 1. A 2.0-ohm resistor and a 4.0-ohm resistor are connected in series with a 12-volt battery. If the current through the 2.0-ohm resistor is 2.0 amperes, the current through the 4.0-ohm resistor is A) 1.0

More information

ElectronicsLab2.nb. Electronics Lab #2. Simple Series and Parallel Circuits

ElectronicsLab2.nb. Electronics Lab #2. Simple Series and Parallel Circuits Electronics Lab #2 Simple Series and Parallel Circuits The definitions of series and parallel circuits will be given in this lab. Also, measurements in very simple series and parallel circuits will be

More information

PHYS 343 Homework Set #3 Solutions

PHYS 343 Homework Set #3 Solutions PHYS 343 Homework Set #3 Solutions 1. In the circuit shown, resistor C has a resistance R and the voltage across the battery is. The power delivered to resistor C is 3 times as great as the power delivered

More information

Ohm s Law & Series Circuit

Ohm s Law & Series Circuit Open the TI-Nspire document Ohms_Law_&_Series_Circuit.tns. We all use and rely on electric circuits every day by flipping a switch, turning up the volume, or operating a computer or calculator. Even the

More information

More Concepts. I = dq. Current is the rate of flow of charge around a circuit.

More Concepts. I = dq. Current is the rate of flow of charge around a circuit. RC Circuits In this presentation, circuits with multiple batteries, resistors and capacitors will be reduced to an equivalent system with a single battery, a single resistor, and a single capacitor. Kirchoff's

More information

Experiment #6, Series and Parallel Circuits, Kirchhoff s Laws

Experiment #6, Series and Parallel Circuits, Kirchhoff s Laws Physics 182 Spring 2013 Experiment #6 1 Experiment #6, Series and Parallel Circuits, Kirchhoff s Laws 1 Purpose Our purpose is to explore and validate Kirchhoff s laws as a way to better understanding

More information

Note-A-Rific: Characteristics

Note-A-Rific: Characteristics Note-A-Rific: Characteristics Any path along which electrons can flow is a circuit. For a continuous flow of electrons, there must be a complete circuit with no gaps. A gap is usually an electric switch

More information

Topic 2 Solving Equations

Topic 2 Solving Equations Topic 2 Solving Equations Introduction: When you are given the value of a variable and an algebraic expression then you can evaluate the expression. For example, If you are told that x = 6 then the value

More information

Chapter 28A - Direct Current Circuits. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 28A - Direct Current Circuits. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Chapter 28A - Direct Current Circuits A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Objectives: After completing this module, you should

More information

The node voltage method

The node voltage method The node voltage method Equivalent resistance Voltage / current dividers Source transformations Node voltages Mesh currents Superposition Not every circuit lends itself to short-cut methods. Sometimes

More information

13.10: How Series and Parallel Circuits Differ pg. 571

13.10: How Series and Parallel Circuits Differ pg. 571 13.10: How Series and Parallel Circuits Differ pg. 571 Key Concepts: 5. Connecting loads in series and parallel affects the current, potential difference, and total resistance. - Using your knowledge of

More information

Series and Parallel Resistive Circuits Physics Lab VIII

Series and Parallel Resistive Circuits Physics Lab VIII Series and Parallel Resistive Circuits Physics Lab VIII Objective In the set of experiments, the theoretical expressions used to calculate the total resistance in a combination of resistors will be tested

More information

Preamble. Kirchoff Voltage Law (KVL) Series Resistors. In this section of my lectures we will be. resistor arrangements; series and

Preamble. Kirchoff Voltage Law (KVL) Series Resistors. In this section of my lectures we will be. resistor arrangements; series and Preamble Series and Parallel Circuits Physics, 8th Edition Custom Edition Cutnell & Johnson Chapter 0.6-0.8, 0.0 Pages 60-68, 69-6 n this section of my lectures we will be developing the two common types

More information

THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT

THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT YOUR NAME LAB MEETING TIME Reference: C.W. Alexander and M.N.O Sadiku, Fundamentals

More information

Electric Circuits Review

Electric Circuits Review Electric Circuits Review 1. Which of the following statements are true about electric current? Circle all that apply. a. Electric current is measured in units of Amperes. b. Electric current is defined

More information

f. The current at location A is equal to the current at location B. e. The current at location B is greater than the current at location E.

f. The current at location A is equal to the current at location B. e. The current at location B is greater than the current at location E. 1. Answer: The current outside the branches of a combination circuit is everywhere the same. The current inside of the branches is always less than that outside of the branches. When comparing the current

More information

PHYSICS 176. Experiment 3. Kirchhoff's Laws. Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm).

PHYSICS 176. Experiment 3. Kirchhoff's Laws. Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm). PHYSICS 176 Experiment 3 Kirchhoff's Laws Equipment: Supplies: Digital Multimeter, Power Supply (0-20 V.). Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm). A. Kirchhoff's Loop Law Suppose that

More information

Science AS90191 Describe Aspects of Physics.

Science AS90191 Describe Aspects of Physics. Circuits and components Science AS90191 Describe Aspects of Physics. An electric current is the movement of electrons (negatively charged particles). A circuit is made up of components connected together

More information

AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules

AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules Name Period AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules Dr. Campbell 1. Four 240 Ω light bulbs are connected in series. What is the total resistance of the circuit? What

More information

Chapter 18. Preview. Objectives Schematic Diagrams Electric Circuits. Section 1 Schematic Diagrams and Circuits

Chapter 18. Preview. Objectives Schematic Diagrams Electric Circuits. Section 1 Schematic Diagrams and Circuits Section 1 Schematic Diagrams and Circuits Preview Objectives Schematic Diagrams Electric Circuits Section 1 Schematic Diagrams and Circuits Objectives Interpret and construct circuit diagrams. Identify

More information

Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws

Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws Physics 182 Summer 2013 Experiment #5 1 Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws 1 Purpose Our purpose is to explore and validate Kirchhoff s laws as a way to better understanding

More information

Solving for Voltage and Current

Solving for Voltage and Current Chapter 3 Solving for Voltage and Current Nodal Analysis If you know Ohm s Law, you can solve for all the voltages and currents in simple resistor circuits, like the one shown below. In this chapter, we

More information

Q1. (a) Complete the sentence below to name the instrument used to measure electrical current.

Q1. (a) Complete the sentence below to name the instrument used to measure electrical current. Q. (a) Complete the sentence below to name the instrument used to measure electrical current. The instrument used to measure electrical current is called... () (b) In the diagram below each box contains

More information

BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS LECTURE-4 SOME USEFUL LAWS IN BASIC ELECTRONICS

BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS LECTURE-4 SOME USEFUL LAWS IN BASIC ELECTRONICS BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS LECTURE-4 SOME USEFUL LAWS IN BASIC ELECTRONICS Hello everybody! In a series of lecture on basic electronics, learning by doing, we now

More information

V out. Figure 1: A voltage divider on the left, and potentiometer on the right.

V out. Figure 1: A voltage divider on the left, and potentiometer on the right. Living with the Lab Fall 202 Voltage Dividers and Potentiometers Gerald Recktenwald v: November 26, 202 gerry@me.pdx.edu Introduction Voltage dividers and potentiometers are passive circuit components

More information

TECH TIP # 37 SOLVING SERIES/PARALLEL CIRCUITS THREE LAWS --- SERIES CIRCUITS LAW # 1 --- THE SAME CURRENT FLOWS THROUGH ALL PARTS OF THE CIRCUIT

TECH TIP # 37 SOLVING SERIES/PARALLEL CIRCUITS THREE LAWS --- SERIES CIRCUITS LAW # 1 --- THE SAME CURRENT FLOWS THROUGH ALL PARTS OF THE CIRCUIT TECH TIP # 37 SOLVING SERIES/PARALLEL CIRCUITS Please study this Tech Tip along with assignment 4 in Basic Electricity. Parallel circuits differ from series circuits in that the current divides into a

More information

Electrical Power. How do you calculate electrical power? 14.3

Electrical Power. How do you calculate electrical power? 14.3 . Name: Date: Electrical Power 14.3 How do you calculate electrical power? In this skill sheet you will review the relationship between electrical power and Ohm s law. As you work through the problems,

More information

12) 13) 14) (5x)2/3. 16) x5/8 x3/8. 19) (r1/7 s1/7) 2

12) 13) 14) (5x)2/3. 16) x5/8 x3/8. 19) (r1/7 s1/7) 2 DMA 080 WORKSHEET # (8.-8.2) Name Find the square root. Assume that all variables represent positive real numbers. ) 6 2) 8 / 2) 9x8 ) -00 ) 8 27 2/ Use a calculator to approximate the square root to decimal

More information

EE301 - PARALLEL CIRCUITS AND KIRCHHOFF S CURRENT LAW

EE301 - PARALLEL CIRCUITS AND KIRCHHOFF S CURRENT LAW Objectives a. estate the definition of a node and demonstrate how to measure voltage and current in parallel circuits b. Solve for total circuit resistance of a parallel circuit c. State and apply KCL

More information

Chapter 11- Electricity

Chapter 11- Electricity Chapter 11- Electricity Course Content Definition of Electricity Circuit Diagrams Series and Parallel Circuits Calculating total resistances Measurement of Electricity Ammeters and Voltmeters Ohm s Law

More information

People s Physics Book

People s Physics Book The Big Ideas: The name electric current is given to the phenomenon that occurs when an electric field moves down a wire at close to the speed of light. Voltage is the electrical energy density (energy

More information

= (0.400 A) (4.80 V) = 1.92 W = (0.400 A) (7.20 V) = 2.88 W

= (0.400 A) (4.80 V) = 1.92 W = (0.400 A) (7.20 V) = 2.88 W Physics 2220 Module 06 Homework 0. What are the magnitude and direction of the current in the 8 Ω resister in the figure? Assume the current is moving clockwise. Then use Kirchhoff's second rule: 3.00

More information

Saturday X-tra X-Sheet: 19. Electric circuits

Saturday X-tra X-Sheet: 19. Electric circuits Saturday X-tra X-Sheet: 9 Key Concepts Electric circuits This lesson focuses on the following: Potential Difference Current The resistance of a conductor Ohm s Law and circuit calculations Terminology

More information

OHM S LAW 05 AUGUST 2014

OHM S LAW 05 AUGUST 2014 OHM S LAW 05 AUGUST 2014 In this lesson, we: Current Lesson Description Revise the definitions of current, potential difference and emf Explore Ohm s law Identify the characteristics of ohmic and non-ohmic

More information

Storing And Releasing Charge In A Circuit

Storing And Releasing Charge In A Circuit Storing And Releasing Charge In A Circuit Topic The characteristics of capacitors Introduction A capacitor is a device that can retain and release an electric charge, and is used in many circuits. There

More information

Electrostatics. Electrostatics Version 2

Electrostatics. Electrostatics Version 2 1. A 150-watt lightbulb is brighter than a 60.-watt lightbulb when both are operating at a potential difference of 110 volts. Compared to the resistance of and the current drawn by the 150-watt lightbulb,

More information

Physics 1021 Experiment 6. Ohm s Law and Equivalent Resistance V=IR. Georg Simon Ohm ( )

Physics 1021 Experiment 6. Ohm s Law and Equivalent Resistance V=IR. Georg Simon Ohm ( ) 1 Physics 1021 Ohm s Law and Equivalent Resistance V=IR Georg Simon Ohm (1789-1854) 2 Ohm s Law Electric current, I, is a measure of the flow of charge. It is rate of charge with time across a given point

More information

Ohms Law I--DC Circuits with Light Bulbs PhET Lab I with Ammeters and Voltmeters

Ohms Law I--DC Circuits with Light Bulbs PhET Lab I with Ammeters and Voltmeters Ohms Law I--DC Circuits with Light Bulbs PhET Lab I with Ammeters and Voltmeters by Dr. James E. Parks Department of Physics and Astronomy 401 Nielsen Physics Building The University of Tennessee Knoxville,

More information

Q1. (a) The diagram shows the voltage-current graphs for three different electrical components.

Q1. (a) The diagram shows the voltage-current graphs for three different electrical components. Q. (a) The diagram shows the voltage-current graphs for three different electrical components. Which one of the components A, B or C could be a 3 volt filament lamp? Explain the reason for your choice...................

More information

Matrices & Their Applications: Nodal Analysis

Matrices & Their Applications: Nodal Analysis Matrices & Their Applications: Nodal Analysis Introduction Nodal analysis is a method applied to electrical circuits to determine the nodal voltages. In electrical circuits nodes are points where two or

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 1 - D.C. CIRCUITS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 1 - D.C. CIRCUITS EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME - D.C. CIRCUITS Be able to use circuit theory to determine voltage, current and resistance in direct

More information

Series and Parallel Resistors

Series and Parallel Resistors Series and Parallel Resistors 1 Objectives To calculate the equivalent resistance of series and parallel resistors. 2 Examples for resistors in parallel and series R 4 R 5 Series R 6 R 7 // R 8 R 4 //

More information

Kirchhoff s Laws. Kirchhoff's Law #1 - The sum of the currents entering a node must equal the sum of the currents exiting a node.

Kirchhoff s Laws. Kirchhoff's Law #1 - The sum of the currents entering a node must equal the sum of the currents exiting a node. Kirchhoff s Laws There are two laws necessary for solving circuit problems. For simple circuits, you have been applying these equations almost instinctively. Kirchhoff's Law #1 - The sum of the currents

More information

Section 4. Ohm s Law: Putting up a Resistance. What Do You See? What Do You Think? Investigate. Learning Outcomes

Section 4. Ohm s Law: Putting up a Resistance. What Do You See? What Do You Think? Investigate. Learning Outcomes Section 4: Ohm s Law: Putting up a Resistance Section 4 Ohm s Law: Putting up a Resistance What Do You See? Learning Outcomes In this section, you will Calculate the resistance of an unknown resistor given

More information

ELECTRICAL CIRCUITS. Electrical Circuits

ELECTRICAL CIRCUITS. Electrical Circuits Electrical Circuits A complete path, or circuit, is needed before voltage can cause a current flow through resistances to perform work. There are several types of circuits, but all require the same basic

More information

8. Resistors in Parallel

8. Resistors in Parallel 8. Resistors in Parallel Resistors are said to be connected together in "Parallel" when both of their terminals are respectively connected to each terminal of the other resistor or resistors. Unlike the

More information

WORK, POWER, AND ENERGY (ELECTRICAL)

WORK, POWER, AND ENERGY (ELECTRICAL) SUBCOUSE IT0348 EDITION A US AMY INTELLIGENCE CENTE WOK, POWE, AND ENEGY (ELECTICAL) WOK, POWE, AND ENEGY (ELECTICAL) Subcourse Number IT 0348 EDITION A US AMY INTELLIGENCE CENTE FOT HUACHUCA, AZ 85613-6000

More information

Henry Lin, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 3 (Electric Circuits) July 16 th, 2013

Henry Lin, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 3 (Electric Circuits) July 16 th, 2013 Henry Lin, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 3 (Electric Circuits) July 16 th, 2013 1 What is an electrical circuit? An electrical network

More information

Electrical Principles Section 5

Electrical Principles Section 5 5 Electrical Principles Section 5 www.hubbellpowersystems.com E-mail: hpsliterature@hps.hubbell.com Phone: 573-682-5521 Fax: 573-682-8714 210 North Allen Centralia, MO 65240, USA Copyright 2015 Hubbell

More information

Physics 1B Electricity & Magnetism. Frank Wuerthwein (Prof) Edward Ronan (TA) UCSD

Physics 1B Electricity & Magnetism. Frank Wuerthwein (Prof) Edward Ronan (TA) UCSD Physics 1B Electricity & Magnetism Frank Wuerthwein (Prof) Edward Ronan (TA) UCSD Quiz 2 Quiz 2 will be on the content of Chapters 20 and 21. It will be mostly calculations with no more than 2/10 concept

More information

Lab 2: Resistance, Current, and Voltage

Lab 2: Resistance, Current, and Voltage 2 Lab 2: Resistance, Current, and Voltage I. Before you come to la.. A. Read the following chapters from the text (Giancoli): 1. Chapter 25, sections 1, 2, 3, 5 2. Chapter 26, sections 1, 2, 3 B. Read

More information

Students will need about 30 minutes to complete these constructed response tasks.

Students will need about 30 minutes to complete these constructed response tasks. Electric Title of Circuits Concept Constructed Response Teacher Guide Students will need about 30 minutes to complete these constructed response tasks. Objectives assessed: Understand the functions of

More information

Two kinds of electrical charges

Two kinds of electrical charges ELECTRICITY NOTES Two kinds of electrical charges Positive charge Negative charge Electrons are negatively charged Protons are positively charged The forces from positive charges are canceled by forces

More information

Kirchhoff s Voltage Law

Kirchhoff s Voltage Law BASIC ELECTRICAL Kirchhoff s Voltage Law OBJECTIVES Define Kirchhoff s Voltage Law Discuss how Kirchhoff s Voltage Law applies to Series and Parallel Circuits Calculate Voltage drops in a Series and Parallel

More information

Electrical Circuits. Ammeter Light Bulb Ohmmeter. Power Supply Resistor Voltmeter. Symbols for Electrical Components.

Electrical Circuits. Ammeter Light Bulb Ohmmeter. Power Supply Resistor Voltmeter. Symbols for Electrical Components. PHSC 101 Electrical Circuits Name Purpose To learn how to measure resistance, voltage, and current using a multimeter. To become familiar with the basic components of simple electrical circuits and Ohm's

More information

Basic Techniques for Accurate Resistance Measurement

Basic Techniques for Accurate Resistance Measurement Basic Techniques for Accurate Resistance Measurement Reduce Measurement Errors in your Application CHESTERLAND OH January 20, 2014 At CAS DataLoggers we often receive calls from users working in resistance

More information

Analysis of a single-loop circuit using the KVL method

Analysis of a single-loop circuit using the KVL method Analysis of a single-loop circuit using the KVL method Figure 1 is our circuit to analyze. We shall attempt to determine the current through each element, the voltage across each element, and the power

More information

1. If each of the four resistors below has a resistance of 1 µω, what is the equivalent resistance of the combination?

1. If each of the four resistors below has a resistance of 1 µω, what is the equivalent resistance of the combination? 1. If each of the four resistors below has a resistance of 1 µω, what is the equivalent resistance of the combination? V (a) 0.25 µω (b) 1 µω (c) 2 µω (d) 4 µω (e) none of these 2. Three identical lamps

More information

3_given a graph of current_voltage for a resistor, determine the resistance. Three resistance R1 = 1.0 kω, R2 = 1.5 kω, R3 = 2.

3_given a graph of current_voltage for a resistor, determine the resistance. Three resistance R1 = 1.0 kω, R2 = 1.5 kω, R3 = 2. Ohm s Law Objectives: 1_measure the current_voltage curve for a resistor 2_construct a graph of the data from objective 1 3_given a graph of current_voltage for a resistor, determine the resistance Equipment:

More information

Series and Parallel Wiring

Series and Parallel Wiring Series and Parallel Wiring Thus far, we have dealt with circuits that include only a single device, such as a light bulb. There are, however, many circuits in which more than one device is connected to

More information

Lesson Plan. Session Title: Basic Electrical Theory Understanding Ohm s Law

Lesson Plan. Session Title: Basic Electrical Theory Understanding Ohm s Law Course Title: Construction Technology Lesson Plan Session Title: Basic Electrical Theory Understanding Ohm s Law Performance Objective: Upon completion of this assignment, the student will be able to explain

More information

Chapter 21 Electric Current and Direct-Current Circuit

Chapter 21 Electric Current and Direct-Current Circuit Chapter 21 Electric Current and Direct-Current Circuit Outline 21-1 Electric Current 21-2 Resistance and Ohm s Law 21-3 Energy and Power in Electric Circuit 21-4 Resistance in Series and Parallel 21-5

More information

Fig. 1 Analogue Multimeter Fig.2 Digital Multimeter

Fig. 1 Analogue Multimeter Fig.2 Digital Multimeter ELECTRICAL INSTRUMENT AND MEASUREMENT Electrical measuring instruments are devices used to measure electrical quantities such as electric current, voltage, resistance, electrical power and energy. MULTIMETERS

More information

Section 6. Current, Voltage, and Resistance in Parallel and Series Circuits: Who s in Control? What Do You See? What Do You Think?

Section 6. Current, Voltage, and Resistance in Parallel and Series Circuits: Who s in Control? What Do You See? What Do You Think? Section 6 Current, Voltage, and Resistance in Parallel and Series Circuits: Who s in Control? What Do You See? Learning Outcomes In this section, you will ssemble a switch in a circuit with parallel components

More information

Verification of Ohm s Law, Kirchoff s Voltage Law and Kirchoff s Current Law Brad Peirson

Verification of Ohm s Law, Kirchoff s Voltage Law and Kirchoff s Current Law Brad Peirson Verification of Ohm s Law, Kirchoff s Voltage Law and Kirchoff s Current Law Brad Peirson 2-24-05 EGR 214 Circuit Analysis I Laboratory Section 04 Prof. Blauch Abstract The purpose of this report is to

More information

ch 18 practice Multiple Choice

ch 18 practice Multiple Choice ch 18 practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is the best description of a schematic diagram? a. uses pictures

More information

Cornerstone Electronics Technology and Robotics I Week 15 Combination Circuits (Series-Parallel Circuits)

Cornerstone Electronics Technology and Robotics I Week 15 Combination Circuits (Series-Parallel Circuits) Cornerstone Electronics Technology and Robotics I Week 15 Combination Circuits (Series-Parallel Circuits) Administration: o Prayer o Turn in quiz Electricity and Electronics, Chapter 8, Introduction: o

More information

Voltage Loss Formula s

Voltage Loss Formula s www.litz-wire.com HM Wire International Inc. Phone: 330-244-8501 Fax: 330-244-8561 Voltage Loss Formula s www.hmwire.com Voltage loss in a wire is synonymous to pressure loss in a pipe. Electric current

More information

The Ohm s Law. 180 years old battery

The Ohm s Law. 180 years old battery The Ohm s aw George Ohm has established experimentally in 827 the following law V is the voltage across a conductor I= V I is the current thought a conductor / is a proportionality factor; is called resistance

More information

Introduction to Electric Circuits. Dr. William A. Stapleton Ingram School Of Engineering Texas State University San Marcos

Introduction to Electric Circuits. Dr. William A. Stapleton Ingram School Of Engineering Texas State University San Marcos Introduction to Electric Circuits Dr. William A. Stapleton Ingram School Of Engineering Texas State University San Marcos Electrical Circuits (Over)simplified The simple model of matter is that it is made

More information

SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING. Self Study Course

SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING. Self Study Course SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING Self Stud Course MODULE 27 FURTHER APPLICATIONS TO ELECTRICAL CIRCUITS Module Topics 1. Inverse of a matri using elimination 2. Mesh analsis of

More information

Parallel Circuits. Objectives

Parallel Circuits. Objectives Parallel Circuits Objectives Identify a parallel circuit Determine the voltage across each parallel branch Apply Kirchhoff s Current Law Determine total parallel resistance Apply Ohm s law in a parallel

More information

Solutions to Bulb questions

Solutions to Bulb questions Solutions to Bulb questions Note: We did some basic circuits with bulbs in fact three main ones I can think of I have summarized our results below. For the final exam, you must have an understanding of

More information

Electric Circuits II

Electric Circuits II Electric Circuits II Experiment 4: Resistances in Circuits Equipment needed: - AC/DC Electronic Lab Board: Resistors - Multimeter Purpose The purpose of this lab is to begin experimenting with the variables

More information

Direct-Current Circuits

Direct-Current Circuits Chapter 13 Direct-Current Circuits In This Chapter: Resistors in Series Resistors in Parallel EMF and Internal Resistance Kirchhoff s Rules Resistors in Series The equivalent resistance of a set of resistors

More information

= 1 R 1 + (2) + 1 R R 2

= 1 R 1 + (2) + 1 R R 2 PHYS 140 General Physics II EXPERIMENT 4 SERIES AND PARALLEL RESISTANCE CIRCUITS I. OBJECTIVE: The objective of this experiment is the study of series and parallel resistive circuits. The student will

More information

Problem Set 4 SOLUTION

Problem Set 4 SOLUTION University of Alabama Department of Physics and Astronomy PH 102-2 / LeClair Spring 2008 Problem Set 4 SOLUTON 1. 10 points. An 11.0 W compact fluorescent bulb is designed to produce the same illumination

More information

Electrical Circuits. Ammeter Light Bulb Ohmmeter. Power Supply Resistor Voltmeter. Symbols for Electrical Components.

Electrical Circuits. Ammeter Light Bulb Ohmmeter. Power Supply Resistor Voltmeter. Symbols for Electrical Components. Physical Science 101 Electrical Circuits Name Partner s Name Purpose To learn how to measure resistance, voltage, and current using a multimeter. To become familiar with the basic components of simple

More information

PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits

PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits PHYSCS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits This experiment is designed to investigate the relationship between current and potential in simple series

More information

ElectronicsLab5.nb. Electronics Lab #5. Thevenin's Theorem

ElectronicsLab5.nb. Electronics Lab #5. Thevenin's Theorem Electronics Lab #5 Thevenin's Theorem Often you deal with a complicated electronic circuit. It is often the case that the behavior of one particular component is crucial. For example, you could have an

More information

Objectives 316 CHAPTER 6 POWER

Objectives 316 CHAPTER 6 POWER Objectives Explain the relationship between power, current, and voltage in electrical systems. Explain the relationship between power, current, and resistance in electrical systems. Calculate energy usage

More information

SERIES AND PARALLEL CIRCUITS

SERIES AND PARALLEL CIRCUITS SERIES AND PARALLEL CIRCUITS Circuits Provides a path for electricity to travel Similar to water pipes in your house Because of the voltage of an outlet, electrons will travel through the circuit Electrons

More information

Accuplacer Arithmetic Study Guide

Accuplacer Arithmetic Study Guide Testing Center Student Success Center Accuplacer Arithmetic Study Guide I. Terms Numerator: which tells how many parts you have (the number on top) Denominator: which tells how many parts in the whole

More information