ELECTRICAL CIRCUITS. Electrical Circuits
|
|
|
- Stephanie Caldwell
- 9 years ago
- Views:
Transcription
1 Electrical Circuits A complete path, or circuit, is needed before voltage can cause a current flow through resistances to perform work. There are several types of circuits, but all require the same basic components. A power source (battery or alternator) produces voltage, or electrical potential. Conductors (wires, printed circuit boards) provide a path for current flow. Working devices, or loads (lamps, motors), change the electrical energy into another form of energy to perform work. Control devices (switches, relays) turn the current flow on and off. And, protection devices (fuses, circuit breakers) interrupt the current path if too much current flows. Too much current is called an overload, which could damage conductors and working devices. A list of five things to look for in any circuit: 1. Source of Voltage 2. Protection Device 3. Load 4. Control 5. Ground We will be identifying these items when we look at Automotive Circuits a little later in this book. Page 1
2 Types Of Circuits There are three basic types of circuits: series, parallel, and series-parallel. The type of circuit is determined by how the power source, conductors, loads, and control or protective devices are connected. SERIES CIRCUIT A series circuit is the simplest circuit. The conductors, control and protection devices, loads, and power source are connected with only one path for current. The resistance of each device can be different. The same amount of current will flow through each. The voltage across each will be different. If the path is broken, no current flows. PARALLEL CIRCUIT A parallel circuit has more than one path for current flow. The same voltage is applied across each branch. If the load resistance in each branch is the same, the current in each branch will be the same. If the load resistance in each branch is different, the current in each branch will be different. If one branch is broken, current will continue flowing to the other branches. SERIES-PARALLEL CIRCUIT A series-parallel circuit has some components in series and others in parallel. The power source and control or protection devices are usually in series; the loads are usually in parallel. The same current flows in the series portion, different currents in the parallel portion. The same voltage is applied to parallel devices, different voltages to series devices. If the series portion is broken, current stops flowing in the entire circuit. If a parallel branch is broken, current continues flowing in the series portion and the remaining branches. Page 2
3 SERIES CIRCUITS In a series circuit, current has only one path. All the circuit components are connected so that the same amount of current flows through each. The circuit must have continuity. If a wire is disconnected or broken, current stops flowing. If one load is open, none of the loads will work. Use of Ohm's Law Applying Ohm's Law to series circuits is easy. Simply add up the load resistances and divide the total resistance into the available voltage to find the current. The voltage drops across the load resistances are then found by multiplying the current by each load resistance. For calculation examples, see page 6 in the Ohms law section. Voltage drop is the difference in voltage (pressure) on one side of a load compared to the voltage on the other side of the load. The drop or loss in voltage is proportional to the amount of resistance. The higher the resistance, the higher the voltage drop. When troubleshooting, then, you can see that more resistance will reduce current and less resistance will increase current. Low voltage would also reduce current and high voltage would increase current. Reduced current will affect component operation (dim lamps, slow motors). But, increased current will also affect component operation (early failure, blown fuses). And, of course, no current at all would mean that the entire circuit would not operate. There are electrical faults that can cause such problems and knowing the relationship between voltage, current, and resistance will help to identify the cause of the problem. Page 3
4 PARALLEL CIRCUITS In a parallel circuit, current can flow through more than one path from and to the power source. The circuit loads are connected in parallel legs, or branches, across a power source. The points where the current paths split and rejoin are called junctions. The separate current paths are called branch circuits or shunt circuits. Each branch operates independent of the others. If one load opens, the others continue operating. Use of Ohm's Law Applying Ohm's Law to parallel circuits is a bit more difficult than with series circuits. The reason is that the branch resistances must be combined to find an equivalent resistance. Just remember that the total resistance in a parallel circuit is less than the smallest load resistance. This makes sense because current can flow through more than one path. Also, remember that the voltage drop across each branch will be the same because the source voltage is applied to each branch. For examples of how to calculate parallel resistance, see page 6. When troubleshooting a parallel circuit, the loss of one or more legs will reduce current because the number of paths is reduced. The addition of one or more legs will increase current because the number of paths is increased. Current can also be reduced by low source voltage or by resistance in the path before the branches. And, current can be increased by high source voltage or by one or more legs being bypassed. High resistance in one leg would affect component operation only in that leg. Page 4
5 SERIES-PARALLEL CIRCUITS In a series-parallel circuit, current flows through the series portion of the circuit and then splits to flow through the parallel branches of the circuit. Some components are wired in series, others in parallel. Most automotive circuits are seriesparallel, and the same relationship between voltage, current, and resistance exists. Use of Ohm's Law Applying Ohm's Law to series-parallel circuits is a matter of simply combining the rules seen for series circuits and parallel circuits. First, calculate the equivalent resistance of the parallel loads and add it to the resistances of the loads in series. The total resistance is then divided into the source voltage to find current. Voltage drop across series loads is current times resistance. Current in branches is voltage divided by resistance. For calculation examples, see page 6. When troubleshooting a series-parallel circuit, problems in the series portion can shut down the entire circuit while a problem in one leg of the parallel portion may or may not affect the entire circuit, depending on the problem. Very high resistance in one leg would reduce total circuit current, but increase current in other legs. Very low resistance in one leg would increase total circuit current and possibly have the effect of bypassing other legs. Page 5
6 Ohm's Law Fast, accurate electrical troubleshooting is easy when you know how voltage, current, and resistance are related. Ohm's Law explains the relationship: Current (amps) equals voltage (volts) divided by resistance (ohms)... I = E R. Voltage (volts) equals current (amps) times resistance (ohms)... E = I X R. Resistance (ohms) equals voltage (volts) divided by current (amps)... R E = 1. USING OHM'S LAW The effects of different voltages and different resistances on current flow can be seen in the sample circuits. Current found by dividing voltage by resistance. This can be very helpful when diagnosing electrical problems: When the resistance stays the same... current goes up as voltage goes up, and current goes down as voltage goes down. A discharged battery has low voltage which reduces current. Some devices may fail to operate (slow motor speed). An unregulated alternator may produce too much voltage which increases current. Some devices may fail early (burned-out lamps). When the voltage stays the same... current goes up as resistance goes down, and current goes down as resistance goes up. Bypassed devices reduce resistance, causing high current. Loose connections increase resistance, causing low current. Page 6
7 SAMPLE CALCULATIONS Here are some basic formulas you will find helpful in solving more complex electrical problems. They provide the knowledge required for confidence and thorough understanding of basic electricity. The following abbreviations are used in the formulas: E = VOLTS I = AMPS R = OHMS P = WATTS Ohm's Law Scientifically stated, it says: "The intensity Of the current in amperes in any electrical circuit is equal to the difference in potential in volts across the circuit divided by the resistance in ohms of the circuit." Simply put it means that current is equal to volts divided by ohms, or expressed as a formula, the law becomes: I = E / R or it can be written: E = I X R This is important because if you know any two of the quantities, the third may be found by applying the equation. Ohm's law includes these two ideas: 1. In a circuit, if resistance is constant, current varies directly with voltage. Now what this means is that if you take a component with a fixed resistance, say a light bulb, and double the voltage you double the current flowing through it. Anyone who has hooked a sixvolt bulb to a twelve-volt circuit has experienced this. But it wasn't "too many volts" that burned out the bulb, it was too much current. More about that later. 2. In a circuit, if voltage is constant, current varies inversely with resistance. This second idea states that when resistance goes up, current goes down. That's why corroded connectors cause very dim lights - not enough current. Watts A watt is an electrical measurement of power or work. It directly relates to horsepower. In fact, in the Sl metric standards that most of the world uses, engine power is given in watts or kilowatts. Electrical power is easily calculated by the formula: P = E X I For instance, a halogen high-beam headlight is rated or 5 amps of current. Figuring 12 volts in the system, we could write: P = E X I P = 12 X 5 P = 60 watts Page 7
8 RESISTANCE The effect of individual resistors on the total resistance of a circuit depends on whether the circuit is series or parallel. That becomes: Which becomes: Series Circuits In a series circuit, the total resistance is equal to the sum of the individual resistors: SERIES: total R = R1 + R2 + R3 + That is the basis of the concept of voltage drop. For example, if you had a circuit with three loads in series (a bulb, resistor, and corroded ground) you would add the three together to get total resistance. And, of course, the voltage would drop across each load according to its value. Parallel Circuits Parallel circuits are a different story. In a parallel circuit, there are three ways to find total resistance. Method A works in all cases. Method B works only if there are two branches, equal or not. Method C works only if the branches are of equal resistance. A. The total resistance is equal to one over the sum of the reciprocals of the individual resistors. That sounds confusing, but looking at the formula will make it clearer: PARALLEL: n example will make it even clearer. Suppose there is a circuit with three resistors in parallel: 4 ohms, 2 ohms, and 1 ohm. The formula would look like this: So there is a little more than one-half ohm resistance in the circuit. You can see that the more resistors in parallel, the less the resistance. In fact, the total resistance is always less than the smallest resistor. This is why a fuse will blow if you add too many circuits to the fuse. There are so many paths for the current to follow that the total resistance of the circuit is very low. That means the current is very high - so high that the fuse can no longer handle the load. B. For two resistors: For a 3 ohm and a 5 ohm resistor that would be: C. For several identical resistors, divide the value of one resistor by the number of resistors, or: Where R1 is the value of one resistor and n is the number of resistors. So if you had three 4 ohm resistors in parallel it would be: Page 8
9 Page 9
10 ASSIGNMENT NAME: 1. Draw and label the parts of a Series Circuit and a Parallel Circuit. 2. Explain the characteristics of Voltage and how it differs between a Series Circuit and a Parallel Circuit. 3. Explain the characteristics of Current and how it differs between a Series Circuit and a Parallel Circuit. 4. Explain the characteristics of Resistance and how it differs between a Series Circuit and a Parallel Circuit.
Student Exploration: Circuits
Name: Date: Student Exploration: Circuits Vocabulary: ammeter, circuit, current, ohmmeter, Ohm s law, parallel circuit, resistance, resistor, series circuit, voltage Prior Knowledge Questions (Do these
Electrical Fundamentals Module 3: Parallel Circuits
Electrical Fundamentals Module 3: Parallel Circuits PREPARED BY IAT Curriculum Unit August 2008 Institute of Applied Technology, 2008 ATE310- Electrical Fundamentals 2 Module 3 Parallel Circuits Module
Electrical Circuit Theory
Electrical Circuit Theory Learning Objectives: 1. Review the basic electrical concepts of voltage, amperage, and resistance. 2. Review the components of a basic automotive electrical circuit. 3. Introduce
Experiment 4 ~ Resistors in Series & Parallel
Experiment 4 ~ Resistors in Series & Parallel Objective: In this experiment you will set up three circuits: one with resistors in series, one with resistors in parallel, and one with some of each. You
6 Series Parallel Circuits
6 Series Parallel Circuits This work is licensed under the Creative Commons Attribution 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/. Air Washington
Solutions to Bulb questions
Solutions to Bulb questions Note: We did some basic circuits with bulbs in fact three main ones I can think of I have summarized our results below. For the final exam, you must have an understanding of
Chapter 5. Parallel Circuits ISU EE. C.Y. Lee
Chapter 5 Parallel Circuits Objectives Identify a parallel circuit Determine the voltage across each parallel branch Apply Kirchhoff s current law Determine total parallel resistance Apply Ohm s law in
OHM S LAW AND RESISTANCE
OHM S LAW AND RESISTANCE Resistance is one of the basic principles of Ohm s law, and can be found in virtually any device used to conduct electricity. Georg Simon Ohm was a German physicist who conducted
Ohm s Law. George Simon Ohm
Ohm s Law George Simon Ohm The law which governs most simple and many complex electrical phenomena is known as Ohm s Law. It is the most important law in electricity. In 1827, a German locksmith and mathematician
13.10: How Series and Parallel Circuits Differ pg. 571
13.10: How Series and Parallel Circuits Differ pg. 571 Key Concepts: 5. Connecting loads in series and parallel affects the current, potential difference, and total resistance. - Using your knowledge of
Experiment NO.3 Series and parallel connection
Experiment NO.3 Series and parallel connection Object To study the properties of series and parallel connection. Apparatus 1. DC circuit training system 2. Set of wires. 3. DC Power supply 4. Digital A.V.O.
Current Electricity Lab Series/Parallel Circuits. Safety and Equipment Precautions!
Current Electricity Lab Series/Parallel Circuits Name Safety and Equipment Precautions! Plug in your power supply and use ONLY the D.C. terminals of the power source, NOT the A. C. terminals. DO NOT touch
Parallel DC circuits
Parallel DC circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
Resistors in Series and Parallel
Resistors in Series and Parallel Bởi: OpenStaxCollege Most circuits have more than one component, called a resistor that limits the flow of charge in the circuit. A measure of this limit on charge flow
Tristan s Guide to: Solving Parallel Circuits. Version: 1.0 Written in 2006. Written By: Tristan Miller [email protected]
Tristan s Guide to: Solving Parallel Circuits. Version: 1.0 Written in 2006 Written By: Tristan Miller [email protected] Parallel Circuits. Parallel Circuits are a little bit more complicated
Chapter 13: Electric Circuits
Chapter 13: Electric Circuits 1. A household circuit rated at 120 Volts is protected by a fuse rated at 15 amps. What is the maximum number of 100 watt light bulbs which can be lit simultaneously in parallel
Ohm's Law and Circuits
2. Conductance, Insulators and Resistance A. A conductor in electricity is a material that allows electrons to flow through it easily. Metals, in general, are good conductors. Why? The property of conductance
Parallel Circuits. Objectives After studying this chapter, you will be able to answer these questions: 1. How are electrical components connected
This sample chapter is for review purposes only. Copyright The Goodheart-Willcox Co., Inc. All rights reserved. Electricity Objectives After studying this chapter, you will be able to answer these questions:.
Series and Parallel Circuits
Series and Parallel Circuits Components in a circuit can be connected in series or parallel. A series arrangement of components is where they are inline with each other, i.e. connected end-to-end. A parallel
Odyssey of the Mind Technology Fair. Simple Electronics
Simple Electronics 1. Terms volts, amps, ohms, watts, positive, negative, AC, DC 2. Matching voltages a. Series vs. parallel 3. Battery capacity 4. Simple electronic circuit light bulb 5. Chose the right
Light Bulbs in Parallel Circuits
Light Bulbs in Parallel Circuits In the last activity, we analyzed several different series circuits. In a series circuit, there is only one complete pathway for the charge to travel. Here are the basic
Electrical Design TABLE OF CONTENTS FOREWORD... 1. BASIC ELEMENTS OF ELECTRICITY... 2 Electricity works much like water Ohm s Law
TABLE OF CONTENTS Electrical Design TABLE OF CONTENTS FOREWORD.......................................................................... 1 BASIC ELEMENTS OF ELECTRICITY..................................................
Chapter 7 Direct-Current Circuits
Chapter 7 Direct-Current Circuits 7. Introduction...7-7. Electromotive Force...7-3 7.3 Resistors in Series and in Parallel...7-5 7.4 Kirchhoff s Circuit Rules...7-7 7.5 Voltage-Current Measurements...7-9
Section B: Electricity
Section B: Electricity We use mains electricity, supplied by power stations, for all kinds of appliances in our homes, so it is very important to know how to use it safely. In this chapter you will learn
Objectives 200 CHAPTER 4 RESISTANCE
Objectives Explain the differences among conductors, insulators, and semiconductors. Define electrical resistance. Solve problems using resistance, voltage, and current. Describe a material that obeys
TECH TIP # 37 SOLVING SERIES/PARALLEL CIRCUITS THREE LAWS --- SERIES CIRCUITS LAW # 1 --- THE SAME CURRENT FLOWS THROUGH ALL PARTS OF THE CIRCUIT
TECH TIP # 37 SOLVING SERIES/PARALLEL CIRCUITS Please study this Tech Tip along with assignment 4 in Basic Electricity. Parallel circuits differ from series circuits in that the current divides into a
7. What is the current in a circuit if 15 coulombs of electric charge move past a given point in 3 seconds? (1) 5 A (3) 18 A (2) 12 A (4) 45 A
1. Compared to the number of free electrons in a conductor, the number of free electrons in an insulator of the same volume is less the same greater 2. Most metals are good electrical conductors because
FB-DC3 Electric Circuits: Series and Parallel Circuits
CREST Foundation Electrical Engineering: DC Electric Circuits Kuphaldt FB-DC3 Electric Circuits: Series and Parallel Circuits Contents 1. What are "series" and "parallel"? 2. Simple series circuits 3.
PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits
PHYSCS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits This experiment is designed to investigate the relationship between current and potential in simple series
AP1 Electricity. 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to
1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to (A) a force of repulsion between the shoes and the floor due to macroscopic gravitational forces.
Resistors in Series and Parallel
OpenStax-CNX module: m42356 1 Resistors in Series and Parallel OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Draw a circuit
People s Physics Book
The Big Ideas: The name electric current is given to the phenomenon that occurs when an electric field moves down a wire at close to the speed of light. Voltage is the electrical energy density (energy
AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules
Name Period AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules Dr. Campbell 1. Four 240 Ω light bulbs are connected in series. What is the total resistance of the circuit? What
Tristan s Guide to: Solving Series Circuits. Version: 1.0 Written in 2006. Written By: Tristan Miller [email protected]
Tristan s Guide to: Solving Series Circuits. Version: 1.0 Written in 2006 Written By: Tristan Miller [email protected] Series Circuits. A Series circuit, in my opinion, is the simplest circuit
Chapter 19. Electric Circuits
Chapter 9 Electric Circuits Series Wiring There are many circuits in which more than one device is connected to a voltage source. Series wiring means that the devices are connected in such a way that there
STUDY GUIDE: ELECTRICITY AND MAGNETISM
319 S. Naperville Road Wheaton, IL 60187 www.questionsgalore.net Phone: (630) 580-5735 E-Mail: [email protected] Fax: (630) 580-5765 STUDY GUIDE: ELECTRICITY AND MAGNETISM An atom is made of three
Series and Parallel Circuits
Series and Parallel Circuits Direct-Current Series Circuits A series circuit is a circuit in which the components are connected in a line, one after the other, like railroad cars on a single track. There
Cornerstone Electronics Technology and Robotics I Week 15 Combination Circuits (Series-Parallel Circuits)
Cornerstone Electronics Technology and Robotics I Week 15 Combination Circuits (Series-Parallel Circuits) Administration: o Prayer o Turn in quiz Electricity and Electronics, Chapter 8, Introduction: o
Voltage Drop (Single-Phase)
Voltage Drop (Single-Phase) To Find: To Find Voltage Drop Formula: 2 x K x L x I V.D. = ------------------- C.M. Variables: C.M. = Circular Mill Area (Chapter 9, Table 8) To Find Voltage Drop Percentage
Diagnosing Body Electrical Problems
Diagnosing Body Electrical Problems Learning Objectives: 1. Examine the diagnostic strategies for: Open Circuit Problems High Resistance Problems Unwanted Parasitic Load Problems Short to ground Problems
Direct-Current Circuits
8 Direct-Current Circuits Clicker Questions Question N.0 Description: Understanding circuits with parallel resistances. Question A battery is used to light a bulb as shown. A second bulb is connected by
Series and Parallel Circuits
Direct Current (DC) Direct current (DC) is the unidirectional flow of electric charge. The term DC is used to refer to power systems that use refer to the constant (not changing with time), mean (average)
Which Bulb Burns Brighter? One is a 60-watt bulb and the other a 100-watt bulb, and they are connected in an electric circuit.
Which Bulb Burns Brighter? One is a 60-watt bulb and the other a 100-watt bulb, and they are connected in an electric circuit. Look at the text on page 541 for the answer. CHPTE 23 Series and Parallel
Basic circuit troubleshooting
Basic circuit troubleshooting This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
Basic voltmeter use. Resources and methods for learning about these subjects (list a few here, in preparation for your research):
Basic voltmeter use This worksheet and all related files are licensed under the Creative Commons ttribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
Physics, Chapter 27: Direct-Current Circuits
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 1-1-1958 Physics, Chapter 27: Direct-Current Circuits
Kirchhoff's Current Law (KCL)
Kirchhoff's Current Law (KCL) I. Charge (current flow) conservation law (the Kirchhoff s Current law) Pipe Pipe Pipe 3 Total volume of water per second flowing through pipe = total volume of water per
Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws
Physics 182 Summer 2013 Experiment #5 1 Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws 1 Purpose Our purpose is to explore and validate Kirchhoff s laws as a way to better understanding
WORK, POWER, AND ENERGY (ELECTRICAL)
SUBCOUSE IT0348 EDITION A US AMY INTELLIGENCE CENTE WOK, POWE, AND ENEGY (ELECTICAL) WOK, POWE, AND ENEGY (ELECTICAL) Subcourse Number IT 0348 EDITION A US AMY INTELLIGENCE CENTE FOT HUACHUCA, AZ 85613-6000
Figure 1. Experiment 3 The students construct the circuit shown in Figure 2.
Series and Parallel Circuits When two or more devices are connected to a battery in a circuit, there are a couple of methods by which they can be connected. One method is called a series connection and
Maximum value. resistance. 1. Connect the Current Probe to Channel 1 and the Differential Voltage Probe to Channel 2 of the interface.
Series and Parallel Circuits Computer 23 Components in an electrical circuit are in series when they are connected one after the other, so that the same current flows through both of them. Components are
3.- What atom s particle moves through a conductor material? 4.- Which are the electric components of an elemental electric circuit?
1.- What is electricity? 2.- Write down the name of the atom s particles. 3.- What atom s particle moves through a conductor material? 4.- Which are the electric components of an elemental electric circuit?
Resistors. Some substances are insulators. A battery will not make detectible current flow through them.
Resistors Some substances are insulators. A battery will not make detectible current flow through them. Many substances (lead, iron, graphite, etc.) will let current flow. For most substances that are
Essential Electrical Concepts
Essential Electrical Concepts Introduction Modern vehicles incorporate many electrical and electronic components and systems: Audio Lights Navigation Engine control Transmission control Braking and traction
Measuring Electric Phenomena: the Ammeter and Voltmeter
Measuring Electric Phenomena: the Ammeter and Voltmeter 1 Objectives 1. To understand the use and operation of the Ammeter and Voltmeter in a simple direct current circuit, and 2. To verify Ohm s Law for
Electrical Circuits. Section 2. Types of Circuits. Components of a Circuit
Electrical Circuits Types of Circuits A circuit is a complete path for current when voltage is applied. There are three basic types of circuits: Series Parallel Series parallel All circuits require the
= (0.400 A) (4.80 V) = 1.92 W = (0.400 A) (7.20 V) = 2.88 W
Physics 2220 Module 06 Homework 0. What are the magnitude and direction of the current in the 8 Ω resister in the figure? Assume the current is moving clockwise. Then use Kirchhoff's second rule: 3.00
Table of Contents. The Basics of Electricity 2. Using a Digital Multimeter 4. Testing Voltage 8. Testing Current 10. Testing Resistance 12
Table of Contents The Basics of Electricity 2 Using a Digital Multimeter 4 IDEAL Digital Multimeters An Introduction The Basics of Digital Multimeters is designed to give you a fundamental knowledge of
Experiment: Series and Parallel Circuits
Phy203: General Physics Lab page 1 of 6 Experiment: Series and Parallel Circuits OBJECTVES MATERALS To study current flow and voltages in series and parallel circuits. To use Ohm s law to calculate equivalent
Lab 3 - DC Circuits and Ohm s Law
Lab 3 DC Circuits and Ohm s Law L3-1 Name Date Partners Lab 3 - DC Circuits and Ohm s Law OBJECTIES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in
Lab 2: Resistance, Current, and Voltage
2 Lab 2: Resistance, Current, and Voltage I. Before you come to la.. A. Read the following chapters from the text (Giancoli): 1. Chapter 25, sections 1, 2, 3, 5 2. Chapter 26, sections 1, 2, 3 B. Read
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If the voltage at a point in space is zero, then the electric field must be A) zero. B) positive.
COOL-01, Cooling Fan Operation and Troubleshooting
COOL-01, Cooling Fan Operation and Troubleshooting Table of Contents Introduction Early 944s With Air Conditioning Cooling Fan Operation On Early 944s With Air Conditioning Testing Fan Relay One Early
Chapter 7. DC Circuits
Chapter 7 DC Circuits 7.1 Introduction... 7-3 Example 7.1.1: Junctions, branches and loops... 7-4 7.2 Electromotive Force... 7-5 7.3 Electrical Energy and Power... 7-9 7.4 Resistors in Series and in Parallel...
The Importance of the X/R Ratio in Low-Voltage Short Circuit Studies
The Importance of the X/R Ratio in Low-Voltage Short Circuit Studies DATE: November 17, 1999 REVISION: AUTHOR: John Merrell Introduction In some short circuit studies, the X/R ratio is ignored when comparing
Experiment 8 Series-Parallel Circuits
Experiment 8 Series-Parallel Circuits EL 111 - DC Fundamentals By: Walter Banzhaf, E.K. Smith, and Winfield Young University of Hartford Ward College of Technology Objectives: 1. For the student to measure
ANALOG AND DIGITAL METERS ANALOG VS. DIGITAL METERS VOLTMETERS ANALOG AND DIGITAL
ANALOG VS. DIGITAL METERS Ultimately, your diagnosis of vehicle electrical system problems will come down to using a voltmeter, ammeter, or ohmmeter to pinpoint the exact location of the problem. There
Chapter 5. Components, Symbols, and Circuitry of Air-Conditioning Wiring Diagrams
Chapter 5 Components, Symbols, and Circuitry of Air-Conditioning Wiring Diagrams Objectives Upon completion of this course, you will be able to: Explain what electrical loads are and their general purpose
Electric Motor Brake Horsepower Calculations
Electric Motor Brake Horsepower Calculations By Norm Christopherson These motor calculations are contained here as they apply to the changing conditions of the blower motor when pulley adjustments are
Branch Circuit Calculations
Branch Circuit Calculations by Gerald Newton October 31, 1999 1. A 20 ampere, 120 volt, 2-wire branch circuit has a maximum load capacity of watts or volt-amperes. Reference: Using the following for Single
The Charging System. Section 5. Charging System. Charging System. The charging system has two essential functions:
The Charging System Charging System The charging system has two essential functions: Generate electrical power to run the vehicle s electrical systems Generate current to recharge the vehicle s battery
101 BASICS SERIES LEARNING MODULE 2: FUNDAMENTALS OF ELECTRICITY. Cutler-Hammer
101 BASICS SERIES LEARNING MODULE 2: FUNDAMENTALS OF ELECTRICITY Cutler-Hammer WELCOME Welcome to Module 2, Fundamentals of Electricity. This module will cover the fundamentals of electricity in a practical
Wire(s) Won t Fit (Kit s Wiring Harness)
HID Conversion Kit General Troubleshooting Table of Contents 1. Bulb(s) Won t Fit 2. Wire(s) Won t Fit (For Kit s Wiring Harness) 3. One Side Consistently Doesn t Light Up 4. Both Sides Consistently Don
PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.
PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,
Lesson Plan. Parallel Resistive Circuits Part 1 Electronics
Parallel Resistive Circuits Part 1 Electronics Lesson Plan Performance Objective At the end of the lesson, students will demonstrate the ability to apply problem solving and analytical techniques to calculate
Electrician s Math and Basic Electrical Formulas
UNIT 1 Electrician s Math and Basic Electrical Formulas INTRODUCTION TO UNIT 1 ELECTRICIAN S MATH AND BASIC ELECTRICAL FORMULAS In order to construct a building that will last into the future, a strong
ELECTRICAL FUNDAMENTALS
General Electricity is a form of energy called electrical energy. It is sometimes called an "unseen" force because the energy itself cannot be seen, heard, touched, or smelled. However, the effects of
Line Loss WSDOT Winter 2008 BZA
Electrical Design Training Class Line Loss WSDOT Winter 2008 BZA Presented by: Keith Calais 1 OHM S LAW P = Watts (Power) I = CURRENT (AMPERES) R = RESISTANCE (OHMS) E = ELECTROMOTIVE FORCE (VOLTS) P =
Energy, Work, and Power
Energy, Work, and Power This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
LAB2 Resistors, Simple Resistive Circuits in Series and Parallel Objective:
LAB2 Resistors, Simple Resistive Circuits in Series and Parallel Objective: In this lab, you will become familiar with resistors and potentiometers and will learn how to measure resistance. You will also
Table of Contents 1. Introduction 2. Electrical Fundamentals Electron Theory Matter 4 MOLECULE
Table of Contents 1. Introduction 3 2. Electrical Fundamentals 4 Electron Theory 4 Matter 4 MOLECULE 5 The atom 6 Atom construction 7 Electrical charges 11 Balanced atoms 12 Ions 13 Electron orbits 15
Series-parallel DC circuits
Series-parallel DC circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
Series and Parallel Resistive Circuits Physics Lab VIII
Series and Parallel Resistive Circuits Physics Lab VIII Objective In the set of experiments, the theoretical expressions used to calculate the total resistance in a combination of resistors will be tested
17.4 Series and Parallel Circuits
17.4 Series and Parallel Circuits When multiple resistors are used in a circuit, the total resistance in the circuit must be found before finding the current. Resistors can be combined in a circuit in
Physics. Cambridge IGCSE. Workbook. David Sang. Second edition. 9780521757843 Cambers & Sibley: IGCSE Physics Cover. C M Y K
Cambridge IGCSE Physics, Second edition matches the requirements of the latest Cambridge IGCSE Physics syllabus (0625). It is endorsed by Cambridge International Examinations for use with their examination.
Experiment #3, Ohm s Law
Experiment #3, Ohm s Law 1 Purpose Physics 182 - Summer 2013 - Experiment #3 1 To investigate the -oltage, -, characteristics of a carbon resistor at room temperature and at liquid nitrogen temperature,
Electricity is such a common part of our lifestyle that we tend to forget the amazing
Electricity is such a common part of our lifestyle that we tend to forget the amazing processes involved in its production and distribution. With the flick of the switch you can light up a room, play video
FLORIDA STATE COLLEGE AT JACKSONVILLE NON-COLLEGE CREDIT COURSE OUTLINE
Form 2B, Page 1 FLORIDA STATE COLLEGE AT JACKSONVILLE NON-COLLEGE CREDIT COURSE OUTLINE COURSE NUMBER: ACR 0100 COURSE TITLE: PREREQUISITE(S): COREQUISITE(S): Basic Electricity and Schematics None None
How Much Voltage Drop Is Acceptable?
How Much Voltage Drop Is Acceptable? Article supplied by Ideal The National Electrical Code (NEC) recommends that the combined voltage drop of the electrical system (branch circuit and feeders) not exceed
Measurement of Capacitance
Measurement of Capacitance Pre-Lab Questions Page Name: Class: Roster Number: Instructor:. A capacitor is used to store. 2. What is the SI unit for capacitance? 3. A capacitor basically consists of two
PROCEDURE: 1. Measure and record the actual values of the four resistors listed in Table 10-1.
The answer to two questions will help you identify a series or parallel connection: (1) Will the identical current go through both components? f the answer is yes, the components are in series. (2) Are
Three-phase AC circuits
Three-phase AC circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
Lab E1: Introduction to Circuits
E1.1 Lab E1: Introduction to Circuits The purpose of the this lab is to introduce you to some basic instrumentation used in electrical circuits. You will learn to use a DC power supply, a digital multimeter
W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören
W03 Analysis of DC Circuits Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors and
Fig. 1 Analogue Multimeter Fig.2 Digital Multimeter
ELECTRICAL INSTRUMENT AND MEASUREMENT Electrical measuring instruments are devices used to measure electrical quantities such as electric current, voltage, resistance, electrical power and energy. MULTIMETERS
After completing this chapter, the student should be able to:
DC Circuits OBJECTIVES After completing this chapter, the student should be able to: Solve for all unknown values (current, voltage, resistance, and power) in a series, parallel, or series-parallel circuit.
DIRECT CURRENT GENERATORS
DIRECT CURRENT GENERATORS Revision 12:50 14 Nov 05 INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy by using the principle of magnetic induction. This principle
Electric Potential Difference
Name: Electric Potential Difference Read from Lesson 1 of the Current Electricity chapter at The Physics Classroom: http://www.physicsclassroom.com/class/circuits/u9l1a.html http://www.physicsclassroom.com/class/circuits/u9l1b.html
Unit: Charge Differentiated Task Light it Up!
The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are
